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Abstract

We introduce a new method based on wavelets for decomposing a signal into quasi-periodic oscillating components with smooth time-varying amplitudes.

This method is inspired by both the “classic” wavelet-based decomposition and the empirical mode decomposition (EMD). We compare the efficiency of

the method with the well-established EMD on toys examples and the ENSO climate index.

1. Method

a) Perform the continuous wavelet transform of the signal f :

Wf (a, t) =

∫
f (t)ψ̄

(
x− t
a

)
dx

a

where ψ is a Morlet-like wavelet, ψ̄ is the complex conjugate of ψ, t

stands for the time, and a > 0 is the scale parameter.

b) Compute the wavelet spectrum Λ associated to f :

Λ(a) = E |Wf (a, .)|

where E denotes the mean over time and look for the scale a∗ for which

Λ reaches its global maximum.

c) Extract the component associated to a∗:

|Wf (a∗, t)| cos(argWf (a∗, t)).

d) Subtract this component from f and repeat steps (a) to (d).

e) For now, we stop the process when the extracted components are not rel-

evant anymore. A more adequate stopping criterion may still be found.

The sum of the components successively extracted is an accurate recon-

struction of f .

2. Classic examples of the EMD
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Top: two signals analyzed with the EMD in [8]. Then, the components

extracted from the wavelet-based mode decomposition. The RMSE’s

between the reconstructed signals and the original ones are respectively

0.086 and 0.085 and the correlations are 0.968 and 0.992. The EMD gives

similar results (RMSE’s equal 0.07 (left) with the first two IMF’s and

0.023 (right) and correlations are 0.979 and 0.999).

3. Period detection
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A signal made of four components

with modulated amplitudes and pe-

riods (of about 23, 31, 47, 65 units).
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Left: the spectra obtained from the successive wavelet transforms. Right:

the corresponding extracted components. The periods detected by the

method are 21.6, 30.6, 46.4 and 65.6. The RMSE between the reconstructed

signal and the original is 0.069 and the correlation is 0.996. As it can

be seen below, the extracted components clearly match the original ones.
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Left: the original components. Right: the IMF’s extracted from the EMD.

One can see that they do not match the original ones as good as those

above. Even though the RMSE and correlation are slightly better in

this case (resp. 0.068 and 0.998), the periods extracted from the Hilbert-

Huang transform (41, 75, 165, 284) are far from the expected ones.

Besides, the EMD is more noise-sensitive for the period detection than the

wavelet-based method (not shown).

4. Real data: the ENSO index
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The ENSO index, i.e. monthly sea

surface temperature anomalies in the

Equatorial Pacific Ocean ([5]).
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Left: the components extracted from our method. Right: the IMF’s given

by the EMD. The periods we detect are of 44.8, 28.6, 17, 65.6, 140.6

months and are 9.8, 21, 38.6, 75.9, 138.4 for the EMD. The reconstruction

is slightly better with the EMD (RMSE of 0.193 vs 0.277 and correlation

of 0.973 vs 0.941) but the 9.8-months component is somewhat weird,

noisy and not convenient from a practical point of view. Without it, the

RMSE rises to 0.355 and the correlation drops to 0.903. Also, the periods

detected by our method seems more in agreement with some previous

studies (e.g. [5, 7]).
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