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Abstract: A multiscale model of the cardiovascular system (CVS) is presented. Hemodynamics
is described by a lumped parameter model, while heart contraction is described at the cellular
scale. An electrophysiological model and a mechanical model were coupled and adjusted so that
the pressure and volume of both ventricles are linked to the force and length of a half-sarcomere.
Particular attention was paid to the extremal values of the sarcomere length, which must
keep physiological values. This model is able to reproduce healthy behavior, preload variations
experiments, and ventricular failure.
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1. INTRODUCTION

Mathematical models of biological systems have become
a powerful tool for cardiovascular sciences. These models
allow for a variety of studies that are generally difficult
to implement experimentally. A model of the whole car-
diovascular system (CVS) basically needs a mathematical
description of the following two components:

• The hemodynamics of the systemic and pulmonary
circulation

• The active contraction of the heart

The hemodynamics, i.e. the blood flow evolution in-
side the blood vessels, is described here with a lumped-
parameter model. The heart contraction is often decribed
with ad hoc models, like the varying elastance model. Such
macroscopic models are not based on the cardiac tissue
properties and can not reproduce behaviors that arise
from the microscopic scale. In this work we use a cardiac
cell contraction model that we connect to the organ scale
in order to get a multiscale model of the human CVS.
The purpose of this model is to link macroscopic proper-
ties to the microscopic behaviors they originate from, a
correlation impossible to establish with phenomenological
models.

2. METHODS

Our lumped-parameters model of the CVS consists of
a 6-chamber model, two of which being able of active
contraction (Burkhoff and Tyberg (1993)). A schematic
representation of this model is depicted on Fig. 1.
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Fig. 1. Diagram of the 6-chamber hemodynamic model:
left ventricle (LV), right ventricle (RV), pulmonary
artery (PA), pulmonary vein (PU), aorta (AO), vena
cava (VC).

2.1 Flow in the CVS

The flow inside the systemic and pulmonary circulation
can be written as:

Q(t) =
Pi(t) − Po(t)

R
(1)

where Pi is the pressure at the entrance of the chamber, Po
the pressure at the exit, and R is the hydraulic resistance
of the blood vessels.

The four cardiac valves (mitral, aortic, tricuspid, and pul-
monary) act as diodes and allow for the unidirectionnality
of the flow.



2.2 Passive chambers

The aorta (AO), vena cava (VC), pulmonary artery (PA),
and pulmonary vein (PU) are considered as passive cham-
ber (unable of active contraction). The pressure-volume
relationship in these chambers is written as:

P (t) = E · V (t) (2)

where E is the elastance of the corresponding chamber.
Finally, the chamber volume changes are described by the
following differential equation:

dV

dt
= Qin −Qout (3)

where Qin and Qout are the flows that respectively enters
and leaves the chamber.

2.3 Active chambers

Cell model The left and right ventricles are capable of
active contractions, which are described at the cellular
scale. Cardiac cells are excitable and contractile. We
use the electrophysiological model of ten Tusscher and
Panfilov (2006) to describe the ionic currents across the
cell membrane and the mechanical model of Negroni and
Lascano (2008) to describe the contraction. The cellular
force is derived from the contraction of a half-sarcomere
(basic unit of cell contraction), as shown on Fig. 2.
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Fig. 2. Sarcomere contraction model (adapted from Ne-
groni and Lascano (2008)). Left : Representation of a
half-sarcomere of length L. Lm is the total length and
allows to account for the compliant (elastic) ends of
the muscle. Right : Calcium kinetics.

Myosin heads (also called crossbridges) of the thick fila-
ment attach to the thin filament and initiate the muscular
contraction. This model describes the behavior of an equiv-
alent crossbridge that represents all the crossbridges of the
half-thick filament. It is assimilated to a linear spring of
horizontal elongation h. The active force is proportionnal
to this elongation. A parallel elastic element is added to
account for the passive force of the muscle.

Calcium kinetics is described with a 5-state model rep-
resented on Fig. 2 (two states from the original paper
were merged into one, see Negroni et al. (2015)) . A tro-
ponin system (TS) is composed of three adjacent troponin-
tropomyosin units and can fix three calcium ions in one
step (TSCa3). Then three crossbridges can attach to the
actin molecules in a weak pre-power stroke state (TSCa∼3 ),
then in a state where they are able to develop a power

stroke (TSCa∗3). Finally the three calcium ions can detach
(TS∗) and the crossbridges eventually detach to end the
cycle. The active force is also proportionnal to the con-
centrations of the three states with attached crossbridges
(TSCa∼3 , TSCa∗3, and TS∗). Troponin currents were added
in the equation governing calcium concentration from the
Ten Tusscher and Panfilov model, thus linking the elec-
trophysiology and the mechanical contraction of the cell.
We then had to reduce the total cytosolic calcium buffer
concentration to 100 µM provided that the buffering due
to troponin was taken into account in the calcium kinetics
described previously.

Ventricle model To connect the force Fm and total
length Lm of the half-sarcomere to the pressure and
volume of the active chamber, both ventricles are simply
considered as spheres, as shown on Fig. 3.

Fig. 3. Spherical ventricle model. Left : Top view of the
ventricle. N sarcomeres are aligned along a circle of
radius R (dotted black). Right : Both ventricles are
assimilated to thin spheres. The wall stress σ is related
to the force produced by the sarcomeres and allows for
the calculus of the pressure inside the ventricle.

As already done by Shim et al. (2007), we assume that N
half-sarcomeres of total rest length Lm0 are aligned along
a circle of radius R0:

Lm0 =
2πR0

N
. (4)

This radius was chosen so that the total half-sarcomere
length Lm during a heartbeat varies between physiologi-
cally relevant extremes, i.e. between 0.98 and 1.115 µm
(Rodriguez et al. (1992)). There is indeed an impor-
tant (yet not fully elucidated) relationship between the
force and the length of the cardiac muscle. This leads
to important properties at the organ scale, especially the
Franck-Starling mechanism. Thus it was essential to get
the correct interval of variation for Lm in our multiscale
model.

The blood volume inside the ventricle is given by:

Vint =
4

3
πrin

3. (5)

During a heartbeat, this volume varies according equation
(3). Thus Lm is given by:

Lm =
2πR

N
(6)

where R is calculated using:



Vint + Vwr =
4

3
πR3. (7)

In this relation, Vwr is the constant volume of the incom-
pressible wall included between rint (at the beginning of
diastole) and R.

Now we have to connect the pressure P inside the ventric-
ular cavity to the force F produced by the half-sarcomeres.
We assume that many contractile units are distributed
homogeneously in all directions on the ventricular wall
(Shim et al. (2007)), so that the wall stress σ can be
considered uniform. With a constant wall stress σ, the
equilibrium of the two hemispheres of the ventricles gives
the following expression of the pressure inside the active
chambers:

P = σ(
rout

2

rin2
− 1) (8)

where σ is given by:

σ =
F

A
(9)

with F the force and A the cross-sectional area.

The mechanical contraction model actually provides Fm,
the force normalized with respect to the muscle cross-
sectional area measured at a defined reference state, Ar:

Fm =
F

Ar
. (10)

Assuming that muscle units have constant volume, we also
have:

Lr ·Ar = Lm ·A (11)

where Lr is the total sarcomere length at the reference
aera Ar.

From (9) - (11) , we can obtain the pressure-force relation
of our multiscale model :

P = 7.5Fm
Lm

Lr
(
rout

2

rin2
− 1) + γ(Vin − V0)3. (12)

The 7.5 factor stands for the units change (pressure is
expressed in mmHg) and the last term is a passive pressure
that accounts globally for the elastic properties of the
tissue surrounding the ventricle (γ is the stiffness and V0
is the unstressed volume).

The multiscale model presented above depends on many
parameters, which can be split into microscopic (or cel-
lular) parameters and macroscopic (or hemodynamic) pa-
rameters. The hemodynamic parameters (resistances and
elastances of passive chambers, wall thickness of the ventri-
cles) were optimized so that the following quantities range
around human physiological values: systolic pressure (for
both ventricles), amplitude of the aortic pressure, ampli-
tude of the pulmonary artery pressure, systolic volume
(for both ventricles), and stroke volume. The values of
the cellular parameters can be obtained in the original

papers in which the electrophysiological model and the
contractile model were developed (ten Tusscher and Pan-
filov (2006); Negroni and Lascano (2008)). However,
when these values of the cellular parameters are used in
the complete multiscale model of the CVS, the ventricular
pressure calculated at the end of diastole (filling phase of
the ventricle) was found too high, while the systolic pres-
sure (ejecting phase of the ventricle) was too low compared
to physiological values. This difficulty originates from the
too simple geometrical description of the ventricles, which
are here considered as spheres. In a real heart, bundles of
cardiac fibers are actually wrapped around the ventricular
cavity so that the ventricle is also twisted in a very complex
way during contraction. Of course the spherical model of
ventricles presented above cannot take into account this
aspect of contraction and an adaptation of the values
of some parameters was necessary to compensate for the
simplicity of the model. From (8), it is easy to understand
that the systolic pressure, which is related to the maximum
active force generated in the sarcomeres, can be increased
by increasing the ventricle wall thickness. However, since
the diastolic pressure, which is related to the passive force
in the myocytes, also increases with the wall thickness, we
had to drastically reduce the intensity of the sarcomere
passive force in order to recover physiological diastolic
pressures. In summary, the price to pay for the spherical
model of the ventricles is a value of the wall thickness
which is higher than standard physiological values and
an important reduction factor to apply to the cellular
parameter measuring the passive force of the sarcomere.
All other cellular parameters keep however their original
values, except for the total cytosolic calcium buffer concen-
tration, as explained previously. The adjusted parameters
are summarized in Table 1.

Table 1. Adjusted parameters

Parameter Value

Ke (In passive force) 31500 mNmm−2µm−5

Le (In passive force) 3 mNmm−2µm−1

SBV (Stressed Blood Volume) 1.085 103 ml
Rsys (Systemic resistance) 1.35 103 mmHg ms ml−1

Rpul (Pulmonary resistance) 73.20 mmHg ms ml−1

Rmt (Mitral valve resistance) 22.09 mmHg ms ml−1

Rtc (Tricuspid valve resistance) 11.56 mmHg ms ml−1

Rvaor (Aortic valve resistance) 48.0 mmHg ms ml−1

Rpv (Pulmonary valve resistance) 3.51 mmHg ms ml−1

Eao (Aorta elastance) 0.85 mmHg ml−1

Evc (Vena cava elastance) 0.01 mmHg ml−1

Epa (Pulmonary artery elastance) 0.34 mmHg ml−1

Epv (Pulmonary vein elastance) 0.04 mmHg ml−1

Vlvw (Left ventricular wall volume) 201.24 ml
Vrvw (Right ventricular wall volume) 30.34 ml

3. RESULTS

We first simulated a baseline situation corresponding to a
healthy individual. Some important microscopic variables
are presented on Fig. 4 with their corresponding macro-
scopic variables. The action potential, the intracellular
calcium, and the force time evolutions are correctly repro-
duced. It is important to stress that the sarcomere length
lies between physiological values (Rodriguez et al. (1992)).



The pressure-volume loops are also correctly reproduced.
Some hemodynamic variables are also shown on Fig. 5.

Fig. 4. Top panel: Action potential (bold), normalized
force (normal), and intracellular calcium (dashed)
time evolution during one heartbeat in the left ven-
tricle. Middle panel: Sarcomere length (normal) and
left ventricular volume (dash-dotted) time evolution
during the same heartbeat. Bottom panel: Pressure-
volume loop in the left (bold) and right (normal)
ventricle during the same heartbeat.

We also simulated a preload variation experiment. To
mimic the inflation of a Fogarty balloon, which is a current
way of reducing preload, we have increased tricuspid valve
resistance, thus allowing less blood to enter the right
ventricle. The consequences on the pressure-volume loops
on both ventricles are presented on Fig. 6. It is worth
emphasizing that the upper left corners of the PV-loops are
not exactly located on a straight line, as often postulated
when varying elastance models of contraction are used.

Fig. 5. Hemodynamic variables. The top two curves rep-
resent the flow through the aortic valve (normal)
and through the pulmonary valve (dotted) during
one heartbeat. Left ventricular pressure (bold), aortic
pressure (dashed), right ventricular pressure (normal)
and pulmonary pressure (dash-dotted) are also repre-
sented.

Fig. 6. Pressure-volume loops in the left and right ventricle
during a decrease in preload in the right ventricle.

Eventually, we simulated a case of ventricular failure. It
has been shown that heart failure symptoms originate at
the cellular scale (Beuckelmann et al. (1992, 1993); Wang
and Hill (2010)). Alterations in ionic currents and calcium
handling lead to a prolonged action potential, a lower peak
of intracellular calcium, and a lower force. Reduction in
current densities of the inward rectifier K+ current and
the transient outward K+ current, increased activity of the
Na+/Ca2+ exchanger and a reduced Ca2+ sequestration
by the sarcoplasmic reticulum were implemented in our
model. Our multiscale model is then able to connect these
cellular altered properties to the hemodynamics variables,
as shown on Fig. 7.

4. DISCUSSION

We have developed a multiscale model of the human CVS
based on the ten Tusscher and Panfilov model of electro-
physiology, the Negroni and Lascano model of sarcomere
contraction, and a lumped parameter model of hemody-
namics.

The ventricle model is quite simple compared to other
works (Arts et al. (1991), Bovendeerd et al. (1992)), but
this approach was chosen for its low computational cost.
The aim of our work is to connect two scales of cardiac



Fig. 7. Ventricular failure (dashed) versus normal ventricle.
From top to bottom: action potential, intracellular
calcium, normalized force, pressure-volume loops.

contraction and study the correlation of microscopic and
macroscopic variables inside a complete CVS model. This
implies the computation of many heart beats in a row,
which is the reason we choose a simple spherical ventricle
model. Our results, on the other hand, correlate well
with experimental data. Our multiscale model can account
for a healthy behavior as shown in Fig. 4 and 5. More
importantly, it is also able to reproduce pathological
behaviors that originate at the cellular scale, like heart
failure, and the consequences on the whole CVS. It is
also able to reproduce basic hemodynamic experiments
like preload variations.

Our approach in building this multiscale model was similar
to Shim et al. (2007) but with four major differences: we
carefully choose the volume Vwr from Fig. 3 so that the
sarcomere length ranges between extremal physiological
values. The pressure-force relationship derived in (8) was
also different from the one used by Shim et al. (2007).
We also used the last version from the mechanical model
of Negroni and Lascano (2008). Eventually, we used our
model to reproduce heart failure symptoms.
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