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Abstract
Objective. The bedside detection of potential awareness in patients with disorders of
consciousness (DOC) currently relies only on behavioral observations and tests; however, the
misdiagnosis rates in this patient group are historically relatively high. In this study, we proposed
a visual hybrid brain–computer interface (BCI) combining P300 and steady-state evoked
potential (SSVEP) responses to detect awareness in severely brain injured patients. Approach.
Four healthy subjects, seven DOC patients who were in a vegetative state (VS, n = 4) or
minimally conscious state (MCS, n = 3), and one locked-in syndrome (LIS) patient attempted a
command-following experiment. In each experimental trial, two photos were presented to each
patient; one was the patientʼs own photo, and the other photo was unfamiliar. The patients were
instructed to focus on their own or the unfamiliar photos. The BCI system determined which
photo the patient focused on with both P300 and SSVEP detections. Main results. Four healthy
subjects, one of the 4 VS, one of the 3 MCS, and the LIS patient were able to selectively attend
to their own or the unfamiliar photos (classification accuracy, 66–100%). Two additional patients
(one VS and one MCS) failed to attend the unfamiliar photo (50–52%) but achieved significant
accuracies for their own photo (64–68%). All other patients failed to show any significant
response to commands (46–55%). Significance. Through the hybrid BCI system, command
following was detected in four healthy subjects, two of 7 DOC patients, and one LIS patient. We
suggest that the hybrid BCI system could be used as a supportive bedside tool to detect
awareness in patients with DOC.

Keywords: awareness detection, brain–computer interface, vegetative state, minimally conscious
state, locked-in syndrome,

1. Introduction

Patients suffering from a severe brain injury may fall into a
coma and develop a variety of different clinical awareness
states. Some patients may progress to a vegetative state (VS),
in which they may awaken but show no awareness of
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themselves or their environment (Jennett and Plum 1972).
Other patients may improve to a minimally conscious state
(MCS), in which they demonstrate inconsistent but repro-
ducible signs of awareness (Giacino et al 2002). Currently,
the clinical diagnosis of patients with disorders of con-
sciousness (DOC) such as VS and MCS is based only on
behavioral observations. Misdiagnosis rates in VS and MCS
patients are relatively high, ranging from 37 to 43% (Childs
et al 1993, Andrews et al 1996, Schnakers et al 2009a).
Detecting signs of awareness in these patients is particularly
challenging.

In recent years, functional magnetic resonance imaging
(fMRI) and electroencephalographic (EEG) techniques have
been proposed to examine the residual brain function in some
DOC patients (see Chatelle et al 2012, Liberati and Birbau-
mer 2012, Noirhomme et al 2013 for review). These studies
aimed to detect command-specific changes in fMRI or EEG
signals and to provide motor-independent evidence of
awareness. Using fMRI, several studies have objectively
quantified patients’ cerebral processing during the visual
presentation of familiar faces to VS patients (Owen
et al 2002) and during auditory presentation of the patients’
own name to MCS patients (Laureys et al 2004, Di
et al 2007). In one case study (Owen et al 2006), a VS patient
was instructed to ‘imagine playing tennis’ or to ‘imagine
walking through her house’ during an fMRI experiment. This
VS patient displayed motor imagery-related brain activations
similar to healthy controls during both tasks. In a follow-up
study (Monti et al 2010), the potential of this paradigm was
exploited to map imagery tasks to yes/no responses. Of 54
patients assessed (23 VS and 31 MCS patients), five (four VS
and one MCS patients) were able to willfully modulate their
brain activity. Unlike fMRI, EEG offers the potential for the
development of a relatively inexpensive and portable system
that can be used at the bedside (Naci et al 2012). For instance,
Schnakers et al tested 22 patients (eight VS and 14 MCS
patients) who were instructed to count the instances of their
own names presented within an auditory sequence mixed with
other names (Schnakers et al 2008). They found that five of
the 14 MCS patients produced larger P300 responses to their
own names during the actively counting condition than during
the passively listening condition. Cruse et al instructed a
group of 16 VS patients to imagine either squeezing their
right hand or moving their toes. (Cruse et al 2012a). Three of
the sixteen VS patients were able to modulate their sensor-
imotor rhythms, with cross-validated accuracies between
61–78%. However, the subsequent independent analysis
illustrated the remaining challenges to propose reliable tech-
nologies for clinical use in DOC patients (Goldfine
et al 2013).

Brain–computer interfaces (BCIs) are a relatively new
technology that enable direct communication with an external
device without the use of peripheral nerves and muscles
(Wolpaw et al 2002). The potential use of BCIs for awareness
detection and online communication with DOC patients has
recently been demonstrated in a few studies (Lulé et al 2012,
Muller-Putz et al 2012, Coyle et al 2012, Müller-Putz
et al 2013). Lule et al tested a four-choice auditory P300-

based BCI with 13 MCS, three VS, and two locked-in syn-
drome (LIS) patients (Lulé et al 2012). One LIS patient had a
significant correct response rate of 60%, but no other patients
could communicate through the BCI system. Coyle et al used
an MI-based BCI system to determine if real-time feedback
enhanced the systemʼs ability to detect awareness in an MCS
patient (Coyle et al 2012). The results indicated that the
patient could perform the MI tasks using real-time feedback
and achieved 80% online accuracy. Unlike fMRI and EEG-
based ERP techniques, a key characteristic or advantage of
BCIs in awareness detection is that the real-time detection
result can be provided as a form of feedback. This real-time
feedback has positive effects for the patients to use the BCI if
they have awareness. However, the use of BCIs to detect
awareness in DOC is still in its infancy, stronger BCIs are
needed to improve brain activity detection.

For BCI-based awareness detection, an important issue is
the modality of stimulation and feedback. To date, almost all
of the existing studies focus on auditory stimuli due to the fact
that most of the patients with DOC often suffer from gaze
fixation impairment. However, it has been proven difficult to
develop effective auditory BCIs that deliver promising per-
formance (Kübler et al 2009, Halder et al 2010). This is
because the brain signals evoked by the auditory stimuli are
generally weaker than those evoked by the visual stimuli.
Currently, the most robust BCIs enabling high accuracy in
healthy subjects are based on visual stimuli and feedback
(Sellers et al 2006, Bin et al 2009). Furthermore, ones have
developed several gaze-independent P300- or SSVEP-based
BCIs based on visual stimuli although for healthy subjects
(Brunner et al 2010, Treder et al 2011, Lesenfants et al 2011).

Another issue is the chose of stimuli and feedback.
Among the emotionally laden visual stimuli, face is a pow-
erful one to gain entry to awareness. Lavie et al suggested that
faces are special stimuli for attention because of their parti-
cular biological and social significance (Lavie et al 2003). It
may be promising to use facial photos as visual stimuli to
maximize our chances of awareness detection for the patients
with DOC.

Recent studies have validated hybrid BCIs, which
directly combine two or more different types of brain signals
(Pfurtscheller et al 2010a). The performance, e.g., classifica-
tion accuracy, of the BCIs could be improved by combining
these brain signals (Allison et al 2010a, Pfurtscheller
et al 2010b, Long et al 2012, Li et al 2013). In our previous
study (Li et al 2013), a hybrid BCI combining the P300 and
steady-state evoked potentials (SSVEPs) was developed for
the detection of idle state in healthy subjects. We demon-
strated that the performance of idle state detection was better
for the hybrid BCI than for the P300- or SSVEP-based BCI.
As an application, this method was used to produce a ‘go/
stop’ command in real-time control of a wheelchair.

Considering the above factors, we proposed a visual
hybrid BCI combining P300 and SSVEP, a variant of our
previously established system (Li et al 2013), for the detec-
tion of awareness in DOC patients in this study. In the system,
the visual stimuli and feedback were the patientʼs own facial
photos, or unfamiliar facial photos. Specifically, through both
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P300 and SSVEP detection, this system determined whether
the patient focused on the instructed target, the patientʼs own
facial photo, or an unfamiliar facial photo displayed on the
graphical user interface (GUI). Using this system, the ability
of the DOC patient to follow commands could be detected.
Eight patients (four VS, three MCS, and one LIS patient) and
four healthy subjects participated in our experiment; three
patients (one VS, one MCS and one LIS patient) were able to
follow commands using our hybrid BCI (classification accu-
racy 70–78%). These results implied that the three patients
possessed residual cognitive function and conscious aware-
ness, which were detected by our BCI system.

The remaining part of this paper is organized as follows.
The methodology including the patients, experimental design,
and data processing are presented in section 2. The experi-
mental results are presented in section 3. Further discussions
on the system and results are involved in section 4.

2. Methodology

2.1. Subjects

This study was undertaken at the Liuhuaqiao Hospital,
Guangzhou, China, between October 2012 and July 2013.
Brain activity was detected only when patients were free of
centrally acting sedative drugs. Eight severely brain-damaged
Chinese patients participated in this experiment (four males;
four VS, three MCS, and one LIS; mean age ± SD, 38 ± 19
years; see table 1). The study was approved by the Ethics
Committee of Liuhuaqiao Hospital which complies with the
Code of Ethics of the World Medical Association (Declara-
tion of Helsinki). Written informed consent was obtained
from each patientʼs legal surrogates. The VS and MCS clin-
ical diagnoses were based on the JFK Coma Recovery Scale-
Revised (CRS-R), which comprises six subscales that address
auditory, visual, motor, oromotor, communication, and
arousal functions (Giacino et al 2004). During the experi-
ment, the eight patients underwent a CRS-R assessment every
two weeks (the first CRS-R assessment happened within the
week before the experiment). For each patient, the CRS-R
scores presented in table 1 were based on his/her best
responses of the repeated CRS-R assessments. No patient had
a history of impaired visual acuity. In all eight patients, visual
evoked potentials to flash stimulation showed preserved
bilateral cortical responses. Additionally, four healthy sub-
jects (HC1, HC2, HC3 and HC4) with no history of neuro-
logical disease (three males; mean age ± SD, 29 ± 2 years)
were included in our experiment as control group.

2.2. Experimental design

2.2.1. GUI and stimuli. The GUI used in this study is
illustrated in figure 1. Facial photos were used as stimuli to
capture the attention of unresponsive patients. Two full-face,
frontal-view photos, the subjectʼs own photo and an
unfamiliar photo, were pseudo-randomly chosen from two
sets of facial photos (ten photos of the subject and ten

luminance- and contrast-matched unfamiliar photos of
individuals of the same gender as the subject) and randomly
displayed at the left and right side of the GUI. None of the
subjects had facial hair or wore glasses. All photos were
cropped to remove extraneous background, but the outlines of
faces, including hairstyles, were preserved. In addition, all of
the photos were modified using Adobe Photoshop 7.0
(Adobe, San Jose, CA) to produce identical overall
luminance and contrast on a white background. Each
6.6 cm × 9 cm facial photo was placed in the center of a
white photo frame sized 8.6 cm × 11 cm with a margin width
of 2 cm. The horizontal distance between the two photo
frames was 4 cm in the GUI. The ratios of the photo sizes
(areas), the photo frame, and the GUI were matched for all
stimuli and set at 0.06:0.1:1.

The two photos on the left and the right sides of the GUI
flickered from appearance to disappearance on a black
background at frequencies of 6.0 Hz and 7.5 Hz, respectively.
Meanwhile, the two photo frames flashed in a random order,
with each appearance lasting 200 ms and with an 800 ms
interval between two consecutive appearances. The subject
was instructed to focus on one or the other type of photo (e.g.,
the subjectʼs own photo or the unfamiliar one) and to count
the flashes of the corresponding photo frame. Using this
hybrid BCI paradigm, SSVEP (i.e., stimulus frequency driven
EEG responses (Allison et al 2010b)) and P300 (i.e., stimulus
‘oddball’ or novelty driven EEG responses (Guger
et al 2009)) responses were simultaneously elicited by the
flickering target photo and the flashing target photo frame,
respectively.

2.2.2. Experimental procedures. During the experiment,
each subject was seated in a comfortable wheelchair
approximately 0.5 m from a 22 inch LED monitor. A
preliminary screening was conducted before the experiment
to explain the experimental procedure to the subject.

Figure 1. GUI of the hybrid BCI, in which a subjectʼs own facial
photo and an unfamiliar facial photo are randomly displayed on the
left and right side in each trial. The left and right photos flickered
from appearance to disappearance on a black background at
frequencies of 6.0 Hz and 7.5 Hz, respectively. Meanwhile, the two
photo frames also flashed from appearance to disappearance in a
random order. In this way, the SSVEP and P300 responses could be
simultaneously elicited by the flickering target photo and the flashing
target photo frame, respectively.
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Before the online experiment, each subject performed a
calibration run of ten trials with the GUI in figure 1.
Specifically, for each trial, the left and right photos flickered
for 10 s at frequencies of 6.0 Hz and 7.5 Hz, respectively.
Simultaneously, the two photo frames flashed in a random
order, with each photo frame flashing five times. The subject
was instructed to pay attention to his/her own photo and to
count the number of times that the corresponding photo frame
was highlighted/flashed. We trained an initial P300 classifica-
tion model using the EEG data from the calibration run.
Furthermore, the P300 classification model was updated after
each block of online evaluation based on the data from the
calibration run and the collected online data. The rationale for
training the P300 model in this manner was two-fold. First,
because the patients were prone to be fatigue (inherent to
DOC), the calibration procedure should be as short as
possible, and a new calibration was not suitable before each
evaluation block on a separate day. Second, due to the
fluctuating level of consciousness in DOC patients, it was not
appropriate to use a fixed model during the experiment lasting
several days to weeks.

In the online evaluation, three experimental runs were
conducted. Figure 2 illustrates the online experimental
paradigm. Each run contained five blocks, and each block
was composed of ten trials. Different blocks were conducted
on separate days because the patients were easily fatigued and
have limited attention span. Each trial began with the visual
and auditory presentation of the task instructions (in Chinese),
which lasted 6 s. Meanwhile, the two photos, the subjectʼs
own facial photo and an unfamiliar facial photo, were
randomly displayed on the left and right sides of the GUI.
The instruction for each trial of run 1 was ‘focus on your own
photo and count the number of times that your own photo
frame is highlighted’; the instruction for each trial of run 2
was ‘focus on the other personʼs photo and count the number
of times that the other personʼs photo frame is highlighted’;
the instruction for each trial of run 3 was the same as that of
run 1 or 2. Specifically, the subject was instructed to focused
on his/her own photo or the unfamiliar photo in a pseudo-
random order in run 3. In each block of run 3, half of the trials
corresponded to his/her own photos and the other half of the
trials corresponded to the unfamiliar photos. After the
instructions were presented, the two photos flickered while

the two corresponding photo frames flashed as in the
calibration run. After 10 s, a feedback photo, determined by
the BCI algorithm, appeared in the center of the GUI. If the
result was correct, a positive audio feedback of applause was
given for 4 s to encourage the subject. There was a short break
of at least 10 s between two consecutive trials, depending on
the subjectʼs level of fatigue. Note that the tasks of runs 1, 2,
and 3 were getting more and more difficult for a patient. Only
if a subject successfully performed the tasks in runs 1 and 2,
he/she was asked to perform run 3.

During the experiment, the patient was carefully
observed by the examiner to ensure task engagement and to
avoid that the patient would show decreased arousal (i.e.,
close his/her eyes) or continuous body movements (e.g.,
resulted by cough) during a testing trial. In this case, the trial
was discarded, and the next trial would start after the patient
again showed prolonged periods of spontaneous eye-opening
or reawakened. For each trial of the experiment, in addition to
the presented instructions, the doctor and the patients’
relatives also told the patients to focus on the target photo.

2.3. Data processing

The procedures for the P300 and SSVEP detections have been
described previously (Li et al 2013). Briefly, the P300 and
SSVEP detectors were designed separately. The EEG data
were copied and fed into the two detectors simultaneously.
Figure 3 shows the data processing procedure for both P300
and SSVEP detections.

2.3.1. Data acquisition. A NuAmps device (Compumedics,
Neuroscan, Abbotsford, Australia) was used to collect scalp
EEG signals. Each subject wore an EEG cap (LT 37). The
EEG signals were referenced to the right mastoid. Here we
performed channel selection during data acquisition to keep
the related neurological phenomenon intact as well as reduce
the artifacts (Lan et al 2006). According to the standard
10–20 system (Jasper 1958), the EEG signals used for
analysis were recorded from ten electrodes: ‘Fz’, ‘Cz’, ‘P7’,
‘P3’, ‘Pz’, ‘P4’, ‘P8’, ‘O1’, ‘Oz’ and ‘O2’ (Li et al 2013,
Guger et al 2009, Friman et al 2007). The impedances of all
electrodes were kept below 5 k Ω. The EEG signals are
digitized at a sampling rate of 250 Hz.

Table 1. Summary of patients’ clinical status. ABI, anoxic brain injury; CRS-R, coma recovery scale-revised; CVA, cerebrovascular accident;
and TBI, traumatic brain injury. Note that the clinical diagnosis and the CRS-R score for each patient were based on the best response of the
repeated CRS-R assessments during the experiment.

Patient Age Gender
Clinical
diagnosis Etiology

Time since onset
(months)

Best CRS-R score (subscores: auditive–visual-
motor–oromotor–communication–arousal)

VS1 22 F VS ABI 6 6 (1-0-2-1-0-2)
VS2 19 M VS TBI 5 7 (1-1-2-1-0-2)
VS3 56 M VS CVA 7 5 (0-1-1-1-0-2)
VS4 36 F VS ABI 1 4 (1-1-0-0-0-2)
MCS1 47 M MCS TBI 18 10 (1-3-3-1-0-2)
MCS2 16 F MCS ABI 3.5 12 (1-3-5-1-0-2)
MCS3 36 F MCS TBI 4 10 (1-3-3-1-0-2)
LIS1 70 M LIS CVA 37 14 (4-5-0-0-2-3)
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2.3.2. P300 detection. Here, the EEG signals were filtered
between 0.1 and 10 Hz. We extracted epochs (0–800 ms after
a photo frame flash) of the EEG signal from each channel for
each flash of a photo frame. This EEG epoch was
downsampled by a rate of five to obtain a data vector
consisting of 40 data points. We concatenated the vectors
from all 10 channels to obtain a new data vector, which
corresponded to a photo frame flash. Next, we constructed a
feature vector for each photo frame by averaging the data
vectors across the five flashes in a trial. Finally, a Support
Vector Machine (SVM) classifier was applied to the two
feature vectors corresponding to the two photos, and two
SVM scores were obtained for each trial.

2.3.3. SSVEP detection. Here, the EEG signals were filtered
between 4 and 20 Hz. After stimulus onset, we extracted the
segment of the EEG signals from eight channels, ‘P7’, ‘P3’,
‘Pz’, ‘P4’, ‘P8’, ‘O1’, ‘Oz’ and ‘O2’, during a 10 s period
(i.e., 2500 data points). Next, a weighted sum of the eight
epochs was calculated by obtaining the weights through the
application of the minimum energy combination method,
which enhanced the EEG information and/or reduced the
nuisance signals including EMG and EOG artifacts (Friman
et al 2007). Using a discrete Fourier transformation, we

calculated the power density spectrum of this weighted signal.
We calculated the power of this SSVEP response by
integrating the power density spectrum of each flickering
frequency and its second harmonic. The power ratio for each
flickering photo was calculated as the ratio of the mean power
in a narrow band (i.e., band width of 0.1 Hz) and in a wide
band (i.e., band width of 1 Hz). In each trial, two power ratios
were obtained for the two photos’ flickering frequencies.

2.3.4. Decision making algorithm and accuracy calculation.
We summed the P300 detection SVM score and the SSVEP
detection power ratio for each photo and determined the photo
that corresponded to the maximum of the summed values as
the trial feedback photo.

Accuracy was calculated as the ratio of the number of all
correct responses (hits) among the total number of presented
trials. To assess the accuracyʼs significance, we calculated
statistics as described below (Kübler and Birbaumer 2008):

∑χ =
−

=

( )fo fe

fe
, (1)

i

k
i i

i

2

1

2

where foi and fei are the observed and expected frequencies,
respectively, of the ith class ( =i k1, 2 ,..., ). In this study, the

Figure 2. The experimental paradigm. Each run was divided into five blocks, and each block consisted of ten trials. Each trial began with the
visual and auditory presentation of the task instructions. Then, two photos were randomly displayed on the left and right sides of the GUI.
After the instruction, the two photos flickered, and the two corresponding photo frames were highlighted. After 10 s, an auditory (i.e.,
applause) and visual feedback (i.e., photo selected by the classification algorithm) was presented.

Figure 3. The data processing procedure for the P300 and SSVEP detections. In the hybrid BCI system, the EEG data were fed into two
different data processing procedures simultaneously, one for P300 detection and the other for SSVEP detection. Next, the two detection
outputs were merged to provide a weighted single decision.
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observations fell into two classes (hit and miss). Specifically,
fo1 and fo2 were the observed numbers of hits and misses,
respectively, and fe1 and fe2 represented the respective
expected numbers of hits and misses. The degree of freedom
was 1 for our two-choice BCI. For example, when 50 trials of
a two-choice paradigm were available for each run, 25 hits
and 25 misses could be expected by chance. Using a
significance level of p = 0.05, we obtained a value of 3.84
for χ2 (with the degrees of freedom set at 1), which
corresponded to 32 hits in 50 trials or an accuracy of 64%.

3. Results

Table 2 summarizes the experimental results obtained for
each subject. In all the eight patients, accuracies for patients
VS1, MCS1, and LIS1 were significant in runs 1 and 2. In run
1, five of the eight patients (patients VS1, VS2, MCS1,
MCS2, and LIS1) achieved accuracies higher than chance
level (i.e., ⩾ 64%; ranging from 64 to 78%). In run 2, three
patients (patients VS1, MCS1, and LIS1) achieved accuracies
⩾ 64% (ranging from 70 to 72%). The accuracies for patients
VS2 and MCS2 were significant in run 1 but not run 2. This
result may have occurred because emotional value or high
familiarity makes oneʼs own facial photo particularly likely to
attract oneʼs attention (Signorino et al 1995, Kircher
et al 2000, 2001, Lavie et al 2003, Bindemann et al 2005),

similar to when a patientʼs own name is used as a stimulus
(Perrin et al 2006). For patients VS3, VS4, and MCS3, the
accuracies were not significant in either run 1 or run 2. The
three patients VS1, MCS1, and LIS1 who successfully per-
formed runs 1 and 2 still achieved accuracies higher than
chance level in run 3 (i.e., ⩾ 64%); ranging from 66 to 76%).
Furthermore, four healthy subjects (HC1, HC2, HC3, and
HC4) achieved accuracies ⩾ 64% (ranging from 82 to 100%)
in runs 1, 2, and 3.

In this study, we used the chi-square test to determine
statistical significance (i.e., p value) of the online accuracies.
However, in chi-square statistics, the detection results are
assumed to be independent (Lewis and Burke 1949, Satorra
and Bentler 2001). This might not be suitable for our case. To
account for independence among trials, we used a permuta-
tion test to re-evaluate the data for each subject as below
(Goldfine et al 2012, 2013).

First, we calculated the leave-one-out cross-validated
accuracy using the data of this subject (runs 1 and 2 for VS2,
VS3, VS4, MCS2, and MCS3; runs 1, 2, and 3 for VS1,
MCS1, LIS1, HC1, HC2, HC3, and HC4). Specifically, in
each fold, one trial of data were used for test, and the other
data were used for training. An SVM classifier was first
obtained based on the training data, and then applied to the
test data. After the leave-one-out cross-validation procedure,
we obtained the classification accuracy. Next, we performed
1000 permutations, in each of which we generated a surrogate

Table 2. Online results for each subject. The results in the brackets are obtained based on the total number of trials (i.e. including the rejected
trials). The accuracies significantly higher than the chance level (⩾64%, p ⩽ 0.05) are highlighted in bold. All subjects performed 50 trials in
each of the three runs, with the exception of patient VS3.

Run 1 Run 2 Run 3

Subject
Number of

trials Accuracy p value
Number of

trials Accuracy p value
Number of

trials Accuracy p value

VS1 50 76% <0.001 50 72% 0.002 50 68% 0.011
(57) (74%) (<0.001) (60) (70%) (0.002) (51) (67%) (0.017)

VS2 50 64% 0.048 50 50% 1.000
(58) (62%) (0.066) (57) (49%) (0.895)

VS3 50 48% 0.777 40 55% 0.527
(56) (48%) (0.789) (46) (54%) (0.555)

VS4 50 52% 0.777 50 52% 0.777
(56) (52%) (0.789) (57) (51%) (0.895)

MCS1 50 72% 0.002 50 70% 0.005 50 66% (0.017)
(56) (70%) (0.003) (52) (69%) (0.006) (55) (64%) (0.043)

MCS2 50 68% 0.011 50 52% 0.777
(55) (65%) (0.022) (55) (53%) (0.686)

MCS3 50 46% 0.572 50 48% 0.777
(58) (47%) (0.599) (58) (48%) (0.793)

LIS1 50 78% <0.001 50 72% 0.002 50 76% <0.001
(57) (74%) (<0.001) (55) (71%) (0.002) (56) (71%) (0.001)

HC1 50 84% <0.001 50 82% <0.001 50 94% <0.001
(50) (84%) (<0.001) (50) (82%) (<0.001) (50) (94%) (<0.001)

HC2 50 100% <0.001 50 100% <0.001 50 100% <0.001
(50) (100%) (<0.001) (50) (100%) (<0.001) (50) (100%) (<0.001)

HC3 50 94% <0.001 50 100% <0.001 50 96% <0.001
(50) (94%) (<0.001) (50) (100%) (<0.001) (50) (96%) (<0.001)

HC4 50 96% <0.001 50 96% <0.001 50 98% <0.001
(50) (96%) (<0.001) (50) (96%) (<0.001) (50) (98%) (<0.001)
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dataset by randomly relabeling the trials, and then calculated
the leave-one-out cross-validated accuracy using the surrogate
dataset. The p value was then determined as the fraction of the
accuracies obtained by the 1000 permutations which were
higher than the real accuracy. Table 3 shows the permutation
test results, from which we can see that the accuracies were
significantly higher than the chance level for the three patients
VS1, MCS1, LIS1 and the four healthy subjects ( ⩽p 0.05).

For the subjects VS1, MCS1, LIS1, and HC1, the ERP
waveforms and power spectra were calculated using the data
collected in the three experimental runs. Specifically, for each
trial, the EEG epochs of each channel were extracted from
200 pre-stimulus to 1000 ms post-stimulus, and baseline
corrected using 200 ms pre-stimulus. The ERP waveforms
were obtained by averaging the EEG channel epochs across
50 trials in runs 1, 2 and 3. Figure 4 shows the average EEG
signal amplitudes of the electrodes ‘Fz’ and ‘Pz’ for subjects
VS1, MCS1, LIS1, and HC1; the solid red and the dashed
blue curves correspond to the target and the non-target photo
frames, respectively. A P300-like component is apparent in
each of the target curves.

For each run (run 1, 2 or 3) and each subject (VS1,
MCS1, LIS1, or HC1), figure 5 shows two average power
density spectrum curves of the EEG signals across the trials
with the target photos appearing the left or right of the GUI.
The power spectrum of each trial was calculated using 10 s of
EEG signals from the eight selected channels (‘P7’, ‘P3’,
‘Pz’, ‘P4’, ‘P8’, ‘O1’, ‘Oz’ and ‘O2’), as in the SSVEP
detection. Figure 5 shows that higher average spectral powers
were obtained in the target photo frequencies for all four
subjects.

4. Discussions

We here propose a hybrid P300- and SSVEP-based BCI to
improve the detection of residual cognitive function and
covert awareness in DOC patients. In this novel BCI para-
digm, two flickering photos, the subjectʼs own facial photo

and an unfamiliar facial photo, were randomly displayed on
the left and right of the GUI, and each photo was embedded in
a flashing photo frame. The BCI system determined which
photo the subjects focused on (i.e., responded to command)
through both the P300 and SSVEP detections.

Using our hybrid P300- and SSVEP-based BCI, three
experimental runs involving eight patients (five VS, three
MCS, and one LIS) were conducted. In run 1, the patients
were asked to focus on their own photo. Five of these patients
(two VS, two MCS, and one LIS patients) achieved accura-
cies of greater than 64% (64–78%), which were considered
significant accuracies. However, a correct response to the
patientʼs own photo is not unequivocal evidence that a person
is consciously aware. It has been argued that a P300 response
evoked by oneʼs own name does not necessarily reflect con-
scious perception and cannot be used to differentiate VS and
MCS patients (Perrin et al 2006). Furthermore, Signorino
et al who showed that emotional (as compared to neutral)
stimuli increase the likelihood of obtaining a P300 response in
comatose patients (Signorino et al 1995). To address this
question, in the second run, where patients were instructed to
focus on the unfamiliar photos, three of the five patients (i.e.,
patients VS1, MCS1, the LIS patient) achieved accuracies
significantly higher than the chance level. Furthermore, in the
third run, where patients were instructed to attend their own
or the unfamiliar photos randomly, the three positive patients
still achieved significant accuracies (66–76%), illustrating that
the three patients were able to follow commands.

Among the eight patients involved in this study, one
patient (VS1) who was clinically diagnosed as vegetative
based on repeated behavioral standardized CRS-R assess-
ments by trained and experienced clinicians was able to use
the hybrid P300- and SSVEP-based BCI to choose the target
photos. This result corroborates previous fMRI (e.g., Monti
et al 2010) and EEG (e.g., Cruse et al 2012b) data that some
patients who meet the behavioral criteria for VS might have
residual cognitive function and even conscious awareness.
The MCS patient (MCS1) who showed motor-independent
BCI signs of command-following never showed any clinical
motor sign of command-following for over a year prior to
testing. The patient subsequently emerged from his condition
and showed motor-dependent behavioral communication two
months after the experiment-while patient VS1 remained
clinically unchanged at follow-up.

It should be stressed that to perform the assessed
experimental hybrid BCI tasks, many cognitive functions are
needed, such as language comprehension (i.e., understanding
the task instructions), object selection (i.e., attending to the
left or right sided photo), working memory (i.e., remembering
the instructions), and sustained attention (i.e., keeping atten-
tional focus on the target photo). The absence of any of these
cognitive functions could prevent success of performing the
paradigm. Negative results can hence not be used as final
evidence of a lack of awareness because false-negative find-
ings in BCI studies are possible, even in healthy users
(Allison et al 2010b, Guger et al 2009) and in some of the
assessed VS (3 out of 4) and MCS (2 out of 3) patients
included in our small convenience sample. However, positive

Table 3. Results of the permutation test.

Subject

Number of
trials (after
manual
rejection)

Accuracy based on
the cross-validation
of SVM classifier

p value by per-
mutation test

VS1 150 0.673 <0.001
VS2 100 0.520 0.338
VS3 90 0.422 0.966
VS4 100 0.500 0.510
MCS1 150 0.653 <0.001
MCS2 100 0.560 0.068
MCS3 100 0.540 0.202
LIS1 150 0.747 <0.001
HC1 150 0.887 <0.001
HC2 150 0.993 <0.001
HC3 150 0.933 <0.001
HC4 150 0.833 <0.001
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results do indicate that all such cognitive functions exist in
these patients, thus demonstrating their residual awareness.

Several previous studies examining P300 and SSVEP
responses partially support our observations. The P300
response has been regarded as reflecting the cognitive
potential that is dependent on attention and working memory
(Linden 2005). Moreover, the modulation of the P300
response by manipulation of consciousness, such as in sti-
mulus masking, attention manipulation, or anesthesia, high-
light its possible usefulness as a marker of awareness (Naci
et al 2012). Although the specific underlying mechanisms of

the SSVEP response are still not fully understood, its
dependency to cognitive variables, such as attention, stimulus
classification, and memory, has been observed (Muller
et al 1998, Silberstein et al 1995). Both the P300 and SSVEP
responses involve sequential activations of cortical networks
and rely on higher-order cognitive abilities (Comerchero and
Polich 1999, Pastor et al 2003, Kotchoubey et al 2005, Pastor
et al 2007, Andersen et al 2011). In this study, the P300
(figure 4) and SSVEP responses (figure 5) were observed in 2/
7 DOC patients who failed to show behavioral signs of
command following. This observation suggests that these

Figure 4. Grand-average P300 ERP waveforms of the ‘Fz’ and ‘Pz’ electrodes from 200 pre-stimulus to 1000 ms post-stimulus in runs 1
(upper panels), 2 (middle panels) and 3 (lower panels) for four subjects VS1, MCS1, LIS1, and HC1. The solid red curves containing P300
responses and the dashed blue curves without P300 responses corresponded to the target and non-target photo frames respectively.
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patients were able to voluntarily modulate their brain activ-
ities, and the evidence provided by EEG led to the conclusion
that they possessed residual cognitive function.

One could argue that patients with DOC often lose the
ability to fixate their gaze, which is generally necessary for
the use of BCIs based on visual P300 and SSVEP responses.
However, several studies have described gaze-independent
P300- or SSVEP-based BCIs (Brunner et al 2010, Treder
et al 2011, Lesenfants et al 2011, Zhang et al 2010), although
the classification performances are typically lower for gaze-
independent BCIs than for gaze-dependent ones. In the GUI
used in this study, we used a few large visual elements instead
of many small elements to ease the deployment of covert
attention and to improve visual acuity in peripheral vision.

In our previous study (Li et al 2013), we proposed a
hybrid BCI combining the P300 and SSVEP responses in
healthy subjects. Our present experimental results demon-
strate that the combined hybrid BCI achieved better classifi-
cation accuracy than the corresponding separate P300- or
SSVEP-based classification. In this study, the hybrid BCI,
which was a variant of our previous system (Li et al 2013),
was successfully used to detect awareness in two patients with
DOC and a conscious LIS subject. This study is the first
attempt to test a hybrid BCI in this challenging patient
population. Our experimental results demonstrated that P300
and SSVEP responses could be elicited and recorded simul-
taneously in a clinical setting. Future studies should include
the development of a simple ‘yes/no’ communication tool for
patients with DOC or LIS based on the proposed hybrid BCI
system.
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