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Abstract
The brain is a complex system made of many components acting at very dif-
ferent resolution levels, from the microsecond and nanometer scales with ion
channels to hours and brain-wide scale with proteins. The brain dynamics and
functions emerge from the interactions between these resolution levels. Math-
ematical modeling is a powerful ally to uncover some of the brain organizing
principles and mechanisms. From this perspective, the question of which cel-
lular details must be retained at the network level is largely open.

Motifs simplify systems by approximating the wiring diagram and by taking
advantage of the timescale separation between processes. Yet, motifs study each
resolution level separately and neglect couplings between levels. This approach
falls short of system-level questions and multiresolution intrinsic properties.

The present dissertation aims at narrowing the gap by looking at the inter-
play between resolution levels. We propose to extract essential elements, in the
form of feedback loops, to be maintained from one resolution to the next in the
hope of a better understanding of brain functions and diseases. The focus is
on the spatiotemporal upscaling from the neuron to the network level and, in
particular, on the maintenance of modulation and robustness properties across
scales. This approach is used in a two-neuron network and is extended to a
prospective multiresolution excitability framework. The main contributions of
this dissertation are the following.

We identify the key role of a cellular feedback loop for network oscillation
robustness and modulation. Rhythms are crucial in the brain functioning but
much awaits to be understood regarding their control, regulation, and function.
In a mutually-inhibitory network, we isolate an essential cellular property—a
positive feedback loop in the slow timescale—to be retained at the network
level to ensure modulation and robustness of network oscillations.

We highlight the peculiar role that a cellular feedback loop can play for the
regulation of network switches. We identify that a cellular positive feedback
loop brings localization properties, both temporally and spatially, to network
oscillations. The emerging picture suggests a basal ganglia network model valid
both in healthy movement-related oscillations and in parkinsonian conditions.

Multiresolution excitability emerges due to localization properties of ex-
citable systems: different excitability resolution windows can be superposed
and interact, generating multiresolution systems. In each window, the system
is characterized via its transfer properties and input-output behavior. Signal
processing properties appear in these multiresolution systems and endow mul-
tiresolution objects with gating and multiplex signaling capabilities.

In conclusion, the present dissertation provides novel insights on the impor-
tance of the interplay between cellular and network levels. This multiresolution
motif perspective is thought to be general and not specific to neuroscience. Fi-
nally, exploiting the concept in multiresolution technologies is suggested.
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Résumé
Le cerveau est un système complexe composé d’éléments actifs à des niveaux
de résolution très différents, de la microseconde et nanomètre avec les canaux
ioniques, à l’heure et l’échelle du cerveau avec les protéines. La dynamique et
les fonctions du cerveau émergent des interactions entre les différents niveaux
de résolution. La modélisation mathématique est un allié puissant pour dévoi-
ler certains des principes organisationnels et mécanismes cérébraux. Dans ce
contexte, la question de savoir quels détails cellulaires doivent être conservés
au niveau du réseau reste largement ouverte.

Les motifs décomplexifient les systèmes en simplifiant le schéma de connexion
et en exploitant la séparation des échelles de temps entre processus. Cependant,
les motifs étudient chaque niveau séparément et négligent les couplages entre
niveaux. Cette approche passe à coté des questions systémiques et des proprié-
tés intrinsèques de multirésolution.

Cette thèse a pour but de rapprocher les deux domaines en étudiant les in-
teractions entre niveaux de résolution. Nous proposons d’extraire les éléments
principaux, sous la forme de boucles de feedback, à maintenir d’une résolu-
tion à la suivante dans l’espoir d’une meilleure compréhension des functions et
maladies cérébrales.

L’accent est placé sur le changement d’échelle spatiotemporelle, du niveau
neuronal au niveau réseau, et en particulier sur le maintien des propriétés de
modulation et de robustesse à travers les échelles. Cette approche est utili-
sée dans le cas particulier d’un réseau de deux neurones et est étendue à un
cadre théorique plus spéculatif d’excitabilité multirésolution. Les principales
contributions de cette thèse sont les suivantes.

Nous identifions le rôle clé joué par une boucle de feedback cellulaire pour la
modulation et la robustesse des oscillations réseaux. Les rythmes sont cruciaux
pour le fonctionnement du cerveau mais leurs contrôles, régulations, et fonc-
tions sont loin d’être compris. Dans un réseau avec inhibition mutuelle, nous
isolons une propriété cellulaire essentielle—une boucle de feedback positive dans
l’échelle lente—à maintenir au niveau réseau afin d’assurer des oscillations ré-
seaux modulables et robustes.

Nous soulignons le rôle particulier qu’une boucle de feedback cellulaire peut
jouer dans la régulation des interrupteurs réseaux. Nous identifions qu’une
boucle de feedback positive apporte des propriétés de localisation, à la fois
temporellement et spatialement, aux oscillations réseaux. Ces propriétés sug-
gèrent un nouveau modèle réseau des ganglions de la base, valide dans l’état
sain pour les oscillations liées au mouvement ainsi que dans l’état parkinsonien.

L’excitabilité multirésolution émerge dû aux propriétés de localisation des
systèmes excitables : des fenêtres d’excitabilité de résolution différente sont su-
perposées et interagissent, créant des systèmes multirésolutions. Dans chaque
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fenêtre, le système est caractérisé par ses propriétés de transfert et par son com-
portement entrée-sortie. Des propriétés de traitement du signal apparaissent
dans ces systèmes multirésolutions et dotent les objets multirésolutions de ca-
pacités de blocage et de multiplexage des signaux.

En résumé, cette thèse offre un nouvel aperçu de l’importance du couplage
entre le niveau cellulaire et réseau. Le concept de motif multirésolution semble
être général et non limité aux neurosciences. Enfin, l’exploitation du concept
en technologies multirésolutions est suggérée.

vi



Acknowledgements
A doctoral dissertation is a personal journey. However, this journey would have
been impossible without the help and support from many people to whom I
would like to express my sincere gratitude.

First and foremost, I heartily thank my advisor, Rodolphe Sepulchre, for
his scientific enthusiasm and his ever pertinent guidance. I am very grateful to
Rodolphe for his precious advice and support, both scientifically and person-
ally. His permanent optimism and his passion for novelty in research succeeded
in providing me with the motivation and self-confidence necessary to accom-
plish this journey. I am especially appreciative of the stimulating international
work environment he established in Liège and Cambridge and his support and
encouragements for my research stay in Princeton.

I am also indebted to my (former and present) colleagues. Many thanks
to my friends and colleagues at the University of Liège. I enjoyed very much
working and exchanging with them in a pleasant and friendly atmosphere.
Special thanks go to Guillaume Drion for his sound advice and suggestions
throughout this journey. I am also grateful to the team at Cambridge University
for their warm welcome, help, and support during my research stays. Finally,
I want to thank the team at Princeton University and especially Prof. Naomi
Leonard for her guidance and the exciting work environment I benefited from
during this past year.

I wish to express my sincere appreciation to the members of the Jury for
devoting time and interest to the reading and evaluation of this manuscript.
The members of the thesis committee are also acknowledged for their advices
during the progress of this work.

I gratefully acknowledge the financial support from the Belgian National
Fund for Scientific Research (FNRS), Wallonie-Bruxelles International, the
Lear Foundation, and the Belgian Network DYSCO (Dynamical Systems, Con-
trol, and Optimization), funded by the Interuniversity Attraction Poles Pro-
gramme, initiated by the Belgian State, Science Policy Office.

Last, but not least, my enormous gratitude goes to my family and friends.
I owe my parents many thanks for their unconditional support and love which
consistently pushed me to challenge myself. I am grateful to my sisters and
family-in-law for helping me to disconnect from research when needed and
offering me so many pleasant moments. I want to thank my friends, especially
the ones who shared this journey with me at the University, for cheering me up
when I needed so. Finally, my deepest gratitude goes to my loving, supportive,
encouraging, and patient husband Thomas, whose faithful support has been,
by far, the most precious encouragement. Having him by my side encourages
me to undertake the most ambitious of the projects. Thank you.

vii



viii



Contents

1 Introduction 1
1.1 Research context . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions of the dissertation . . . . . . . . . . . . . . . . . 2
1.3 Outline of the presentation . . . . . . . . . . . . . . . . . . . . 5
1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Modeling the brain, from ion channels to functions 7
2.1 The brain: components, functions, and models . . . . . . . . . 8

2.1.1 Resolution levels of the brain . . . . . . . . . . . . . . . 8
2.1.2 Brain rhythms and functions . . . . . . . . . . . . . . . 8
2.1.3 Resolution levels in models . . . . . . . . . . . . . . . . 11

2.2 Neurodynamics and excitability . . . . . . . . . . . . . . . . . . 13
2.2.1 Hodgkin-Huxley neuron model . . . . . . . . . . . . . . 13
2.2.2 Excitability . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Motif approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Positive and negative feedback loops . . . . . . . . . . . 18
2.3.2 Generality of the motif approach . . . . . . . . . . . . . 19
2.3.3 Excitability motif . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Excitability motif in neuroscience . . . . . . . . . . . . . . . . . 21
2.4.1 Excitability in neurons . . . . . . . . . . . . . . . . . . . 21
2.4.2 Excitability in networks . . . . . . . . . . . . . . . . . . 23

2.5 Temporal superposition of excitable motifs . . . . . . . . . . . . 24
2.5.1 Burst-firing pattern . . . . . . . . . . . . . . . . . . . . 24
2.5.2 Three-timescale bursting neuron model . . . . . . . . . 25
2.5.3 Excitability motif in two temporal resolutions . . . . . . 26

2.6 Interacting motifs . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6.1 Half-center oscillators . . . . . . . . . . . . . . . . . . . 27
2.6.2 Excitatory-inhibitory circuits . . . . . . . . . . . . . . . 28

2.7 Neuron-level and network-level motifs . . . . . . . . . . . . . . 29
2.7.1 Interactions between resolution levels . . . . . . . . . . . 29
2.7.2 Neuron resolution level in networks . . . . . . . . . . . . 29

ix



2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Cellular feedback for network modulation and robustness 31
3.1 Slow activation of T-type calcium channels is critical to robust-

ness of network rhythmic activity . . . . . . . . . . . . . . . . . 32
3.2 Robust modulation of network properties requires slow regener-

ativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Robustness of network oscillations requires PIR with slow regen-

erativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Complementarity between the two types of PIR currents 44
3.4.2 Positive feedback as a source of endogenous activity . . 44
3.4.3 Slow regenerativity in half-center oscillator models . . . 45

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Cellular feedback for transient oscillations in networks 47
4.1 The role of T-type calcium channels in underlying a cellular

excitability switch . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Hyperpolarized-induced bursting relies on slow activation and

ultraslow inactivation . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 The three-timescale bursting model captures the cellular switch 52
4.4 The cellular switch induces a network switch . . . . . . . . . . 53
4.5 Robustness and modulation of the network rhythmic activity . 54
4.6 Temporal and spatial localization of the network switch . . . . 56
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7.1 The cellular-based network switch yields physiologically
relevant applications . . . . . . . . . . . . . . . . . . . . 58

4.7.2 Comparison with experimental data . . . . . . . . . . . 62
4.7.3 Comparison with previous models . . . . . . . . . . . . 63

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Localized transfer properties of excitable behaviors 65
5.1 Excitable systems have an exogenous and an endogenous behavior 66
5.2 Monoresolution excitability motif . . . . . . . . . . . . . . . . . 67
5.3 Bursting as coexisting fast and slow excitability . . . . . . . . . 70
5.4 Circuit spike as coexisting fine and coarse excitability . . . . . 72
5.5 Multiplex signaling . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6.1 Localization and hierarchical sources of feedback . . . . 76
5.6.2 Physiological implications . . . . . . . . . . . . . . . . . 77

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

x



6 Conclusion 83
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Prospects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 A neuromorphic gating control mechanism for informa-
tion transfer . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.2 Hardware implementation . . . . . . . . . . . . . . . . . 89
6.2.3 Multiresolution excitability in technology . . . . . . . . 91

A Numerical tools 93
A.1 Conductance-based model . . . . . . . . . . . . . . . . . . . . . 93

A.1.1 Neuron model . . . . . . . . . . . . . . . . . . . . . . . . 93
A.1.2 Network model . . . . . . . . . . . . . . . . . . . . . . . 95

A.2 Reduced model . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.2.1 Neuron model . . . . . . . . . . . . . . . . . . . . . . . . 96
A.2.2 Network model . . . . . . . . . . . . . . . . . . . . . . . 96

A.3 Tools for simulation analysis . . . . . . . . . . . . . . . . . . . . 98
A.3.1 Variability . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.3.2 Network rhythm . . . . . . . . . . . . . . . . . . . . . . 98
A.3.3 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.3.4 Local field potential and time-average . . . . . . . . . . 99
A.3.5 Spectrogram . . . . . . . . . . . . . . . . . . . . . . . . 100
A.3.6 Correlations . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.4 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.4.1 Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.4.2 Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 101
A.4.3 Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B Omitted derivations 105
B.1 State-space model . . . . . . . . . . . . . . . . . . . . . . . . . 105
B.2 Linear state-space model . . . . . . . . . . . . . . . . . . . . . . 107
B.3 System of equations for Tosc and Tburst . . . . . . . . . . . . . . 108

xi



xii



Chapter 1

Introduction

“...comparing the capacity of computers to the capacity of the human
brain, I’ve often wondered, where does our success come from? The an-
swer is synthesis, the ability to combine creativity and calculation, art
and science, into a whole that is much greater than the sum of its parts.”

Garry Kasparov (1963)

This quote from the famous Russian chess Grandmaster and former World
Chess Champion highlights the intrinsic complexity of the brain: the emergence
of complex brain activity dynamics and functions from the interactions of its
many composing elements.

In this dissertation, we aim at simplifying the picture by extracting similar
organizing principles, in the form of motifs, that are at play at different reso-
lution levels in the brain. The interactions between these different resolution
levels, in particular the cellular and network levels, is under scrutiny to investi-
gate how system-level properties are maintained across scales. This approach is
pursued in the hope of a better understanding of brain functions and diseases.

1
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2 Chapter 1. Introduction

1.1 Research context
Mathematical tools are powerful allies to gain insights on brain functions and
underlying mechanisms. Pioneering steps in this direction can be traced to the
work of people such as Louis Lapicque, Hodgkin & Huxley, and David Marr,
among others. Mathematical models are used to capture essential features of
the system under study and to frame hypotheses that can later be verified
experimentally.

The brain is a complex system made of many components—e.g., ion chan-
nels, neurons, or brain regions—and each of these components is shaping the
brain activity and functions at a distinct resolution level. Mathematical models
capture the activity of these components in their respective resolution. How-
ever, emphasis on the interactions between the different resolution levels, and
more precisely on the impact of higher resolutions on the behavior at lower
resolutions levels, is scarce in the literature. The question to determine which
details from high resolution levels must be retained at lower resolution levels
is largely open, especially when it comes to understand system-level questions
such as robustness and modulation properties. For closed systems, many re-
duction tools exist. But for open systems, reduction methods are not well
understood except for linear time-invariant (LTI) systems.

Motifs have been widely used in systems biology to identify shared de-
sign principles [4, 249]. The motif approach consists in adopting an engineer’s
mindset to control systems by identifying simple patterns of activation and
inhibition among a small number of components that carry out specific func-
tions [3, 94, 234, 246, 249]. Motifs help for generalization purposes: a motif
captures the recurring patterns of interactions in a system and simplifies the
picture [3, 94]. However, motifs characterize the dynamics in each resolution
level independently and the interactions between resolution levels are ignored.

1.2 Contributions of the dissertation
In the above context, the present dissertation proposes to investigate the inter-
play between resolution levels to gain some insights on how elements at high
resolution levels impact lower resolution levels. The simplification of systems
to the description of solely their coarser elements results in the suppression of
finer resolution levels and the destruction of intrinsic multiresolution charac-
teristics. At the other side of the spectrum, highly detailed models at very high
resolution levels are not computationally tractable and analyzable for large sys-
tems. The approach we follow aims at narrowing the gap between those two
extremes and at extracting essential elements, in the form of feedback loops, to
be maintained from one resolution to the next to preserve intrinsic multireso-
lution properties. The focus lies on the transition in spatiotemporal scale from
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the neuron level—fast and fine scales—to the network level—slow and coarse
scales.

In particular, this dissertation includes the following specific contributions.

As a conceptual contribution, we propose to study the interplay between mo-
tifs at different resolution levels. To motivate this approach, we identify brain
resolution levels, in physiology and in models, and provide two instantiations
of the limitation of the motif approach when considered at a unique resolution
level. In the dissertation, the interaction of interest is between the neuron and
the network levels: in particular, how system-level properties, mainly modu-
lation and robustness, are maintained in the coupling between these two lev-
els. The importance of the interplay between motifs at different resolutions is
thought to be of general interest, beyond the specific on neuroscience systems
in the present dissertation.

A methodological contribution is to illustrate how this approach helps to
determine the key role of a cellular positive feedback loop for network oscillation
robustness and modulation.

Biological rhythms play a major role in the functioning of the brain. How-
ever, the generation mechanisms and functions of these rhythms are still under
debate. We isolate a basic cellular property, a positive feedback loop in the
slow timescale, to be retained at the network level in modeling network ro-
bustness and modulation. The importance of this cellular property is assessed
in one of the simplest and best understood network oscillation mechanisms,
the anti-phase rhythm observed between two populations of neurons mutually
connected by inhibitory synaptic connections.

In a neurophysiological context, our work suggests a novel and perhaps
fundamental complementarity between two ionic currents in post-inhibitory
rebound (PIR) mechanisms, a cellular level excitability property at the core
of network oscillations. Our results predict that PIR per se is not sufficient
to ensure modulation and robustness of network oscillations. In addition, the
slow positive feedback nature of the current dynamics must be retained as
an important parameter. However, this important aspect is frequently lost in
existing reduced models.

Another methodological contribution lies in the identification of the peculiar
role that a cellular feedback loop can play for the regulation of network switches.
We distinguish PIR from hyperpolarized-induced bursting (HIB), i.e., the abil-
ity to switch between a single-spike discharge mode to a burst-firing mode
when the membrane is hyperpolarized and a permanent source of endogenous
behavior, and we show that HIB is a source of localization properties, both
temporally and spatially, in network oscillations.

Rhythmic brain activities are robust to parameter heterogeneity and noise
and can undergo modulation to adapt to changing environmental conditions.
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The physiological driving example takes place in the basal ganglia, a group of
subcortical nuclei involved in movement initiation and learning. The cellular
feedback loop endows network with cellular-based network switch capabilities
for transient network oscillations.

The proposed mechanism is simple, generic, and robust, and suggests the
orchestration of network oscillations via a cellular switch mediated by neu-
rotransmitters. The emerging picture suggests a basal ganglia network model
switch independent from synaptic changes and applicable in both healthy condi-
tions associated to movement control and persistent pathological parkinsonian
oscillations.

The approach is generalized to explore the multiresolution aspect of the
excitability motif and to propose the prospective multiresolution excitability
framework.

The general contribution consists in associating input-output behavior char-
acteristics to a motif and in characterizing its transfer properties with tradi-
tional correlation measures to quantify the behavior of excitable systems. We
identify that the excitability motif possesses localization properties—in time,
space, and amplitude—and that a superposition principle can be applied to
form multiresolution excitable systems: different excitability resolution win-
dows can be superposed and interact, generating multiresolution objects.

The importance of the hierarchy in feedback loops, in addition to the sign, is
emphasized: cellular positive feedback gives rise to localization properties and
therefore allows for spatial and temporal modulation, whereas network positive
feedback produces a general and permanent switch. Physiological implications
of this hierarchical organization are explored in the physiologically relevant
thalamocortical network.

Finally, repercussions for signal processing capabilities of excitable systems
are highlighted.

The transient network oscillations suggest a gating function mechanism:
a transient increase in neuromodulator level controls the network state (an
endogenous oscillatory OFF state which filters incoming signals and an exoge-
nous transfer ON state receptive to peripheral signals). Potential engineered
applications exploiting this function are proposed.

Our results suggest that multiresolution excitable systems are endowed with
multiplex signaling capabilities: the input controls the spatial and temporal
scales in which the communication (fine grain or coarse grain) takes place.

The specific contributions of the thesis are highlighted at the end of each
chapter introduction.
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1.3 Outline of the presentation
The dissertation is organized as follows.

Chapter 2 presents the concept of resolution levels in brain physiology and
models, and describes the motif approach. Emphasis is set on the excitability
motif, with examples in neuroscience, at the neuron and network level. The
motivation for the dissertation is provided with two examples where the motif
approach leads to modeling limitations when ignoring the coupling between
resolution levels. The novel approach suggests to investigate the interplay
between resolution levels to extract critical mechanisms, in the form of feedback
loops, from high resolution levels for the activity at lower resolutions.

Chapter 3 introduces the cellular PIR property and the two major ionic cur-
rents that underlie it. Those two currents are differentiated by their dynamical
feedback loops as well as by their impact on the modulation and robustness
properties of network oscillations. The generality of the approach is discussed
and the implications for mathematical models are highlighted.

Chapter 4 captures a cellular excitability switch in a conductance-based
model and in a reduced version. It highlights the distinction between PIR and
HIB. In this chapter, we propose a cellular-based network switch and study its
robustness, modulation, localization, and gating properties. The physiological
basal ganglia application is detailed and its physiological relevance, both in
healthy and diseased conditions, is investigated. A comparison to previous
models of the basal ganglia is given.

Chapter 5 is more speculative and proposes to study multiresolution ex-
citability with an input-output behavior perspective by investigating transfer
properties. Localization properties in excitable systems are highlighted and a
superposition principle is applied. Monoresolution and multiresolution char-
acteristics are studied at three resolution levels: spike, burst, and circuit ex-
citability. An analysis of multiplex signaling is provided for multiresolution
objects. Finally, the thalamus is given as a physiological relevant illustration
of multiresolution excitable system.

Chapter 6 concludes the dissertation, summarizes the major contributions,
and offers perspectives for future work.

Appendix A provides the numerical tools and details for the models, simu-
lations, and analyses presented in the manuscript. Appendix B collects deriva-
tions omitted in the general dissertation.

1.4 Publications
The main results of this dissertation are presented in the following publications
and conference proceedings:
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Chapter 2

Modeling the brain, from
ion channels to functions

The brain is a complex system made of many components and each of these
components is shaping the brain activity and functions at a distinct resolution
level. Mathematical models capture the activity of these components in their
respective resolution.

The interactions between the different resolution levels, and more precisely
the impact of higher resolutions on the robustness and modulations properties
at lower resolution levels is somewhat obscure.

The focus of this thesis is to study the interplay between different resolu-
tion levels. In this perspective, we extract particular elements, in the form of
feedback loops, at high resolution levels and investigate their impact at lower
resolution levels.

The chapter is organized as follows. Section 2.1 introduces the concept
of resolution levels in brain physiology and models. Section 2.2 presents the
seminal work of neurodynamics: the description by Hodgkin and Huxley of
the initiation and propagation of action potentials. This section also extracts
a fundamental concept of neuroscience: excitability. Section 2.3 describes the
motif approach. The positive and negative feedback loops—the major build-
ing blocks of motifs—are depicted, and the generality of the motif approach is
illustrated. Emphasis is set on the excitability motif. Section 2.4 provides in-
stances of the excitability motif in neuroscience, separately at the neuron level
and at network level. Section 2.5 presents neuronal bursting and highlights
the interplay between excitability motifs at two different temporal resolutions.
Section 2.6 stresses, with two examples, the importance of studying interac-
tions between motifs at different spatiotemporal resolution levels. Section 2.7
presents the approach followed in this dissertation: the study of the interplay

7
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between different resolution levels, in particular the neuron and the network
levels.
Contributions. The main objective in this chapter is (i) to identify brain
resolution levels, in physiology and in models, (ii) to present a fundamental
concept of neuroscience, excitability, and its motif representation, the +FB
then –FB motif, and (iii) to motivate the need to study the interplay between
different resolution levels.

2.1 The brain: components, functions, and mod-
els

2.1.1 Resolution levels of the brain
Electrical activity in the brain span a broad range of temporal scales, from
milliseconds (action potentials), seconds (calcium dynamics) to hours (protein
synthesis) and a broad range of spatial scales, from nanometers (ion channels),
micrometers (neurons) to millimeters (brain regions). Figure 2.1 represents
the molecular, cellular, network, and organ levels, with activity in each level at
specific spatial, temporal, and amplitude scales.

To monitor these brain activities at multiple spatial and temporal levels,
recording methods with ‘sufficient’ spatial and temporal resolution are required.
The definition of ‘sufficient’ in this context depends on the system under study
as every existing methods has to compromise between spatial and temporal
resolution [28, 29]. At each resolution level, the mechanisms at play are gen-
erally understood: the molecular, developmental, and functional properties
of neurons are mostly known; at the opposite resolution level, behaviors can
be correlated to brain imaging [198]. However, how to close the explanatory
gap between the different levels is far from being understood; in particular,
which aspects from a finer/faster resolution level should be kept to describe a
coarser/slower resolution are still largely unknown.

2.1.2 Brain rhythms and functions
Neuronal rhythms are ubiquitous features of the brain but their underlying
physiological mechanisms and associated functions remain elusive [28, 34, 94,
106,241,250,253]. In this dissertation, we focus specifically on electrical activi-
ties, by contract other type of rhythmic activities, e.g., hormonal or circadian.
Since the invention of the electroencephalogram (EEG) by Hans Berger in the
1920’s, electrical rhythmic activities have been known to emerge in various
structures of the brain [28,106,241]. These rhythms differ in many ways, such
as frequency (ranging from 0.02 hertz to 600 hertz), origin, and reactivity to
environmental changes [241]. The precise role of these oscillations remains
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Figure 2.1 – The brain resolution levels. Activity in the brain takes place at distinct
levels with specific temporal, spatial, and amplitude scales. Example with four reso-
lution levels: molecular, cellular, network, and organ levels. The resolution at which
the brain activity is recorded depends on the system under study.
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unclear but their relationship with specific cognitive processes is now well ac-
cepted [34,106,241].

Rhythms emerge from complex interactions between cellular and network
mechanisms and their specific characteristics depend on the properties of their
constituent elements [28,94,106,253]. Unfortunately, the exact mechanisms of
most rhythms are uncertain. In addition, different rhythms, via modulatory
mechanisms, can emerge from one brain area [34,94].

These neuronal oscillations are highly correlated with cognitive functions,
e.g., perceptual grouping, sensory coding, attentional gain modulation, routing
of signals, sensory-motor integration, working memory, and perceptual aware-
ness [34,106,241,250,253]. One role of the oscillations seems to be the grouping
and coordination of interactions between large numbers of neurons for sculpting
temporal coordination of neural activity in the brain-wide network, supporting
information multiplexing and inter-area communication [106,241,250,253].

Rhythmic brain activities have been classified, following Berger’s tradition,
in frequency bands labeled with Greek letters [28]. It is out of the scope
of the present dissertation to review and classify all the neuronal oscillations
discovered so far. Rather, we draw a non-exhaustive list of brain oscillations
to highlight their wide frequency ranges, origins, and putative functions:

• Delta oscillations (0.5–4 hertz): slow-wave sleep emerging from the thala-
mus [176], hippocampal rhythms involved in signal detection and decision
making [242].

• Theta oscillations (4–8 hertz): oscillations in the hippocampus in rela-
tion to cognitive processing [242], cortical oscillations for tasks engaging
working memory [71,134].

• Alpha oscillations (8–12 hertz): thalamocortical oscillations for propofol-
induced loss of consciousness [38], cortical oscillations associated with
memory clearance [71], cortical oscillations reflecting attention selection
and control [142,172,182].

• Beta oscillations (12–30 hertz): in the cerebral motor cortex prior to an
expected postural challenge [7], in relation to impaired movement [23], in
the striatum of awake behaving monkeys [44], in the basal ganglia as a
measure of the likelihood for the need of actuation for a new voluntary
action [133].

• Gamma oscillations (>30 hertz): in many brain regions during both wak-
ing and sleep states [30].

Brain disorders, such as schizophrenia, epilepsy, autism, Alzheimer’s dis-
ease, and Parkinson’s, have also been associated with strong rhythmic activities
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Figure 2.2 – Model resolution levels. The spatiotemporal scales of the models cover
the resolution levels of the brain and depend on the mechanism under study. Focus
on the neuron and network levels for brain models.

in the brain [250]. EEG studies support that schizophrenia is related to im-
paired neural synchrony in the beta- and gamma-frequency range. By contrast,
large-amplitude fluctuations in the EEG reveal that epilepsy is correlated with
abnormal neural synchronization, especially in the gamma-band, in extensive
brain regions. Several fMRI studies have highlighted the reduced functional
connectivity, reflecting reduced neural synchronization, with the dysfunctional
integrative symptoms of autism. Patients suffering from Alzheimer’s disease see
a relative increase in the theta- and delta-band activity simultaneously with
a reduction in the alpha- and beta-band activity. Finally, Parkinson’s disease
correlates with an enhanced synchronized beta-band activity. The study of
these abnormal oscillations is also instructive for our understanding of normal
brain functions.

2.1.3 Resolution levels in models
Mathematical modeling is essential to advance the understanding of the brain
organizing principles and mechanisms. In this approach, models are used to
capture the essential features of the biological system and to frame hypotheses
that can later be verified experimentally. The spatiotemporal scales of the
models cover the resolution levels of the brain (see section 2.1.1) and depend
on the mechanism under study. In this dissertation, we focus on the neuron
and network levels (see Figure 2.2).

At the neuron level, we distinguish two types of models: detailed—or
conductance-based—neuron models and reduced—or low-dimensional—neuron
models. Detailed neuron models trace back to the seminal work of Hodgkin
and Huxley on the giant axon of the squid [120] (see section 2.2.1). Action
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potentials result from the passage of currents through ion channels in the cell
membrane. Hodgkin and Huxley managed to measure those currents and to
derive a set of differential equations to describe their dynamics. Over the years,
the biological complexity of detailed models has increased with the insertion
of numerous ion channels, different types of synapse, and the specific spatial
geometry of individual neurons [49, 93]: electrophysiologists have described a
realm of different ion channels, different from one neuron to the next, synaptic
transmission is modeled as specific ion channels, and the complex geometry of
the neuron has been taken into account in multi-compartment models.

Complex high-dimensional nonlinear models involving thousands of coupled
differential equations are difficult to analyze and to visualize. This obstacle
is tackled by reducing high-dimensional models to a set of low-dimensional
differential equations where the power of the phase-plane analysis can be ex-
ploited [49, 93]. Examples of low-dimensional models include the FitzHugh-
Nagumo model and the Morris-Lecar model (these models are described in
section 2.4.1).

At the network level, simplification of neuron models can accelerate simu-
lations drastically at the expense of the explicit description of the biophysical
mechanisms responsible for action potentials. One such simplification instan-
tiates in the integrate-and-fire model, which is part of the broader category
of spiking-neuron models [49, 93]. In these models, spikes are fully character-
ized by their firing time defined by a threshold criterion. There exist different
complexity levels in spiking-neuron models, including e.g., multi-compartment
models, non-linear models with voltage-dependent parameters, and spike-rate
adaptation [49,93].

When describing large and homogeneous networks, it is sensible to use a
mean-field approximation and to describe the mean activity of the neuronal
population, i.e., the mean-firing rate or probability density of firing [49, 93,
160](see section 2.4.2). The first generation of such models is based on the
McCulloch-Pitts neurons—i.e., perceptrons or threshold gates—whose output
is all-or-none (0 or 1). The second generation is based on computational units
with an activation function, typically the sigmoid function. These computa-
tional units, or sigmoidal gates, possess a continuous set of possible outputs.

The firing-rate models have numerous advantages compared to spiking-
neuron models [49]. For instance, they are easier to simulate on computers,
possess less free parameters, and introduce stochasticity. However, they elimi-
nate the aspects of spike timing and spike correlations and they are restricted
to simulations of uncorrelated firing neurons.

In practice, the type of model used depends on the problem under study
and results from a tradeoff between biophysiological plausability and compu-
tational cost. For instance, Hopfield studied recurrent neural networks with
threshold and sigmoidal gates [121, 122]. These ‘Hopfield nets’ are capable of
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emulating an associative memory by storing and recalling memory patterns [49].
Recent projects have taken the opposite approach, emphasizing biological re-
alism. Covering the entire range of the spectrum, from computational efficient
to biophysiological plausible models, one can mention:

• the SyNAPSE project, a DARPA-funded program, which aims at building
an electronic system that matches a mammalian brain in function, size,
and power consumption;

• the SPAUN project, at the University of Waterloo, Canada, which con-
sists in a 2.5-million-neuron model of the brain as an attempt to bridge
the gap between neural activity and biological functions;

• the BRAIN Initiative, a US-based project, whose goal is to produce dy-
namic pictures of the brain that show how individual brain cells and
complex neural circuits interact;

• the Human Brain Project, funded by the European Union, which targets
the project to provide a human whole brain model through a collaborative
informatics infrastructure.

We refer the interested reader to the respective project websites.

2.2 Neurodynamics and excitability
In the early fifties, Hodgkin and Huxley proposed a biophysical model to ex-
plain the ionic mechanisms underlying the initiation and propagation of action
potentials in a nerve cell [120]. Their pioneering work in neurodynamics was the
first to quantitatively record and mathematically describe excitability through
the generation of an action potential.

2.2.1 Hodgkin-Huxley neuron model
The cell membrane that separates the cytoplasm from the extracellular medium
is made of a phospholipid bilayer, which is permeable to small molecules and
water but almost fully impermeable to ions and large molecules. Transmem-
brane proteins are embedded in the cell membrane, crossing it from side to side.
These proteins are selectively permeable to one or several specific substances,
depending on their structure, and regulate the transport of these subtances in
and out of the cell.

The neuron electrical behavior is based on the movement of unequally dis-
tributed electric charges, carried by ions—in particular the sodium ions (Na+)
and the potassium ions (K+)—across the cell membrane. The ion flow is

http://www.artificialbrains.com/darpa-synapse-program
http://nengo.ca/build-a-brain/spaunvideos
http://www.kavlifoundation.org/brain-initiative
https://www.humanbrainproject.eu
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Figure 2.3 – The neuron membrane can be likened to the classic electrical RC circuit.
The phospholipid cell membrane is likened to a capacitor of capacitance Cm and the
transmembrane proteins to dynamic resistor gi.

allowed by the transmembrane proteins. This flow can be passive via ion chan-
nels, which allow the flow following a concentration gradient, or active via
pumps, which use cellular energy to move specific ions against their concen-
tration gradient. The relative concentrations of ions across the cell membrane
and the membrane permeability to these ions result in an electrical potential
gradient across the membrane, called the membrane potential (Vm). Neuronal
signaling results from abrupt variations in this membrane potential: typically,
Vm is close to −70mV at rest and rises up to 40mV during action potential
(membrane depolarization).

The neuron membrane can be likened to the classic electrical RC circuit
(Figure 2.3). The phospholipid cell membrane is impermeable to ions and
only allows for the accumulation of charges on each side, acting as an electric
capacitor. Its capacitance Cm is constant and function of the cell. Regarding
transmembrane proteins, they are ion selective and can be likened to resistors,
whose conductance gi is dynamically regulated as the channels regulate their
opening state.

Mathematical modeling is therefore particularly suited to describe the neu-
ron membrane electrical behavior. The application of Kirchhoff’s current law
gives:

Icap = −Ii + Iapp,
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with

Icap = Cm
dVm
dt

,

Ii =
∑
ion

Iion,

where Iion is the ionic current corresponding to a specific ion and Iapp includes
external stimulations.

Following Ohm’s law, the ionic current Iion depends on the conductivity of
the channel gion (reflecting the fraction of open channels) and the difference be-
tween the membrane potential and ion reversal potential Eion (the ion reversal
potential, or Nernst potential, is the membrane potential at which the voltage
driving force exactly balances the chemical driving force due to the asymmetric
ion concentration):

Iion = gion (Vm − Eion) .

By convention, an inward (resp. outward) ionic current has negative (resp.
positive) sign. The general equation for n different ionic currents writes as
follows:

Cm
dVm
dt

= −
∑
n

gion (Vm − Eion) + Iapp.

This equations is at the basis of electrophysiological modeling and neurody-
namics.

In their early work, Hodgkin and Huxley characterized the tight regula-
tion of ion channel opening states [120]. For practical reasons, they performed
their experiments on the squid giant axon, a 1mm-diameter cell which allows
for manual experiments. Their first observation revealed that the necessary
ions for action potentials are the sodium (Na+) and the potassium (K+) ions.
Therefore, the general model described previously particularizes to the circuit
of Figure 2.4 where the gL conductance (L for leak) accounts for the pas-
sive diffusion occurring through the membrane independently of voltage-gated
channels. The equation writes:

Cm
dVm
dt

= −INa − IK − IL + Iapp

= −gNa(Vm − ENa)− gK(Vm − EK)− gL(Vm − EL) + Iapp.

Hodgkin and Huxley also discovered that ionic channels are voltage-gated
and that the ionic conductances gNa and gK are dynamically regulated by
the membrane potential Vm. In order to find a mathematical expression for
the dynamic regulation of these conductances, Hodgkin and Huxley performed
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Figure 2.4 – The electrical model for the squid giant axon. The necessary ions for
action potentials are the sodium (Na+) and the potassium (K+) ions. The gL con-
ductance accounts for the leak current.

space-clamp experiments, which consist in homogenizing the membrane poten-
tial along the axon to avoid any propagation effect. In parallel, they recorded
the ionic currents flowing through the membrane via a technique called voltage-
clamp: this technique consists in fixing the membrane potential to particular
constant values and recording the ionic currents flowing through the membrane
at these potentials.

Hodgkin and Huxley isolated the action of the sodium and potassium ion
currents and fitted the experimental traces to get a mathematical expression
for the dynamic conductances. The conductances vary between a totally closed
state (gion = 0) and a totally open state (gion = gion, the maximal conduc-
tance). This maximal conductance gion is only function of the ion channel
density and is supposed constant for a given neuron. They hypothesized that
dynamical variations between these two extreme values could be modeled fol-
lowing the law of mass action, with n(Vm, t) the fraction of open channels,
n∞(Vm) the fraction of open channels at steady-state, and τn(Vm) the channel
time constant:

τ∞(Vm)ṅ = (n∞(Vm)− n)

with

n∞(Vm) = αn(Vm)
αn(Vm) + βn(Vm) ,

τ∞(Vm) = 1
αn(Vm) + βn(Vm) ,
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where the functions αn(Vm) and βn(Vm) vary for each ion channel type.
From the experimental measures, Hodgkin and Huxley chose the following

model for the squid giant axon:

CmV̇m = −INa − IK − IL + Iapp,

= −gNam3h(Vm − ENa)− gKn4(Vm − EK)− gL(Vm − EL) + Iapp,

ṁ = αm(1−m)− βmm,
ḣ = αh(1− h)− βhh,
ṅ = αn(1− n)− βnn,

where Vm is the membrane potential in mV , Cm = 1µF/cm2 is the mem-
brane capacitance, Iapp is the applied current in µA/cm2, and m, h, and n are
the gating variables (m and h are the activation and inactivation variables of
sodium channels and n is the activation variable of potassium channels).

The specific functions α and β are, in units of (ms)−1:

αm = 0.1 25− Vm
e(25−Vm)/10 − 1

,

βm = 4e−Vm/18,

αh = 0.07e−Vm/20,

βh = 1
e(30−Vm)/10 + 1

,

αn = 0.01 10− Vm
e(10−Vm)/10 − 1

,

βn = 0.125e−Vm/80.

2.2.2 Excitability
Figure 2.5 shows the response of the Hodgkin-Huxley neuron model to two
impulses of excitatory current: one ‘subthreshold’ and one ‘superthreshold’.
After a small subthreshold stimulation, only small variations around the resting
potential are generated, whereas a large superthreshold stimulation results in
a large excursion of the membrane potential before it resumes to its steady-
state value after a time duration called a refractory period. This phenomenon
defines excitability and the large excursion followed by the membrane potential
is called an action potential.

The cascade of events composing the action potential relies on the kinetics
of the membrane permeability changes, function of the particular kinetics of
sodium and potassium channels. Figure 2.5 (Right) shows that, after a su-
perthreshold excitatory stimulus, sodium channels open rapidly (m increases)
which induces a massive flow of sodium ions into the cell, generating a strong
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Figure 2.5 – Simulation of the Hodgkin-Huxley neuron model. (Left) Subthreshold
stimulation. (Right) Superthreshold stimulation. Variations of membrane potential
(top) and gating variables (bottom) over time.

membrane depolarization. On a slower timescale, sodium channels close (h de-
creases) and potassium channels open (n increases). Sodium ions stop coming
into the cell and potassium ions flow out of the cell, repolarizing the membrane.

Therefore, the sodium current, INa, is rapidly activated but slowly inac-
tivated by membrane depolarization. In contrast, the delayed-rectifier potas-
sium current, IK , is solely activated by membrane depolarization on a timescale
similar to the sodium channel inactivation, slower than sodium channel activa-
tion. The gating timescales can be separated into the fast contribution (time-
constant in the millisecond range) and the slow contribution (time-constant 5
to 10 times larger) [89]: the fast gating variable is the sodium channel activa-
tion m, and the slow gating variables are the sodium channel inactivation h
and the potassium channel activation n.

The rapid action of the fast gating variable m and the slower action of the
slow gating variables h and n can be captured with a motif representation.

2.3 Motif approach
2.3.1 Positive and negative feedback loops
Dynamics in biological systems can be described in the form of interactions
between antagonist feedback loops [39]. With negative feedback loops (–FB),
the response counteracts the effect of the stimulus, reflecting an auto-regulation
mechanism and leading to homeostasis or oscillations [247]. In dynamical sys-
tems theory, negative feedbacks are known to linearize the behavior, acting
as regulators with sigmoid-like characteristics. The output primarily reflects



2.3. Motif approach 19

the input and the system behavior is termed exogenous. In contrast, positive
feedback loops (+FB), by which the response amplifies the effect of the stim-
ulus, bring bistability to the system—i.e., the robust coexistence of two stable
attractors—and lead to switch-like behaviors [247]. The output primarily re-
flects memory of the past and the system behavior is called endogenous.

In the 1960’s, Jacob and Monod performed the first study of the interaction
of positive and negative feedback loops for the control of gene expression [132].
At approximately the same time, Griffith studied the interaction of negative
and positive feedback loops in networks [110,111]. In particular, Griffith showed
that a two-state system with a negative feedback loop possesses a single sta-
ble equilibrium and that a system with a positive feedback loop undergoes
oscillations under the strict condition of ultra-sensitivity.

The interplay of positive and negative feedback loops can generate complex
behaviors, e.g., toggle switches and oscillators [203,234,247]: the positive feed-
back creates bistability, i.e., two stable steady states, and the negative feedback
drives the system between those two states. Over the years, two main build-
ing blocks have emerged to explain biological oscillators: the delayed-negative-
feedback—the local excitation is created by a time delay—presented by Good-
win to model enzymatic control [105] and the hysteresis-and-adaptation—the
local excitation is generated by a dynamical hysteresis due to an autocatalytic
feedback loop—for example at play in the FitzHugh-Nagumo model [86, 186].
For instance, those two distinct building blocks have been used to model the
same mitosis mechanism responsible for the cell division cycle [98,245], conjec-
turing drastically different underlying principles.

2.3.2 Generality of the motif approach
The motif approach consists in adopting an engineer’s mindset to control sys-
tems by identifying simple patterns of activation (+) and inhibition (–) among
a small number of components that carry out specific functions [3,94,234,246,
249]. The description in term of motif is helpful for generalization purposes:
a motif captures the recurring patterns of interactions in a system and sim-
plifies the picture [3, 94]. Such motifs are found in a variety of fields, e.g.,
biochemistry (transcriptional gene regulation), ecology (food webs), neurobi-
ology (neuron connectivity), and engineering (electronic circuits, World Wide
Web) [180, 265]. In neuroscience, motifs have been used to describe structural
and functional networks and characterize network building blocks that occur
frequently in the human brain [229,230].

The power of the motif approach is largely exploited in systems biology to
identify shared design principles [4,249]. Motifs simplify the systems by approx-
imating the wiring diagram and taking advantage of the strong separation of
timescales between different processes [4]. Examples of biological motifs are the
positive and negative feedback loops (Figure 2.6, Left and Center) described in
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Figure 2.6 – Motifs. (Left) The positive feedback loop motif. (Center) The negative
feedback loop motif. (Right) The excitability motif.

the previous section (2.3.1), but many other motifs have been identified [249].

2.3.3 Excitability motif

The seminal work of Hodgkin and Huxley introduced the concept of excitability,
which refers to spatially distributed systems capable of propagating signals
in time and in space [11]. An excitable system is characterized by a resting
state, stable under small subthreshold perturbations. A superthreshold input
evokes in the system a great excursion, orders of magnitude greater than the
subthreshold response, before the system resumes to the resting state [11,129].
From a dynamical system point of view, a system with a stable equilibrium is
excitable if there is a large amplitude periodic pseudo-orbit passing near the
equilibrium, i.e., a large-amplitude piece of trajectory that starts in a small
neighborhood of the equilibrium, leaves the neighborhood, and then returns to
the equilibrium [83,128,129].

The excitability motif is composed of a fast positive feedback loop (+FB)—
or autocatalysis—and a slower negative feedback loop (–FB) and will be re-
ferred in the rest of the dissertation as the +FB then –FB motif (Figure 2.6,
Right). In neuroscience, this +FB then –FB motif has been introduced as
early as in the 1930’s with the description of the action potential in nerves
[119, 209] and later formalized in the work of FitzHugh-Nagumo [86, 186] (see
section 2.4.1).

Many biological and chemical systems are excitable and use the +FB then
–FB motif [11, 73, 140]. Examples of excitable dynamics include the action-
potential propagation along axons [120], the Field-Noyes model of the Belousov-
Zhabotinskii reaction [85], the pacemaker cells of the heart, the pancreatic
beta-cells, and specific applications in systems biology such as the transient
cellular differentiation [3, 235,249].



2.4. Excitability motif in neuroscience 21

m Vm
h
n

Fast Slow

v
Fast

w

FitzHugh-NagumoHodgkin-Huxley

Slow

Figure 2.7 – The +FB then –FB excitability motif in neuron models. (Left) The
excitability motif in the Hodgkin-Huxley neuron model. The fast regenerative gating
variable m provides a positive feedback on membrane potential variations and the
slow restorative gating variables h and n provide a negative feedback on membrane
potential variations. (Right) The excitability motif in the FitzHugh-Nagumo neuron
model. The fast excitation variable v provides a positive feedback via its autocatalysis
and the slow recovery variable w provides a negative feedback on variations of v.

2.4 Excitability motif in neuroscience

2.4.1 Excitability in neurons

The +FB then –FB excitability motif emerged from the mathematical modeling
of Hodgkin and Huxley and was later formalized by the work of FitzHugh and
Nagumo.

Hodgkin-Huxley model

As detailed in section 2.2.2, the gating variables can be grouped in the fast
gating variables (m) and the slow gating variables (h and n). The fast gating
variable m generates the rapid upstroke of the action potential. It enhances a
membrane potential variation by positive feedback and is regenerative in the
sense defined in [89]. The slow gating variables h and n provide a negative
feedback on membrane potential variations and are restorative in the sense
defined in [89]. The +FB then –FB emerges from the Hodgkin-Huxley neuron
model and is given in Figure 2.7 (Left).

One should notice that the restorative (resp. regenerative) nature of chan-
nels is not solely set by the outward (resp. inward) nature of the current [89]:
for instance, the fast sodium channels are fast regenerative—they are responsi-
ble for the regenerative spike upstroke—but slow restorative because their slow
variable inactivates an inward current. Delayed-rectifier potassium channels
are slow restorative because they activate an outward current but there ex-
ist slow regenerative potassium channels, e.g., the A-type potassium channels,
which decrease the outward current by their slow activation.
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FitzHugh-Nagumo model

As stated in section 2.1.3, high-dimensional nonlinear systems are difficult to
analyze and visualize. Reducing the complexity of the system allows for the
use of dynamical system theory tools such as phase-plane techniques and for a
better understanding of the underlying dynamics [140].

In the 1960’s, FitzHugh reduced the four-dimensional Hodgkin-Huxley set of
equations to a two-dimensional system by aggregating variables and exploiting
the timescale separation [86]. In particular, the fast m and Vm variables are
grouped in a fast autocatalytic variable v while the effect of the slow n and h
variables is taken into account in a slow variable w. The fast variable v, the
excitation variable, possesses a cubic nullcline, while the slow variable w, the
recovery variable, has a monotonically increasing nullcline [140]. The equations
for this dynamical system write:

v̇ = v − v3

3 − w + Iapp,

τ ẇ = v + a− bw.

Nagumo created the equivalent circuit the year after [186], leading to the
appellation: the FitzHugh-Nagumo model. This model extracts the essential
mechanism of the Hodgkin-Huxley model and presents it in a simplified form
while retaining many of the qualitative features [140]. This FitzHugh-Nagumo
model captures also the basic elements for excitability and can be represented
with the motif formalism (Figure 2.7, Right).

Morris-Lecar model

Another two-dimensional reduction of a neuronal spike dynamics was proposed
in the 1980’s by Morris and Lecar [183]. Their system includes the effect of
potassium channels and voltage-gated calcium channels and writes:

CmV̇ = −gCam∞(V )(V − ECa)− gKn(V − EK)− gL(V − EL) + Iapp,

≡ −Iion(V, n) + Iapp,

ṅ = φ(n∞(V )− n)/τn(V ),

where

m∞(V ) = 1
2

[
1 + tanh

(
V − V1

V2

)]
,

n∞(V ) = 1
2

[
1 + tanh

(
V − V3

V4

)]
,

τn(V ) = 1
cosh

(
V−V3
2V4

)
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with parameters V1, V2, V3, V4, and φ. The excitability motif representation
for the Morris-Lecar model can be drawn similarly to the one for the FitzHugh-
Nagumo model.

2.4.2 Excitability in networks
In neuroscience, the +FB then –FB excitability motif emerges at other reso-
lution levels, e.g., at the network level with the mean-field network model of
Wilson and Cowan.

Mean-field approach

The mean-field approach consists in simplifying large and complex stochastic
models by approximating the effect of a large number of small components
in a single averaged effect (see section 2.1.3). In neuroscience, the mean-field
approach takes the form of neural field models [41]: the study, by taking the
continuum limit, of a large population of neurons and synapses with a macro-
scopic state variable, the mean-firing rate, i.e., the number of firing neurons
in a certain short time interval of few milliseconds. The first attempts in this
direction are attributed to Beurle [13], and later to Griffith [108, 109]. Wilson
and Cowan, and later Amari, extended this early work in populations of both
inhibitory and excitatory neurons.

Firing-rate models make the assumption that the synaptic input current is
a function of the pre-synaptic firing rate function and take the form [41,264]:

τ ṙ(x, t) = −r(x, t) + φ

(
I(x, t) +

∫
dyJ (|x− y|) r(y, t)

)
where r(x, t) is interpreted as a neural field representing the local activity of
a population of neurons—firing-rate—at position x at time t, τ is the time
constant of firing rate dynamics, I(x, t) is the external input, J(x, y) is the
strength of synaptic connections between neurons at locations x and y. φ(.)
is a static transfer function which can take various forms: the simplest being
the Heaviside step function (for perceptrons or threshold gates) and the most
famous the sigmoidal function (for sigmoidal gates) [263].

Wilson-Cowan model

In the 1970’s, Wilson and Cowan proposed a firing-rate model of the cortical
circuitry and dynamics [264]. It relied on the assumptions that cortical neurons
can be subdivided into two classes: excitatory (E) neurons, primarily pyramidal
cells, and inhibitory (I) interneurons. The simple network they proposed is
given in Figure 2.8 (Left). The firing-rate model formulation given in the



24 Chapter 2. Modeling the brain, from ion channels to functions

E E
Fast

I

Excitability motifWilson-Cowan model

Slow

I

IEX IIX

JEI

JIE

JEE JII

Figure 2.8 – The Wilson-Cowan network model. (Left) Connectivity diagram for
the firing-rate model of the cortical circuitry and dynamics: excitatory (E) pool of
neurons reciprocally connected to an inhibitory (I) pool of neurons. (Right) The
excitability motif is present at the network level.

previous section leads to the set of equations:

τE ṙE = −rE + φE (IEX + JEErE − JEIrI) ,
τI ṙI = −rI + φI (IIX + JIErE − JIIrI) ,

where rE and rI represent the proportions of excitatory and inhibitory cells,
respectively, firing at time t. Neural fields with such connections exhibit all
sort of complex dynamics such as spatially and temporally periodic patterns,
localized regions of activity (bumps and multi-bumps), and traveling waves
(fronts, pulses, target waves and spirals) [41].

Under certain conditions (notably JEE and JEIJIE sufficiently large), the
E-I network develops an excitable dynamics [83, 262] and the +FB then –FB
excitability motif can be extracted (Figure 2.8, Right). Local dynamics and
spatial connectivity influence the type of dynamical pattern that develops in
the network: travelling wave pulses or stationary pulses occur [83]. Amari
extended this framework to a network with a ‘Mexican hat’ connectivity, i.e.,
local excitation and distal inhibition, for a mixed E-I population [5].

2.5 Temporal superposition of excitable motifs
2.5.1 Burst-firing pattern
The Hodgkin-Huxley model captures the fundamental property of neuronal
excitability, through modeling an action potential. Depending on the time
interval separating two successive action potentials, neurons are capable of
exhibiting various firing patterns, for instance burst firing. Burst firing cor-
responds to the generation in alternance of high-frequency firing periods and
quiescent periods. Many neurons are capable of switching between single-spike
and burst-firing patterns (see for instance chapter 4).



2.5. Temporal superposition of excitable motifs 25

There exist many types of burst-firing patterns in neurons expressing vari-
ous ion channels and having different morphologies but the underlying mecha-
nisms are strongly similar and happen on three sharply separated timescales [88]:
the fast activation, corresponding the rapide spike upstroke, the slow recovery,
corresponding to all gating variables that (in)-activate during the action po-
tential, and the ultraslow adaptation, which modulates neuron excitability. A
critical component of neuronal bursting relies on the presence of robust bistabil-
ity between a resting state and a spiking state, allowing for transition between
spiking and quiescent periods [88]. This robust bistable region is a signature of
slow regenerative excitability, this bistable zone being fragile or even absent in
slow restorative excitability [87]. Transitions between the two types of excitabil-
ity can be regulated and corresponds to a switch between single-spike firing to
burst firing. As a consequence, only four ion channel types are necessary for the
generation of bursting [88]: (i) one fast depolarizing for the generation of the re-
generative upstroke of action potentials, (ii) one slow restorative for the action
potential downstroke, (iii) one slow regenerative for switching from restorative
excitability to regenerative excitability, and (iv) one ultraslow hyperpolarizing
for the adaptation of excitability during spiking. This physiologically relevant
considerations can be captured in a three-timescale bursting neuron model.

2.5.2 Three-timescale bursting neuron model
The three-timescale bursting model is an abstract model of neuronal spiking
based on the transcritical normal form [76,77,87–89]. It is inspired by the planar
reduction of the Hodgkin-Huxley model augmented with calcium channels [77].
Calcium channels are essential to provide a source of positive feedback in a
timescale that is significantly slower than the timescale of neuron excitability.
The model exploits the three timescales of neuronal bursting [88]: fast—the
timescale of the rapid action potential upstroke, slow—the timescale of intra-
burst spike frequency, and ultraslow—the timescale of interburst frequency:

v̇ = v2 + bvxs − x2
s ± gsxs − gusxus + Iapp + Istatic if v ≥ vth, then

τsẋs = asv − xs v ← c, xs ← ds,

τusẋus = ausv − xus, xus ← xus + dus.

where v merges the membrane potential and fast variables, xs merges all slow
recovery variables, and xus all ultraslow adaptation variables. Iapp represents
the applied current and Istatic the static current that determines the resting
potential. The reduced model is in dimensionless units. The interested reader
is referred to [77,87] for more details about the model.

The model is composed of three feedback loops: one fast, one slow, and one
ultraslow (Figure 2.9, Left) [76]. The fast feedback loop mainly accounts for the
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fast autocatalysis achieved by sodium activation (positive feedback, i.e., fast
regenerativity). The slow and ultraslow feedback loops correspond to two cur-
rents active in the respective timescales multiplied by their respective feedback
gains, gs, and gus. The slow feedback gain gs accounts for the net sum of the
many slow currents, which can either be slow restorative (e.g., delayed-rectifier
potassium channels) or slow regenerative (e.g., T-type calcium channels) [89].
The ultraslow feedback gain gus accounts for the net sum of ultraslow currents
and will be considered ultraslow restorative in this dissertation.

The balance between restorative and regenerative ion channels in the slow
timescale, gs, corresponds to a physiologically meaningful modulation param-
eter [88]. gs is physiologically modulated by the balance between restorative
and regenerative channels: the positive sign models the case where regenera-
tive channels are dominant, the negative sign models the case where restorative
channels are dominant, and gs = 0 corresponds to an exact balance between
restorative and regenerative channels.

2.5.3 Excitability motif in two temporal resolutions
The block diagram of Figure 2.9 (Left) can be abstracted with the motif ap-
proach: the fast feedback loop corresponds to a fast positive (autocatalytic)
feedback, the slow feedback loop can either be slow negative for restorative
excitability or slow positive for regenerative excitability, and the ultraslow
feedback loop is ultraslow negative. The motif representation that emerges
corresponds to two excitability motifs in two different timescales (Figure 2.9,
Right): in the fast/slow timescale, the +FB then –FB motif is identical to the
one described in single-spike firing (fast autocatalysis and slow recovery with
slow restorative channels); in the slow/ultraslow timescale, the +FB then –FB
motif is constituted by the slow positive feedback brought by slow regenera-
tive channels and ultraslow negative feedback brought by ultraslow restorative
channels.

The bursting pattern emerges from the interplay of the two motifs. To
study the modulation and robustness properties of burst firing, it is primordial
to keep the description of the mechanism at the two distinct resolution levels:
fast/slow and slow/ultraslow.

2.6 Interacting motifs
In this section, we enlarge the concept introduced in the temporal dimension
in the previous section to the interactions of motifs at different spatiotempo-
ral resolution levels. Motifs in a given resolution level can emerge from the
interplay of feedback loops at a different resolution level. For these systems, it
is crucial to investigate the interactions between resolution levels rather than
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Figure 2.9 – The three-timescale bursting model. (Left) Block diagram with the
three feedback loops, fast, slow, and ultraslow. The slow feedback loop can have
either a positive or a negative sign, depending on the balance between restorative and
regenerative channels. (Right) The excitability motif is present at two resolutions:
the fast/slow timescales and the slow/ultraslow timescales.

each level separately. We give two examples where motifs at different resolution
levels interact to produce the system behavior. Those examples emphasize the
drawbacks of the motif approach when considered at a unique resolution level
and drive the motivations for the dissertation.

2.6.1 Half-center oscillators
At the beginning of the last century, Brown suggested that the rhythmic walk-
ing pattern, i.e., the alternate flexion and extension of leg muscles, could orig-
inate from rhythmic central circuits [26]. Central pattern generators (CPGs)
are neuronal circuits that, when activated, produce a rhythmic pattern for
simple behaviors such as locomotion, mastication, and respiration [94, 112,
117, 168, 169]. From a dynamical system theory viewpoint, these CPGs pro-
duce stereotypical limit cycle oscillations in response to a constant input [262].
The rhythmic patterns provide specific timing information without receiving
extrinsic phasic timing input. The dynamics of the network depend on the
complex interplay between the neuron intrinsic membrane properties and the
network—or synaptic—extrinsic properties [169, 262]. Neuromodulators often
play a crucial role: they set the intrinsic and extrinsic parameters to render
the networks functional [117]. Neuromodulators activate and modulate—both
in frequency and phasing—the motor patterns produced by a given CPG to
allow adaptation to changing environmental demands [168, 169]. For instance,
some CPGs operate continuously (e.g., such as vertebrate respiration), some
are activated and terminated at specific time points (e.g., for walking, running,
flying and swimming), while others are rare and briefly seen (e.g., escape or
scratch behaviors) [169].

Many CPGs incorporate a specific building block: a half-center oscillator



28 Chapter 2. Modeling the brain, from ion channels to functions

(HCO), i.e., two neurons mutually inhibiting each other [168, 262]. Although
these two neurons, or neuronal populations, do not oscillate in isolation, they
produce, when connected, alternating patterns of activity [26, 200, 214]. This
circuit was first introduced by Brown to explain the control of antagonistic
muscles during walking [26]. HCOs have been identified at the core of most
endogenous rhythmic circuits, such as CPGs governing locomotion [26, 33, 47,
112,200,214] and respiration [27,47].

HCOs embody prototypes of circuit behavior emerging from the interactions
between cellular and network levels. When solely considered at the network
level, the mutual-inhibition architecture takes the form of an I-I motif which
captures the anti-phase property of the rhythm. This mean-field approach
holds solely if the circuit coupling is much slower than the cellular dynamics.
This observation highlights a limitation of the motif approach when considered
at a unique resolution level: the complex interplay between neuron and net-
work dynamics is completely lost in favor of simplicity. The robustness and
modulation properties which emerge from the neuron (intrinsic) level are oblit-
erated. Considering the +FB then –FB excitability motifs in both timescales
at the cellular level allows for the investigation of system-level properties and
highlights the necessity of a slow positive feedback loop at the cellular level
(see chapter 3).

2.6.2 Excitatory-inhibitory circuits
Parkinson’s disease is one of the most common disabling neurodegenerative
disorder, second only to Alzheimer’s disease, and affects tens of millions of
people worldwide [116]. The core physiological signature is the degeneration
of dopaminergic neurons in the substantia nigra pars compacta (SNc) of the
midbrain and a consequent dopaminergic denervation of the striatum, the ma-
jor input nucleus to the basal ganglia [116, 193, 212]. The hallmark feature of
Parkinson’s disease is severe motor symptoms: poverty of voluntary movements
(akinesia), slowness and impaired scaling of voluntary movement (bradykine-
sia), muscle stiffness (rigidity), and tremor at rest [116, 212, 215, 259]. The
relation between dopaminergic denervation and the motor symptoms is still
unclear [116]. One of the patho-physiological characteristics of Parkinson’s dis-
ease is the increase in firing rate of the output neurons of the basal ganglia,
generating an excessive inhibition on the thalamus [193]. In addition, recent
recordings, in both animal models and humans, have demonstrated abnormally
synchronized oscillatory activity at multiple levels in the basal ganglia and cere-
bral cortex [20,116].

One neuronal circuit hypothetically responsible for the oscillatory activ-
ity is the subthalamic nucleus - globus pallidus pars externa (STN-GPe) net-
work of the basal ganglia, a mutually-connected excitatory-inhibitory (E-I)
network [18]. According to the motif approach, this circuit is excitable in the
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presence of an autocatalytic feedback loop. Generally speaking, at the net-
work level, this autocatalysis can come from a reciprocal E-E or I-I coupling.
However, the autocatalysis can also emerge from the cellular level, endowing
network oscillations with specific modulation and localization properties (see
chapter 4). This sets emphasis on the importance of studying motifs and their
interplay in different resolution levels.

2.7 Neuron-level and network-level motifs
The approach emphasized in this dissertation is the use of motifs to capture
the essential characteristics of phenomena at higher (finer/faster) resolution
levels to study modulation and robustness properties at lower (coarser/slower)
resolutions. We show that the interplay of motifs at different levels is primordial
for studying system-level questions.

2.7.1 Interactions between resolution levels
As emphasized in section 2.1.3, there exist models at the different resolution
levels of the brain, each model resolution capturing a specific spatiotempo-
ral scale. However, from the two previous motivating examples, we see that
eliminating the characteristics at finer/faster resolution levels is detrimental for
analyses at coarser/slower resolutions. To palliate to this limitation, we suggest
to investigate the interplay between motifs at different resolution levels.

Similarly to the strategy proposed in [198], we highlight the importance, at
the network level, of including both the network organization and the functional
properties of the cellular and synaptic components. Specifically, we extract
from higher resolution levels the critical components—the motif representation
and the feedback loops—for the activity at the lower resolution. We propose to
use this approach in the modeling of the brain, i.e., to capture, in models, the
mechanisms at different spatiotemporal resolution levels in order to develop of
global understanding for specific activity patterns.

2.7.2 Neuron resolution level in networks
Similarly to what is done in the temporal scale for the neuron burst-firing
pattern (section 2.5.3), we propose to study the interplay of motifs in the
spatiotemporal scale, going from the neuron level to the network level.

In this dissertation, we consider two network-level systems: the mutual-
inhibition (I-I) network of HCOs (chapter 3) and the E-I network of the basal
ganglia (chapter 4). We examine system-level questions such as modulation,
robustness, and function emergence. In particular, the impact, at the network
level, of cellular feedback loops is studied. In the last chapter (chapter 5), the
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analysis is extended to localized transfer properties of multiresolution excitabil-
ity.

2.8 Summary
In this chapter, we introduced the concepts of resolution levels in the brain
physiology and models. The seminal work of neurodynamics, the Hodgkin-
Huxley neuron model, was depicted and introduced the excitability concept.
The motif approach, a widely used methodology, was presented to extract im-
portant elements, in the form of feedback loops, in each resolution level. The
interplay between excitability motifs at two different temporal levels was shown
with the neuronal burst-firing pattern. The dissertation was motivated by the
instantiation, in two neuronal circuits, of the limitation the motif approach
when considered at a unique resolution level. Study of the motif interactions
at different spatiotemporal resolutions was suggested to tackle system-level
questions and to investigate the interplay of neuron and network resolution
levels.



Chapter 3

Cellular feedback for
network modulation and
robustness

Biological rhythms play a major role in the functioning of the brain but much re-
mains to be understood regarding their control, regulation, and function. Many
advances in this important question have come from experimental and compu-
tational studies of central pattern generators (CPGs), which endogenously pro-
duce precise rhythmic outputs directly related to motor functions [94,112,117,
168,169]. In this effort, experimental work benefits from computational models
but models at the circuit level usually rely on mathematical simplifications at
the component level.

The question of which cellular details must be retained at the network level
is largely open [170]. We use the approach presented in chapter 2 to investigate
cellular properties to be preserved in the study of modulation and robustness
of network rhythms.

Motivated by this general question, we highlight a simple feedback mech-
anism at the cellular level that has a key influence on circuit robustness and
modulation. We illustrate this property via the computational study of an
archetype model of CPG circuits, the half-center oscillator (HCO): two neu-
rons, or neuronal populations, that do not oscillate in isolation, but oscillate in
an anti-phase rhythm when reciprocally connected [26,200,214]. Because of the
widespread occurrence of this circuit motif, the mechanisms have been exten-
sively studied, both computationally and experimentally [33, 47, 117, 169, 223,
224, 255]. A specific cellular excitability property, the post-inhibitory rebound
(PIR) [200], and its two specific ionic currents, IH and ICa,T [8], are well-known
key players in circuit oscillations. Previous studies have focused on distinguish-

31



32 Chapter 3. Cellular feedback for network modulation and robustness

ing those two currents from their contribution to the escape or release mecha-
nism [47, 223, 255] and their modulation of rhythmic activity [46, 74, 194, 228].
This chapter highlights that those two currents differ in another simple yet
fundamental aspect: both generate a PIR, but only one of them acts as a
source of positive feedback through its slow activation (in a timescale criti-
cal for the rhythm generation). The present chapter demonstrates through a
computational study that this particular feedback is fundamental for the ro-
bustness and modulation properties of the circuit rhythm, and that its absence
is detrimental both to robustness and modulation at the circuit level.

The chapter is organized as follows. Section 3.1 presents the cellular PIR
property and the two major ionic currents that underlie it. Those two currents
are differentiated by their dynamical feedback loops and the type of PIR they
generate, Mechanism A or B. Section 3.2 separates Mechanism A and B PIR
in the impact they have on modulation of the network rhythm. Sections 3.3
extends these results to investigate the robustness of network oscillations. In
section 3.4, we discuss the generality of the approach and the implications for
computational model of HCOs.

Contributions. The main contributions of this chapter are (i) the identifi-
cation of an essential cellular property, a positive feedback loop in the slow
timescale, to be retained at the network level in modeling network robustness
and modulation and (ii) the suggestion of a novel and somewhat fundamental
complementarity between the two ionic currents in PIR mechanisms.

The material of this chapter is greatly inspired from the publication in
preparation [66].

3.1 Slow activation of T-type calcium channels
is critical to robustness of network rhythmic
activity

To assess the role of cellular properties in network rhythms, we consider one of
the simplest and most studied networks: the half-center oscillator (HCO). The
network rhythm results from the mutual inhibition (I) of two neurons that do
not oscillate endogenously in isolation [26,200,214]. HCOs have been identified
at the core of most endogenous rhythmic circuits, such as CPGs governing
locomotion [26,33,47,112,200,214] or respiration [27,47]. Oscillations in HCOs
can be triggered by an external pulse of hyperpolarizing current. When released
from hyperpolarization, the cell generates a burst-like transient depolarization
with one or more spikes. This activity hyperpolarizes the other cell via the
inhibitory synaptic connection, which in turn triggers a transient burst. The
cycle repeats leading to an anti-phase rhythm between the two neurons.
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The transient depolarization following the termination of an hyperpolariz-
ing input is an essential cellular property for the network rhythm, best known in
the literature as post-inhibitory rebound (PIR) [200]. Two major ionic currents
have been shown to underlie the PIR (Figure 3.1, Top): i) the hyperpolarization-
activated cation current, IH , an hyperpolarization-activated inward current
that contributes to rebound responses in a diverse array of neurons in inverte-
brates and vertebrates [8]; ii) the low-threshold T-type calcium current, ICa,T ,
which is deinactivated by hyperpolarization and then activates upon release
from inhibition [233]. Many studies have highlighted the distinction between
these two currents in HCOs from an “escape or release” mechanism perspective,
T-type calcium currents inducing the release mechanism and IH -like currents
promoting the escape mechanism [47,223,255]: either the active cell “releases”
its inhibitory effect on the silent cell (release mechanism), or the silent cell “es-
capes” from inhibition via the activation of an IH -like current (escape mecha-
nism).

Separately, the two types of current generate similar PIR traces in single
cells (Figure 3.1, Top; see appendix A.1 for cellular models and model difference
between Mechanism A and B). While both mechanisms are redundant for the
generation of oscillations in a two-neuron network with reciprocal inhibition
(Figure 3.1, Center), we emphasize a fundamental difference between the two:
in presence of physiological variability, i.e., variability in the intrinsic cellular
properties and synaptic connections (see appendix A.3 for a description of
variability), only the rhythm generated by Mechanism B is robust (Figure 3.1,
Bottom). This robustness property highlights a fundamental difference between
the two mechanisms.

This difference lies in the dynamical feedback loops generated by the gating
variables of the two currents. Both currents generate an ultraslow (the ultra-
slow timescale is set by the interburst frequency) inward current in response
to hyperpolarization, which is the foundation of the PIR. This inward current
counteracts the external hyperpolarization and acts as a source of negative
feedback on membrane potential variations—or restorativity in the terminol-
ogy of [89]—in the ultraslow timescale (Figure 3.2, red feedback loops). But,
in contrast to IH , ICa,T provides a slow positive feedback on membrane po-
tential variations—or regenerativity in the terminology of [89]—via its slow
activation variable (Figure 3.2, green feedback loop). This slow positive feed-
back is absent in Mechanism A. At the cellular level, the slow positive feedback
is revealed by a specific signature during hyperpolarization [89]: a transient
excitatory pulse that triggers a single spike in Mechanism A (IH), triggers a
burst in Mechanism B (ICa,T ) (Figure 3.2, Left and Right). This signature
reveals that bursts are endogenously generated with a PIR with slow regener-
ativity (Mechanism B), as opposed to a purely restorative—i.e., only IH—PIR
(Mechanism A).
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Figure 3.1 – Network rhythmic activities generated by distinct post-inhibitory re-
bound mechanisms strongly differ in their robustness properties. (Top) Mechanism A
generates a PIR with a IH -type current and Mechanism B generates a PIR with a
slowly activating ICa,T -type current (see appendix A.1 for cellular models). (Cen-
ter) In a half-center two-neuron network configuration, both mechanisms generate
anti-phase oscillations. (Bottom) Physiological variability (see appendix A.3 for a
description of variability) in both the synaptic (20% variability in gsyn) and cellular
(Left: 20% variability in gH ; Right: 20% variability in gCa,T ) properties makes the
oscillations unstable with Mechanism A but not with Mechanism B.
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Figure 3.2 – The slow activation of T-type calcium channels is the distinctive difference
between the two PIR mechanisms. (Top) Schemes representing ion channel gating
in different cases. (Bottom) Responses of membrane potential (Vm) to a varying
external applied current (Iapp) for each case. Both mechanisms trigger a PIR via
an ultraslow inward current in response to hyperpolarization, which brings ultraslow
restorativity to the neuron (see appendix A.1 for cellular models). In addition, T-
type calcium channels in Mechanism B, due to their slow activation, are a source of
slow regenerativity. An instantaneous activation of the T-type calcium channels, i.e.,
steady-state approximation of their activation, suppresses this slow regenerativity and
produces a Mechanism A PIR. Mechanism B PIR is endogenous as revealed by the
specific signature during hyperpolarization.
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A frequent modeling simplification is to neglect the slow activation kinet-
ics of T-type calcium channels and to consider the activation at steady-state
(i.e., instantaneous). It should be noted that the slow regenerativity is lost in
this approximation, which eliminates the bursting signature observed in Mech-
anism B, as illustrated in Figure 3.2 (Center).

In the rest of the chapter, we investigate the impact of the difference between
Mechanism A and B at the network level (see appendix A.4.1 for details). More
specifically, we look at a few simple quantities that characterize the network
rhythm in a two-neuron network: the network—or interburst—frequency, i.e.,
the inverse of the time duration between two burst onsets, the duty cycle,
which is the ratio between the burst duration and the period, averaged over
the two neurons, and the ratio between the duty cycle in neuron 1 (the neuron
upon which acts the external hyperpolarization) and in neuron 2 (the other
neuron). We also investigate to what extend the two mechanisms withstand
robust oscillations in network with neuronal populations.

3.2 Robust modulation of network properties
requires slow regenerativity

Experimentally, the network properties of CPGs, i.e., network frequency and
duty cycle—or phase relation—can be modulated via both intrinsic neuron pa-
rameters (such as ionic conductances across neurons) and synaptic parameters
(such as synaptic conductances) on multiple timescales [48, 70, 81, 84, 117, 118,
166, 171, 184]. In this section, we investigate how the rhythmic activity of a
two-neuron network responded to these modulations, both with PIR without
slow regenerativity and with PIR with slow regenerativity, and in presence of
parameter variability (see appendix A for network description and details of
the simulations).

Extrinsic parameters, i.e., the synaptic parameters gsyn and τsyn, given
intrinsic (cellular) characteristics, modulate the network frequency. Synaptic
coupling is very plastic [49, 93] and synapses are a primary target of modula-
tors [184]. Synaptic currents can be generated by the cooperation of several
ion channel subtypes which have slightly different kinetics. Variation of the
synaptic parameters results from a variation of the contribution of all the sub-
types. Absolute variation of the different ion channels influences the maximal
conductance whereas their relative variation can modulate the time constant
of the synaptic current that aggregates all the different subtypes in a model
(for instance, combination of GABAA and GABAB synapses). Therefore, both
the synaptic magnitude, gsyn, and the synaptic kinetics, τsyn, can be sources
of modulation.

Oscillations with cellular slow regenerativity can be modulated over a large
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Figure 3.3 – Frequency modulation with extrinsic parameters is fragile without slow
regenerativity. Modulation of the network frequency by varying synaptic parameters,
gsyn (in [mS/cm2]) and τsyn (in [ms]), is robust with slow regenerativity but fragile
without. (Left) PIR only. (Right) PIR + slow regenerativity. Mean frequency (Top)
and standard deviation (Bottom) for ten simulations with 40% variability in gsyn

and 20% variability in gP IR (see appendix A.3 for a description of variability, mean
frequency, and standard deviation). Membrane potentials (Top): maximal and min-
imal oscillation frequency, respectively, with parameters as indicated by the arrows.
Membrane potentials (Bottom): two different simulations with the same gsyn and
τsyn parameters, gsyn and gP IR affected by parameter variability.
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range by extrinsic parameters (Figure 3.3, Right). Variation of the gsyn and
τsyn parameters generates a 150% increase in network frequency (see appendix
A.3 for a description of mean frequency). Such a span of modulation is observed
in physiological rhythms: for instance, there is a 150% increase in frequency
from slow-wave sleep (≈ 4Hz) to sleep spindles (≈ 10Hz) and a 250% increase
from beta-band oscillations (≈ 20Hz) to gamma-band oscillations (≈ 70Hz).
In addition, with slow regenerativity, the network frequency is only weakly sen-
sitive to the variability in parameters as shown with the standard deviation plot
and the highly similar network frequencies in the membrane voltage traces (see
appendix A.3 for a description of variability and standard deviation). In con-
trast, variations of gsyn without slow regenerativity allow for network frequency
modulation for a much smaller parameter range (Figure 3.3, Left). Moreover,
this modulation is very fragile and very sensitive to variability: the standard
deviation reaches higher values than with slow regenerativity and membrane
potential traces, for a same set of parameters but different simulations, are
drastically different (Figure 3.3, bottom Left). Variation of τsyn is almost im-
possible: τsyn must lie in a very specific timescale for the oscillations to develop
in the network. In the absence of positive feedback at the cellular level, the
modulation requires a tight coupling between intrinsic and extrinsic parame-
ters: the network oscillations are a direct image of the unicellular activity. The
synaptic dynamics must be close to the neuron intrinsic dynamics and cannot
deviate from a tiny range of parameters.

Intrinsic parameters, i.e., the cellular parameter gPIR for each neuron (gPIR,1
for neuron 1—the neuron upon which acts the external hyperpolarization—and
gPIR,2 for neuron 2—the other neuron), given extrinsic (synaptic) character-
istics, modulate the duty cycle and duty cycle ratio (see appendix A.3 for a
description of duty cycle and duty cycle ratio). Many neuromodulators act on
the neuron intrinsic properties by altering the balance of conductances, modi-
fying their excitability properties [171]. The maximal conductance of the PIR
current is a natural candidate for modulation by intrinsic parameters.

The high robustness brought by cellular slow regenerativity allows also for
the modulation by intrinsic parameters even in presence of variability in the
network (Figure 3.4; see appendix A.3 for a description of variability). Covaria-
tion of the maximal PIR conductances, gPIR,1 and gPIR,2, leads to an increase
in duty cycle of 100% (Figure 3.4, Top Right). Independent variation of the
same parameters, i.e., varying gPIR,1 and gPIR,2 independently, modulates the
duty cycle ratio up to a factor three (Figure 3.4, Bottom Right). Variation in
phase relation have been observed for instance in cats, during normal locomo-
tion, where the shortening, by a factor two or three, of one of the phase (the
extensor phase) leads to faster walking [114]. In contrast, our computational
model suggests that modulation with PIR without slow regenerativity is so
fragile that it is physiologically unrealistic. Stable oscillations with variation
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Figure 3.4 – Duty cycle modulation with intrinsic parameters is fragile without slow
regenerativity. Modulation of the duty cycle (the ratio between the burst duration
and the period) and duty cycle ratio (the ratio between the duty cycle in neuron 1
and in neuron 2) by varying intrinsic parameters of neuron 1, gP IR,1 (in [mS/cm2]),
and neuron 2, gP IR,2 (in [mS/cm2]), is robust with slow regenerativity but fragile
without. Proportion of simulations with stable rhythmic activity for ten simulations
with 40% variability in gsyn and 20% variability in gP IR (see appendix A.3 for a
description of variability, detection of rhythm, and proportion of oscillatory HCOs).
(Left) PIR only. (Center) PIR + slow regenerativity. (Right) For the case with slow
regenerativity, zoom in the stable region for mean duty cycle, (DC, Top) and mean
duty cycle ratio, (DC ratio, Bottom) from the ten simulations (see appendix A.3 for
a description of duty cycle and duty cycle ratio).
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of intrinsic parameters do not cover a large parameter range (Figure 3.4, Left).
To summarize, the high robustness brought by cellular slow regenerativity

allows for the modulation by both extrinsic and intrinsic parameters. In ad-
dition, the network frequency and duty cycle can be modulated independently
and in the presence of physiological variability in the network.

3.3 Robustness of network oscillations requires
PIR with slow regenerativity

There exists extensive experimental evidence that the rhythmic activity of
neuronal circuits is robust against variability in intrinsic parameters, extrin-
sic parameters, and exogenous noise (such as synaptic currents external to the
circuit) [61, 99, 103, 104, 155]. We tested the robustness of HCOs in a sixteen-
neuron network, with PIR without slow regenerativity against with PIR with
slow regenerativity (see appendix A for network description and details of the
simulations). The results show the drastic influence of cellular slow regenera-
tivity in the robustness of the network.

Intrinsic variability of the network was studied by introducing variability
(see appendix A.3 for a description of variability) in the maximal conductance
of the PIR current, gPIR. Variability in the cellular properties dramatically
impacts the rhythmic activity of the network without slow regenerativity (Fig-
ure 3.5, Left). The network rhythm becomes unstable beyond 75% of variability
and is significantly perturbed for smaller values. In sharp contrast, the network
oscillations with slow regenerativity are robust against intrinsic variability up
to 200% (Figure 3.5, Right). Remarkably, the network frequency is almost
unaffected by the intrinsic variability, a consequence of the positive feedback
brought by slow regenerative currents.

The robustness of the network oscillations against variability in extrinsic
parameters was studied by introducing variability (see appendix A.3 for a de-
scription of variability) in the maximal synaptic conductance parameters, gsyn.
Without slow regenerativity, a small variability in the synaptic conductances
affects dramatically the network activity (Figure 3.6, Left, to compare to Fig-
ure 3.5, Left, for the case without variability): identical maximal synaptic
conductances generate oscillations but oscillations become unstable when the
maximal synaptic conductances differ between the two populations. Oscilla-
tions with a PIR without slow regenerativity are fragile to network variability.
In sharp contrast, variability in the synaptic conductances is possible for a
much larger range with slow regenerativity and the network frequency is also
almost independent of the synaptic variability (Figure 3.6, Right, to compare
to Figure 3.5, Right, for the case without variability). Oscillations persist up
to a variability of 200%. A source of slow positive feedback in the PIR mecha-
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Figure 3.5 – Slow regenerativity makes network oscillations insensitive to intrinsic
variability. Network oscillations are robust towards intrinsic variability only with
slow regenerativity (see appendix A.3 for a description of variability). (Left) PIR
only. (Right) PIR + slow regenerativity. Variability (level: 0% to 200%) in the
maximal conductance of the PIR current, gP IR. Filled colors indicate presence of
rhythmic activity and blanks indicate no rhythmic activity (see appendix A.3 for
detection of rhythm). Raster plots with 0%, 20%, and 140% variability, respectively.
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Figure 3.6 – Slow regenerativity makes network oscillations insensitive to extrinsic
variability. Network oscillations are robust towards synaptic variability only with
slow regenerativity (see appendix A.3 for a description of variability). (Left) PIR
only. (Right) PIR + slow regenerativity. Variability (level: 0% to 200%) in the
maximal conductance of the synaptic connection, gsyn. Filled colors indicate presence
of rhythmic activity and blanks indicate no rhythmic activity (see appendix A.3 for
detection of rhythm). Raster plots with 80% and 110% variability, respectively.

nism is therefore essential to robustness of network oscillations against network
variability.

The robustness of the network oscillations against exogenous disturbances
was investigated by adding a Gaussian white noise in the equation that models
membrane potential variations (see appendix A.3 for a description of noise).
This emulates the external perturbations—spike train inputs from surrounding
neurons—received by a network when studied in a noisy environment rather
than in isolation [153]. We simulated a sixteen-neuron network with two pop-
ulations, with a different noise source for each neuron (Figure 3.7).

The results are consistent with the robustness against parameter variability.
Without slow regenerativity, oscillations are sensitive to noise and completely
disappear with a noise level greater than 0.10mV 2. With slow regenerativity,
oscillations are robust to noise up to a level of 0.25mV 2. Similarly to the
introduction of variability in intrinsic and extrinsic parameters, the network
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Figure 3.7 – Slow regenerativity makes network oscillations robust against exoge-
nous noise. Network oscillations are robust towards exogenous noise only with slow
regenerativity (see appendix A.3 for a description of variability). (Left) PIR only.
(Right) PIR + slow regenerativity. Gaussian white noise (noise intensity D ranges
from 0 to 0.25 (in [mV 2])) is added to the neurons (see appendix A.3 for a description
of noise). Filled colors indicate presence of rhythmic activity and blanks indicate no
rhythmic activity (see appendix A.3 for detection of rhythm). Raster plots with noise
intensity D of 0.10mV 2 and 0.25mV 2, respectively.
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frequency is also less affected in the presence of slow regenerativity.

3.4 Discussion

3.4.1 Complementarity between the two types of PIR
currents

In the context of HCOs, many neurons possess both IH and ICa,T , the two
main currents that contribute to PIR [33,46, 50, 74, 185,194,228]. When those
two currents are present, both IH and ICa,T can be a source of modulation. In
this case, the presence of T-type calcium currents as a source of slow regener-
ativity is sufficient to guarantee network oscillation robustness. On the other
hand, the hyperpolarization-activated cation current can modulate drastically
the network frequency and duty cycle [46, 228]. However, our computational
model suggests that this is only the case if a slow-regenerative current is sup-
plied by another mechanism. It is noteworthy that slow restorativity can be
provided by other means, such as the presence of high-threshold calcium chan-
nels. This requirement for slow regenerativity reveals a somewhat fundamental
complementarity, distinct from the release or escape view, between the two
channels: ICa,T allows for stable rhythmic oscillations to emerge and IH en-
larges the modulation possibilities.

3.4.2 Positive feedback as a source of endogenous activity
Slow regenerativity is nothing but a source of positive feedback in the slow
timescale of repolarization. It is a slow analog of the positive feedback brought
by sodium activation in the fast timescale of spike upstroke. In previous
work [89], it was shown that this positive feedback is essential for the robust
coexistence of hyperpolarized and spiking states at the cellular level. It was
subsequently shown in [88] that this positive feedback is essential for modula-
tion and robustness of bursting activities. Here we show that the same positive
feedback at the cellular level is also essential for robustness and modulation at
the network level.

The common feature of the positive feedback in those three phenomena is
that it makes the neuronal excitability in the slow timescale an endogenous
property, robust to intrinsic and extrinsic variability. Making an activity en-
dogenous is the very nature of positive feedback and has been emphasized in a
number of contexts.

The results presented in this chapter are in line with the discussion of the
role of positive feedback in other biological models, such as for instance the
biochemical mechanisms underlying the mitotic oscillator [192, 204, 248]: the
oscillator is endogenous and robust in the presence of positive feedback, whereas
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it becomes exogenous and entrainable when the source of positive feedback
disappears. The importance at the network level of positive feedback at the
cellular level is thought to be general and not specific to the case study of HCOs
chosen in this dissertation for its simplicity and physiological relevance.

3.4.3 Slow regenerativity in half-center oscillator models

There is a rich literature on computational models of oscillations generated by
reciprocal inhibition. HCOs have been used to model rhythmic motor outputs
in many invertebrates and vertebrates [26, 33, 117, 169, 200, 214]. In a different
context, models of thalamocortical spindle oscillations suggest that the rhythm
originates from the thalamic reticular nucleus, which consists in interacting
inhibitory nonoscillatory neurons [56,101,255,256].

It is of interest to observe the varying degree of cellular regenerativity in
published models of HCOs. Early models are conductance-based and usually
include at the cellular level both IH and ICa,T , the two main physiological cur-
rents eliciting the PIR [33, 50, 56, 123, 185]. However, network computational
studies often lead to subsequent mathematical simplifications of the cellular
details and the cellular slow positive feedback is often lost in this reduction pro-
cess. A frequent simplification in the literature (see e.g., [47,100,211,255,256])
is to resort to a steady-state approximation of the calcium activation in the
same way as it is normally done for sodium activation. But this approximation
rests on neglecting fast dynamics, which amounts to consider calcium channels
as a source of fast rather than slow positive feedback. The resulting reduced
models have therefore lost their source of slow regenerativity, which makes
them unsuitable for robustness and modulation studies at the network level.

The alternative model reduction consists of modeling the cellular level as
Morris-Lecar type of neurons, retaining the slow calcium currents but neglect-
ing the fast sodium currents [223,224]. Those models do retain the slow positive
feedback source necessary for robustness but they lose the modulation capa-
bilities illustrated in the present chapter because the network interconnection
properties are spike-dependent. This prevents exogenous modulation of the
rhythm. In addition, if sodium spikes were added to a Morris-Lecar neuron
with the addition of the spike currents (as suggested in [143]) while keeping the
calcium activation at steady-state, the slow regenerativity would be destroyed.

It should be highlighted that it is possible to derive reduced neuronal models
that do retain the balance of slow positive and negative feedbacks as an explicit
parameter, see e.g., the recent models in [77, 88]. The results of the present
chapter suggest that it is an important feature to retain in a simplified model
aimed at network computational studies.
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3.5 Summary
We highlighted the role of slow regenerativity, a cellular excitability property, in
endowing network oscillations with modulation and robustness properties that
seem ubiquitous in physiological neuronal networks. An ionic current is slowly
regenerative if it provides a source of positive feedback around resting poten-
tial in the slow timescale of repolarization [89]. The importance of this cellular
property was assessed in one of the simplest and best understood network oscil-
lation mechanisms, the anti-phase rhythm observed between two populations
of neurons reciprocally connected by inhibitory synaptic connections. Many
earlier studies have emphasized the role of post-inhibitory rebound (PIR) at
the cellular level as a core mechanism for the network oscillation, and have
identified IH and ICa,T as two distinct ionic currents that can participate in
the PIR. Our novel contribution is to observe that the cellular PIR will enable
a robust and subject to modulation network oscillation only in the presence of
a slow regenerative ionic current. Because both IH and ICa,T are sources of
PIR currents but only ICa,T is slow regenerative, our results suggest a novel
and somewhat fundamental complementarity between T-type calcium and IH
channels in PIR mechanisms.

As a source of positive feedback, regenerative currents make the PIR en-
dogenous, that is, robust to intrinsic and extrinsic sources of variability. As a
consequence, a PIR with slow-regenerative currents allows for robust network
oscillations and enable robust modulation. The network oscillation is robust
because it can sustain large variability across the neuronal population both
in intrinsic (cellular) and extrinsic (synaptic) parameters. It is also subject
to modulation because the frequency and phase properties of the oscillation
can be controlled over a broad range by a relative modulation of extrinsic or
intrinsic conductances. Our computational investigation illustrated that this
robustness and modulation properties are lost when the PIR is purely ultraslow
restorative.

Our results also predict that PIR per se is not a sufficient cellular excitability
property to ensure modulation and robustness of network oscillations. Deter-
mining the dynamics of the PIR current is also primordial. At the cellular
level, this suggests an experimental essay to detect the presence or absence of
a slow positive feedback source. Slow regenerativity can be detected by the
neuron specific response, single spike or burst, to a transient excitatory pulse,
when the neuron is under the influence of an hyperpolarization current. The
triggering of a burst indicates the existence of a slow regenerative source and
predicts modulation and robustness properties at the network level.



Chapter 4

Cellular feedback for
transient oscillations in
networks

Rhythmic activities are ubiquitous in the brain and play a major role in neu-
ronal processing. These rhythms are very robust and can undergo modulation
to adapt to changing environmental conditions [28]. The underlying physiolog-
ical mechanisms are diverse—e.g., single-cell pacemaker properties or popula-
tion synchronization—but display unifying principles [253]. The driving physio-
logical application in this chapter lies in the basal ganglia, a group of subcortical
nuclei involved in movement initiation and learning [2, 107, 187]. The rhythm
of interest is the beta-band rhythm (oscillations between 12 and 30 hertz)
involved in physiological and pathological oscillatory activities. This beta
rhythm is associated with motor commands and is prominent in Parkinson’s
disease [20, 116, 187]. We focus on the particular subthalamic nucleus - globus
pallidus pars externa (STN-GPe) network, a mutually-connected excitatory-
inhibitory (E-I) network, and its potential function as a central pattern gener-
ator for beta oscillations [18].

In this chapter, we investigate, the role hyperpolarized-induced bursting, a
particular cellular property which is responsible for an excitability switch from
single-spike discharge to burst-firing mode, plays in the control of the transient
network oscillations.

Through a computational study, we highlight the importance of a positive
feedback loop for the cellular excitability switch and the distinction between
this excitability switch and post-inhibitory rebounds. A reduced model cap-
tures the functional signature of the excitability switch. The cellular feed-
back endows E-I networks with cellular-based network switch capabilities and
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procures robustness, modulation, and localization properties to network os-
cillations. We consider the physiological implications of such a cellular-based
network switch.

The chapter is structured as follows. The excitability switch is presented in
a conductance-based model in Section 4.1 and its characteristics are described
in Section 4.2. Section 4.3 captures the functional signature of the excitabil-
ity switch in a reduced model. Section 4.4 explores the impact at the network
level, the network activity switch, in a general E-I network. Sections 4.5 and 4.6
study, in this general framework, the network properties, i.e., robustness, mod-
ulation, localization, and gating. In Section 4.7, the general framework is
particularized to the STN-GPe network and the physiological relevance is in-
vestigated. The proposed mechanism is compared to previous models of basal
ganglia oscillations.

Contributions. The main contributions of this chapter are (i) the identification
of the peculiar role played by a cellular feedback loop for network switches, (ii)
the distinction between post-inhibitory rebound and hyperpolarized-induced
bursting, both at the cellular level and for network oscillations, (iii) the study
of the impact of the hyperpolarized-induced bursting property on network
oscillation robustness, modulation, and localization properties, (iv) the sug-
gestion of a causal link between a transient increase in neuromodulator level
and network state, (v) a network-switch model independent from synaptic
changes, and (vi) a model applicable in both healthy conditions associated to
movement control and persistent pathological parkinsonian oscillations.

The material of this chapter is greatly inspired from the publication in
preparation [63].

4.1 The role of T-type calcium channels in un-
derlying a cellular excitability switch

In this section, we investigate a specific intrinsic property of STN neurons: the
hyperpolarized-induced bursting (HIB) property, i.e., the ability to switch be-
tween a single-spike discharge mode to a burst-firing mode when the membrane
is hyperpolarized (Figure 4.1, Bottom). This property has been studied both
experimentally [12,15,16,72,261] and computationally [95,124]. The switch is
due to the deinactivation of ICa,T , the low-threshold T-type calcium current
introduced in section 3.1 [14,16,95,115,124,197,227,261].

This T-type calcium current is the only candidate to be able to fulfill this
role because the switch between the two modes is induced by a change in the
sign of the slow dynamical feedback loop on membrane potential variations [88]:
the slow feedback loop goes from a negative sign in the single-spike mode
to a positive sign in the burst-firing mode (Figure 4.1, Top), or from slow
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Figure 4.1 – Deinactivation of T-type calcium currents underlies an excitability switch.
(Top) Schemes representing ion channel gating and transitions induced in the slow
and ultraslow feedback loops by the deinactivation of T-type calcium currents. (Bot-
tom) Switch in the firing mode, from single-spike to burst-firing, of the membrane
potential (Vm) induced by a transition in the external applied current (Iapp), from
depolarizing to hyperpolarizing.

restorativity to slow regenerativity in the terminology of [89]. In the single-spike
mode, the active currents are the two currents responsible for the generation
of action potentials, INa and IK (see section 2.2.1) [89]. Upon deinactivation
by hyperpolarization, ICa,T provides a slow positive feedback on membrane
potential variations via its slow activation variable (Figure 4.1, Top, green
arrow - see section 3.1). Therefore, the neurons shifts from a slow restorative
excitability to a slow regenerative excitability, a necessity for burst-firing since
regenerative channels provide the neuron with short-term memory [167], a key
source of the hysteretic nature of burst-firing patterns (see section 2.5.1).

To develop a sustained endogenous burst-firing mode, the neuron also re-
quires the action of an ultraslow current to terminate the bursts, e.g., the
calcium-activated potassium currents IKCa. IKCa generates an ultraslow out-
ward potassium current which acts as a source of negative feedback on mem-
brane potential variations, or ultraslow restorativity (Figure 4.1, Top, red ar-
row). The activation of the IKCa current must be faster than the inactivation
of the ICa,T current for endogenous burst-firing to develop in the neuron. For
the neuronal activity to ressemble the one in the STN experimental litera-
ture literature [12,15,16,72,261], an hyperpolarization-activated cation current
(IH) is also added to the model. The cellular model is given explicitly in
appendix A.4.2.

The burst properties are not only function of this T-type calcium current
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Figure 4.2 – Modulation of endogenous bursting properties independently of ICa,T .
Both intraburst and interburst characteristics can be modulated by varying ionic
conductances other than gCa,T (Intraburst increase: gKCa ∗ 0.2 - Interburst increase:
gH ∗ 0.45).

but depend on the interactions with other currents, such as the L-type calcium
currents, the persistent sodium current, the hyperpolarization-activated cation
current, and the calcium-activated potassium currents [14, 16, 72, 95, 115, 124,
146, 196, 197, 227, 240, 261]. The T-type calcium current is responsible for the
switch to the burst-firing mode but modulation of both the intraburst and
interburst characteristics can be achieved with variations of other ionic current
conductances as shown in Figure 4.2. The burst dynamics is therefore not
fixed by the T-type calcium current dynamics but rather function of many
parameters.

4.2 Hyperpolarized-induced bursting relies on
slow activation and ultraslow inactivation

In contrast to the PIR property developed in the previous chapter, HIB re-
quires specific timescales for both activation and inactivation of the ICa,T cur-
rent. Similarly to PIR, the slow activation provides slow regenerativity to the
neuron, a necessity for burst-firing (see section 3.1). In addition, the ultraslow
inactivation allows for permanent burst-firing activity: the burst-firing pattern
is present while the hyperpolarization is maintained.

A faster activation prevents the neuron to switch from slow restorativity
to slow regenerativity and the neuron remains slow restorative even after dein-
activation of the T-type calcium channels. This precludes the neuron from
transitioning to a burst-firing mode (Figure 4.3, Left). One instance of faster
activation lies in the frequent modeling simplification which consists in neglect-
ing the slow activation kinetics of T-type calcium channels and to consider the
activation at steady-state, i.e., instantaneous (see section 3.1). Similarly, a
faster inactivation produces a switch which is only transient rather than per-
manent (Figure 4.3, Right). This corresponds to a PIR, i.e., a transient source
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Figure 4.3 – HIB requires slow activation and ultraslow inactivation of ICa,T .
(Left) Faster activation (τm/10) keeps the excitability in the slow restorative regime
and prevents burst-firing. The cellular excitability switch disappears. (Right) Faster
inactivation (τh/10) produces a transient switch and gives rise to a PIR rather than
HIB.

Figure 4.4 – Exogenous and endogenous behaviors in the ultraslow timescale. Auto-
correlation and cross-correlation graphs reveal the exogenous and endogenous behav-
iors. (Left) Slow inactivation bears PIR and exogenous behavior. (Right) Ultraslow
inactivation bears HIB and endogenous behavior. For a detailed description of corre-
lation graphs, see section 5.1.

of slow regenerativity.

For this reason, the timescale of endogenous behavior is drastically distinct
between PIR and HIB. With PIR, the behavior is endogenous in the fast and
slow timescales (see section 3.1) but exogenous in the ultraslow timescale. In
contrast, with HIB the behavior is endogenous in every timescale: the source of
endogenous behavior is slowly activated and is almost permanent. This distinc-
tion in endogenous behavior is highlighted with auto-correlation (Acorr) and
cross-correlation (Xcorr) graphs in Figure 4.4 (see appendix A.4.2 for details).
With slow activation, the auto-correlation graph reveals no intrinsic activity
and the sharp peak in the cross-correlation graph reveals that the output of the
system primarily reflects the input, i.e., the system has an exogenous behavior.
With ultraslow inactivation, the auto-correlation graph shows strong rhythmic
intrinsic activity and the absence of sharp peak in the cross-correlation graph
shows that the output primarily reflects memory of the past, i.e., the system
has an endogenous behavior. This distinction at the cellular level has major
impacts on network oscillatory behavior.
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Figure 4.5 – The three-timescale bursting model captures the functional signature
of the excitability switch with the modulation parameter gs. (Left) The reduced
model is composed of three feedback loops, one fast, one slow, and one ultraslow,
corresponding to three currents active in the respective timescales, If , Is, and Ius,
multiplied by their respective feedback gains. The gs parameter captures the balance
between slow restorative and slow regenerative ion channels. (Right) The neuron
polarization level, controlled via Iapp, sets the modulation parameter gs and smoothly
shifts the neuron excitability between slow restorative (single-spike mode) and slow
regenerative (burst-firing mode).

4.3 The three-timescale bursting model captures
the cellular switch

To study the impact of the cellular switch at the network level, we use the three-
timescale bursting model presented in section 2.5.2 (Figure 4.5, Left). This
reduced model captures the functional signature of the excitability switch. As
mentioned in section 2.5.2, the model is composed of three feedback loops: one
fast, one slow, and one ultraslow, corresponding to three currents active in the
respective timescales, If , Is, and Ius, multiplied by their respective feedback
gains. The balance switch between the two firing modes is controlled by the
physiologically meaningful modulation parameter gs.

Variations of the modulation parameter gs by the neuron polarization level—
accounted for by a voltage dependence of the modulation parameter, which re-
flects the ultraslow deinactivation of T-type calcium channels at low threshold
(see appendix A.2.1)—bear smooth and reversible transitions from single-spike
discharge mode to burst-firing mode, or transitions from slow restorativity to
slow regenerativity (Figure 4.5, Right). One should notice that, due to the
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Figure 4.6 – The cellular switch translates into a network switch in an E-I network.
The transition between modes is controlled by the applied current Iapp (excitatory
connection) on the I population (see appendix A.2.2). LFP, spectrogram analysis
(Spect.), and intra-population cross-correlations between every cell pair (Xcorr.) for
both the E and I populations (see appendix A.3). Slow restorative excitability cor-
responds to a nonoscillatory LFP and asynchronous single-cell firing patterns. Slow
regenerative excitability corresponds to a strongly oscillatory LFP and synchronous
single-cell firing patterns.

model definition by the three timescales of neuronal bursting [88], the model
uses dimensionless units. The three-timescale bursting model is sufficient to
capture the cellular switch in a population model. In the next section, we in-
vestigate the effect of a cellular switch on the behavior of a general E-I network.

4.4 The cellular switch induces a network switch
We use a general E-I network inspired from the STN-GPe network configuration
(see section 4.7.1). Each population is composed of sixteen neurons in order to
develop a population activity, captured by the local field potential (LFP), which
reflects the global activity of the population (see appendix A.3). All the neurons
in the E population connect with excitatory synapses to all the neurons in the
I population and, reciprocally, all the neurons in the I population connect via
inhibitory synapses to all the neurons in the E population (see appendix A.2.2).
The applied current, Iapp, acts on the I population (Figure 4.6).

The applied current switches the I population from the slow restorative
(single-spike) mode to the slow regenerative (burst-firing) mode by hyperpo-
larization. As a result, the inhibitory action of the I population on the E
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population switches the E population to the slow regenerative (burst-firing)
mode. In contrast to the network rhythm in the previous chapter which de-
velops from resonance between rebound bursts via the network connections,
endogenous rhythms develop at the cellular level and the network rhythm re-
sults from the interplay between the two cellular endogenous rhythms. This
distinction bears drastic differences for the robustness of the network rhythm
between the mechanism with PIR in the previous chapter and the mechanism
with HIB in this chapter.

The network bursting is not a mere reflection of the unicellular bursting, but
a combination of two concomitant effects: the endogenous effect—HIB—and
the network effect—the synaptic connections. The network rhythm depends
on both the cellular and synaptic properties, respectively function of intrinsic
and extrinsic parameters (see section 4.5).

The cellular switch corresponds to a switch in the population activity as
reflected in the LFP traces and spectrogram analysis (Spect.) of Figure 4.6:
each population switches from a nonoscillatory LFP when slow restorative (no
specific power band in the spectrogram analysis) to a strongly oscillatory LFP
when slow regenerative, confirmed by a high spectral power in a confined fre-
quency band in the spectrogram analysis, due to the action of Iapp.

This population switch is also visible in the cross-correlation analysis be-
tween the firing pattern of the cells within each population (Figure 4.6, Xcorr.).
In the slow restorative mode, the cross-correlations are weak and show no os-
cillatory activity. In the slow regenerative mode, the cross-correlations reach
higher values and exhibit a clear oscillatory activity. In summary, the cellular
switch triggers a switch at the network level, from asynchronous single-spike
discharge to synchronous burst-firing.

4.5 Robustness and modulation of the network
rhythmic activity

In this section, we investigate the network rhythm robustness and modulation
properties. In the restorative mode, the neurons fire asynchronously and no
specific activity is present in the population LFPs. For this reason, we fo-
cus on the network robustness and modulation properties solely in the slow
regenerative mode.

The network rhythmic activity that emerges in the slow regenerative mode
is highly robust (Figure 4.7). The slow regenerativity at the cellular level
provides robustness towards heterogeneity in intrinsic parameters (relative to
the cell), extrinsic parameters (relative to the synaptic connections), and noise.
We simulated the network with 20% variability in intrinsic parameters (the
slow timescale τs, the ultraslow timescale τus, and the ultraslow feedback gain
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Figure 4.7 – Robust oscillations despite heterogeneity and noise. The network rhyth-
mic activity survives despite 20% variability in intrinsic and extrinsic parameters and
noise sources. LFP, spike rasters (Cell #) and intra-population cross-correlations be-
tween every cell pair (Xcorr.) for both the E and I populations (see appendix A.3).
The LFPs are strongly oscillatory, the spikes rasters show diversity in the individual
cell firing patterns, and the cross-correlations show a close-to-synchronous activity.

gus), with 20% variability in extrinsic parameters (the synaptic gain gsyn), and
with gaussian white noise sources of intensity 1 (see appendix A.3 for variability
and noise intensity definitions). The network rhythmic activity survives despite
heterogeneity and noise, and the population LFPs remain strongly oscillatory
(Figure 4.7, LFP). The raster plots show diversity in the firing pattern of the
individual neurons and the intra-population cross-correlations highlight that
the neurons do not fire in perfect synchrony but still develop an overall burst
synchrony that generate the LFP oscillatory activity. The robustness extends
to the cellular switch in control of the network switch: the switch can be
achieved through a switch of only a fraction of the population provided that
the heterogeneity in the cellular switch is compensated for by a sufficient level
of connectivity within the population.

The network rhythmic activity that emerges in the slow regenerative mode
can be robustly modulated (Figure 4.8). The rhythmic activity is function
of both the intrinsic and extrinsic parameters. As a result, modulation can
be achieved by a variation of both parameter types. We look at two simple
measures to quantify the rhythmic activity: Tosc, the oscillation period or the
duration between two burst onsets, and Tburst, the duration of the burst, from
the burst onset to the last spike, distinct for the two populations. Starting from
a set of parameters and a given rhythmic activity (Figure 4.8 A), the rhythm
can be slowed down (Tosc increases) by both intrinsic (Figure 4.8 B, variation
of τus) and extrinsic (Figure 4.8 C, variation of τsyn) parameters. Similarly,
the rhythm can be accelerated (Tosc decreases) by both intrinsic (Figure 4.8
D, variation of gs) and extrinsic (Figure 4.8 E, variation of gsyn) parameters.
Concomitant variation of a combination of parameters allows to cover a wide
modulation range for both Tosc and Tburst and to emulate characteristics of
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Figure 4.8 – Robust modulation via both extrinsic and intrinsic parameters. Color-
code in schemes represents the variations introduced in parameter values (see ap-
pendix A.4.2). LFPs for both the E and the I populations show the rhythmic pat-
tern. Tosc for the network and Tburst for each population quantify the properties of
the rhythmic activity. A: Initial configuration. B: Tosc increases with variation of the
intrinsic parameter τus. C: Tosc increases with variation of the extrinsic parameter
τsyn. D: Tosc decreases with variation of the intrinsic parameter gs. E: Tosc decreases
with variation of the extrinsic parameter gsyn.

physiological networks.

4.6 Temporal and spatial localization of the net-
work switch

In this section, we investigate both temporal and spatial localization properties
of the network activity switch. Inspired from the STN-GPe network architec-
ture (see section 4.7.1), we explore how an external nucleus controls the switch
by its action on the I population and how spike inputs on the E population are
processed (Figure 4.9). The external nucleus connects to all the I neurons with
inhibitory synapses and the neuron model includes the effect of a neuromod-
ulator via a scaling coefficient (see appendix A.2.2). The spike train Ispike on
the E population are spikes with time intervals selected from a Poisson distri-
bution with an enforced minimum interval and acting via excitatory synapses
(see appendix A.2.2). To study the spatial localization property, we use the
same network but with four distinct currents, each one targeting a different
subpopulation, and with exponential decay in the synaptic conductances, em-
ulating a decrease in the reciprocal connection strength between two neurons
with an increase in spatial distance along a one-dimensional axis (Figure 4.9,
Right - see appendix A.2.2).

Figure 4.9 (Left) shows the temporal localization of the switch: a transient
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Figure 4.9 – Control of transient network oscillations and spatial localization of
the network switch. (Left) The neuromodulator controls an external nucleus which
switches the E-I network between oscillatory and nonoscillatory activity patterns by
its action on the I population. The spike train Ispike acts via excitatory synapses on
the E population. Neuromodulator level (Modulator), LFP, and spectrogram analysis
(Spect.) for both the I and E populations. Cross-correlations (Xcorr) between the
neuron membrane potentials and the input spike train in the slow regenerative (weak
Xcorr - oscillatory OFF mode) and slow restorative mode (strong Xcorr - transfer
ON mode). (Right) Four distinct applied currents and exponential decaying synapses
along a one-dimensional spatial axis (Space) highlights the spatial localization of the
switch. Spectrogram analysis (Spect.) for the four subpopulations in the E popula-
tion.
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change in the modulator level triggers an external nucleus-mediated switch in
the E-I network. The LFPs switch between oscillatory and nonoscillatory and
the spectrogram analyses highlight this transition. The switch is transient in
both directions and solely the modulator level controls the network oscillatory
activity.

In addition to this network activity switch, Figure 4.9 (Left) uncovers a
network state switch: in the slow regenerative mode, the neurons exhibit an
endogenous burst-firing pattern which carries little information about the input
spike train. This is in sharp contrast with the slow restorative mode, where
the neurons fire exogenous single spikes which are mainly function of the in-
tensity, duration, and frequency of depolarizing inputs. At the network level,
this translates into two distinct network states: when the network is prone to
oscillations (slow regenerative), the cross-correlations between the individual
cell firing patterns and input spike train are low and do not possess a sharp
transition, reflecting an oscillatory mode where spikes are filtered (OFF state).
When the network is nonoscillatory (slow restorative), the cross-correlations are
high and a sharp transition indicates the direct link between incoming spikes
and action potentials, underlining a transfer mode (ON state).

The cellular-based network switch is endowed with spatial localization prop-
erty (Figure 4.9, Right). Different subpopulations, spatially spread on a one-
dimension axis (Space), can be controlled and switched individually. The I
population is controlled by four distinct applied currents, each one targeting
one-fourth of the population along the axis (see appendix A.2.2). As a re-
sults, only the targeted I subpopulation undergoes the population switch and
switches the respective E subpopulation. The LFPs for the E subpopulations—
the LFPs regroup the activity of the neurons that are spatially close—are there-
fore orchestrated individually and the rhythmic activity patterns differ along
the spatial axis: the transient increase in Iapp,1 transiently turns off the rhythm
in LFP1, the transient increase in Iapp,2 acts similarly on LFP2, and the tran-
sient increase in all Iapp turns off any rhythm in the entire network (Figure 4.9,
Right).

4.7 Discussion

4.7.1 The cellular-based network switch yields physiolog-
ically relevant applications

A large amount of recent experimental evidence demonstrates that the basal
ganglia include all the required ingredients to provide a robust instance of the
proposed mechanistic link and to support the role of T-type calcium channels as
key ionic mediators between the molecular action of a transient depolarization
source and rhythmic pattern modulation. The basal ganglia act as one of
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the fundamental processing units of the brain and play a major role in the
planning and initiation of voluntary movements [2, 20, 22, 52, 181, 187]. In this
dissertation, we focus on the role of the proposed mechanistic link in the control
of transient oscillations in the STN-GPe network.

At the cellular level, experimental evidence shows that both STN and GPe
neurons possess the ionic currents to undergo an excitability switch. The promi-
nent role of low-threshold voltage-gated calcium channels in the burst-firing of
STN neurons has been identified [14–16, 115, 197, 227, 261]. STN neurons pos-
sess the HIB property: sustained hyperpolarization of STN neurons induces
endogenous burst-firing [12, 15, 16, 72, 261]. T-type calcium channels are nec-
essary for subthalamic burst-firing and inhibitors of T-type calcium currents
dramatically decrease STN burst-firing activity in vivo [238]. In parallel, sub-
groups of GPe neurons exhibit the two firing modes, single-spike discharge
and burst-firing [43, 188]. Although no experimental recording has shown the
switch in isolation, many GPe neurons do possess the regenerative T-type cal-
cium channels required for the excitability switch [43, 188]. As a result, STN
and GPe neurons can be modeled with the same reduced model and the balance
between restorative and regenerative ion channels in the slow timescale plays
a fundamental role as it acts as a modulation parameter.

At the network level, oscillations have been recorded in the STN-GPe net-
work in vitro [202] and in vivo [18, 24, 97, 165, 191, 237]. Reciprocal STN-GPe
interconnections are primordial for the generation and amplification of the oscil-
latory activity of STN neurons [237]. These considerations led to the STN-GPe
pacemaker hypothesis: the STN-GPe network is a central pattern generator
for beta oscillations (oscillations between 12 and 30 hertz) in the basal gan-
glia [18]. Other origins are attributed to the beta oscillations, such as other
parts of the basal ganglia—e.g., the striatum [174]—or of the brain—e.g., the
cortex [113, 149]. While it is likely that the rhythmic pattern stems from the
emergent properties of the interconnected networks, in this dissertation we fo-
cus on the STN-GPe origin of the network switch.

The STN-GPe network fits the general mechanism of the previous section
(Figure 4.9, Left), with the GPe as the I population and the STN as the
E population. In this network, the oscillatory state is controlled by the input
on the GPe neuron, via an external nucleus. The firing rate of this external
nucleus can be modulated by an external modulator, similarly to the phasic
modulation of the striatal firing rate by dopamine via its D2-type receptors [80,
125, 225, 236, 257]. It is noteworthy that dopamine acts also via extra-striatal
pathways directly on GPe and STN [1,17,36,225] and it is the combined action
on all sites that determines the STN-GPe network oscillatory state.

The gating mechanism proposed by analogy to the thalamocortical network
could be at play in the processing of the hyperdirect pathway, i.e., the exci-
tatory inputs from the cortex directly on the STN. In the restorative mode,
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the STN neurons acts as linear transformers by relaying the strength of in-
puts [196]. An excessive synchrony in the network reduces the capacity of STN
neurons to encode the information, which may have an impact on the treat-
ment of motor information [165]. The spatial control of the switch could also
be a necessary feature in view of the basal ganglia organization in segregated
functional loops [210]: the possibility for independent control of each loop could
reveal to be necessary.

We advance two specific situations of movement-related beta-band activity
in the basal ganglia where the cellular-based network switch could be at play:
(i) the event-related desynchronization (ERD) and synchronization (ERS) of
the beta-band oscillations in relation to movement initiation and (ii) the switch
between the healthy nonoscillatory state and strongly oscillatory state in the
case of Parkinson’s disease. The specificity of our approach lies in that the
same model applies in both situations, considering the parkinsonian state as
an exaggerated version of an healthy phenomenon (this approach is for example
proposed in [22, 133]). The transient property of the model is primordial for
movement initiation whereas its robustness ensures strong and robust oscilla-
tions under parkinsonian conditions.

Movement initiation: a transient network-switch

The basal ganglia play a major role in the planning and initiation of volun-
tary movements. In particular, the coherence and strength of basal ganglia
beta oscillations are associated with voluntary movements initiation, both in
animals [82, 150] and in humans [6, 25, 82, 147, 148, 151]. Experimental studies
show a reduction or abolishment of oscillatory activity at the single-cell level
during movements [6]. At the population level, there is a prospective increase
in beta synchrony prior to voluntary movements [133] and an ERD in the beta
band during movement [147, 151]. Additionally, the increase and decrease in
beta oscillations strongly correlates with behavioral performances [133,148].

Initiation of voluntary movements is also linked to an increase in dopamine
and, in particular, to a transient increase in the activity of nigrostriatal cir-
cuits (phasic dopamine release) in response to cues in reaction-time tasks or
prior to voluntary movements [133, 136, 187]. The increase in the firing rate
of dopaminergic neurons in the substantia nigra pars compacta lasts on the
order of hundreds of milliseconds and happens prior to the movement execu-
tion [133, 136]. Striatal neurons with D2-type dopamine receptors follow the
inverse trend and decrease their firing rate. This dopamine transient increase
triggers the decrease of the beta-band activity coherence and power [22, 133],
as predicted by our model with a transient increase in modulator. The poten-
tial functional role of beta-band oscillations could therefore be to maintain the
current sensorimotor state during movement preparation [82], until dopamine
signals the onset of movement execution, opening the gate for motor informa-
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tion transfer via the hyperdirect pathway [133].

Parkinson’s disease: a robust network-switch

As mentioned in section 2.6.2, the hallmark of Parkinson’s disease is a dopamin-
ergic denervation of the striatum, altering information patterns along movement-
related ganglia-mediated pathways in the brain. Severe motor symptoms re-
sult [116,258].

In Parkinson’s disease, the baseline level of synchrony within and between
basal ganglia nuclei in the beta band is high: increased beta-band activity has
been reported in the STN, GPe, and GPi nuclei in both single-unit activity and
LFPs [20]. Similarly, animal models of the disease have shown increases in basal
ganglia structures in burst discharge, oscillatory firing, and synchronous firing
patterns [212]. The excessive synchrony in the beta-frequency band correlates
with the motor symptoms and is thought to limit the information coding of
neurons, the neurons being locked to the population rhythm [25,116].

Beta synchrony diminution under dopaminergic therapies (the administra-
tion of the dopamine prodrug levodopa (L-DOPA), a precursor to dopamine
in the brain [92,215]), following ablative surgeries, or during deep brain stimu-
lation (DBS corresponds to a high-frequency stimulation, through chronically
implanted macroelectrodes, of a specific brain area [75, 92, 145]) is associated
with an amelioration of the motor impairments [116, 257, 258]. It has been
suggested that the degree of suppression of beta oscillations in the STN by
dopaminergic medications can predict the level of improvement in bradykine-
sia and rigidity [258].

Parkinson’s disease corresponds to a pathological depleted dopaminergic
state (tonic dopamine release), an exaggerated version of the healthy case [22,
133]. Normally, at the onset and during movement, the synchronization in basal
ganglia structures is drastically reduced. But under parkinsonian conditions,
baseline levels of synchrony are higher and more resistant to suppression [116].
In this configuration, the phasic increase in dopamine is not sufficient to trigger
a network switch and strong beta oscillations remain [133], impairing cortical
spikes transfer through the basal ganglia and thereafter motor movements. Our
model is fully consistent with these observations.

Furthermore, experimental evidence shows that T-type calcium channels, as
employed in our model, are strongly involved in the disease. Indeed, pharma-
cological blockade of T-type calcium channels decreases burst activity in STN
neurons both in vitro and in vivo and reduces motor deficits in animal mod-
els [238,267]. In addition, low-frequency DBS, with long depolarization pulses,
improve motor impairments in parkinsonian rats presumably by inactivating
T-type channels [238].
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4.7.2 Comparison with experimental data

It is of course of prime interest to investigate to what extent a proposed mech-
anism is consistent with available experimental data. When making such com-
parisons, one should keep in mind, however, the difference between the experi-
mental and modeling setups. In the case of excitability studies such as the one
presented in this chapter, it is essential to compare models and experiments on
the same spatial and temporal scales. In addition, in vivo experiments involve
many interconnected networks not taken into account in the simplified model
representations.

As an illustration, we test our model predictions against the experimental
paper of Tachibana et al. [237]. In this paper, the authors study parkinsonian
monkeys and observe how abnormally synchronized oscillations are affected by
blocking currents in different basal nuclei. It should be noted that the study
of Tachibana et al. presents so many constraints that none of the currently
published models is fully consistent with the data. Moreover, the results of the
study have not yet been independently replicated.

Many of the reported experiments in [237] provide results consistent with
the mechanism described in our model: decrease in abnormal neuronal oscilla-
tions (8-15 Hz) in the GPe and STN after administration of L-DOPA (Figures
6 and 7), suppression of parkinsonian signs by silencing of the STN (Figure
8), decrease in the 8-15-Hz oscillatory power in the GPe by blocking of gluta-
matergic neurotransmission on GPe (Figure 9), reduction of STN oscillations
by blocking GABAergic inputs from the GPe (Figure 12). We are not aware of
other models in the literature consistent with those data.

Other experimental data in [237] might be inconsistent with our model pre-
diction: the authors observe that blocking of GABAergic transmission increases
the power of beta oscillations (Figure 10). Likewise, they observe that blocking
glutamatergic inputs to STN increases burst patterns but decreases the power
of beta oscillations (Figure 11).

Those observations conflict our model predictions if we interpret blocking
GABAergic transmission as an inhibitory input on the GPe and blocking gluta-
matergic inputs to STN as an excitatory input on the STN. One should be cau-
tious, however, that blocking transmissions affects a whole network away from
its normal behavior. We speculate that our isolated model of the GPe-STN
network cannot account for such perturbations. This observation highlights
the precaution required for interpretation of experimental data in excitability
studies. Considering the exogenous and endogenous character of the behavior
as well as the global versus local aspect is critical.
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4.7.3 Comparison with previous models

In this section, we highlight the key novelties our model has compared to the
other computational models published in the literature. The key features of
our model lie in (i) the presence of a slow positive feedback at the cellular level,
which ensures modulation, robustness, and localization properties, (ii) the role
of the HIB property, distinct from the PIR property, and amenable to oscil-
lations in a wide frequency range, (iii) the independence on synaptic changes
for network oscillatory state transition, which results in the transient and local
aspects of the switch, and (iv) the validity of the model for both healthy oscilla-
tions associated to movement control and persistent pathological parkinsonian
oscillations.

To our knowledge, this is the first network model to investigate the impact
of cellular HIB for network robustness, modulation, and localization properties.
The closest study to our model uses the same cellular HIB property but with
a neuron model based on an extension of the functionality of spiking neurons
and does not investigate the network switch [124].

Several models have investigated oscillations in the basal ganglia within the
STN-GPe pacemaker hypothesis framework [42,96,126,190,199,240] and some
of them have highlighted the importance of calcium channels in the genesis
of the oscillations [126, 240]. However, the cellular property at play is PIR,
a property closely related to HIB but exogenous in the ultraslow timescale
(see section 4.2). Rebound bursting constrains the oscillation frequency to the
lower frequency bands due to the resonance between rebound bursts. This is for
example the mechanism at play in the thalamic relay (TC)-thalamic reticular
(RE) network as described in section 5.6.2 [60, 101, 102, 226, 239, 254]. Among
the computational models, many approximates the activation of T-type calcium
channels by its steady-state value (e.g [53, 54, 58, 59, 101, 102, 239, 240, 254]),
suppressing the source of slow regenerativity. As discussed in chapter 3, the
deletion of the source of slow cellular feedback might have drastic impacts on
network robustness and modulation properties.

In addition, all the models with the STN-GPe pacemaker hypothesis study
the network switch in relation to Parkinson’s disease and we are not aware of
any other computational model that presents healthy movement initiation and
parkinsonian conditions in a synergetic approach. For this reason, the modula-
tion of oscillatory activity in the E-I network involves changes in the synaptic
connections, which cannot be of application in movement-related transient os-
cillations due to the rapid timescales in play. Other models study the genesis
of basal ganglia oscillations from other nuclei in the basal ganglia [149,174] or
from other parts of the brain [113,189].
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4.8 Summary
We evaluated the impact of a cellular feedback loop on transient oscillations in
an E-I network. The proposed mechanism is simple, generic, and robust, and
suggests the orchestration of network oscillations via a cellular switch mediated
by neurotransmitters. We illustrated the mechanism on the modulation of
beta oscillations in the basal ganglia in relation to movement initiation and
Parkinson’s disease.

At the cellular level, slow-regenerative currents endow the neuron with an
excitability switch capability, between single-spike discharge and burst-firing
mode, controlled by polarizing sources. T-type calcium channels are a promi-
nent example of such slow-regenerative currents because of their slow activa-
tion and ultraslow inactivation. At the network level, an E-I network robustly
switches, via a cellular-based network switch, from an exogenous asynchronous
mode to an endogenous synchronous mode under the modulation of its external
drive.

The network rhythmic activity emerges from the interplay of the endoge-
nous cellular rhythms. The network rhythm is highly robust and amenable
to modulation due to the presence of a slow-regenerative ionic current at the
cellular level. The network rhythmic activity is robust because it can sustain
large variability across the neuronal population both in intrinsic (cellular) and
extrinsic (synaptic) parameters, and noise disturbances. It is also amenable to
modulation because the oscillation period and the burst duration characteris-
tics can be both increased or decreased by a relative modulation of intrinsic or
extrinsic parameters.

Because it is controlled at the cellular level, the network switch possesses
both temporal and spatial localization properties. As such, it is a wonderful
candidate to explain transient physiological oscillations associated, for instance,
to movement control or attention shift. The timescales involved in movement
planing and initiation are such that network-level modifications cannot be the
cause of the phenomenon [35, 173]. On the contrary, a rapid change in neuron
excitability due to activation or inactivation of ion channels is fast enough
to be responsible for the observed network dynamical changes. The spatial
localization of the switch allows to exert an independent control of the different
subnetworks involved and to target specific pathways while maintaining other
pathways unaffected.

Finally, the network-switch mechanism provides a causal link between a
transient increase in neuromodulator level and network state: an oscillatory
OFF state where incoming spikes are filtered and a transfer ON state where
incoming spikes are transmitted. This gating function is a strict analog to the
one described in the thalamocortical network [176,177,217].
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Localized transfer
properties of excitable
behaviors

In the two previous chapters, we have studied examples of the interplay of
motifs at different resolution levels and how basic cellular properties might
impact network level properties.

This approach can be generalized to investigate the excitability motif prop-
erties and especially how these properties are maintained and interact across
scales in multiresolution excitability.

We show that excitable systems possess two types of behaviors, exogenous
and endogenous, with distinct transfer properties. In addition, excitable sys-
tems are endowed with localization properties, limiting their action to specific
excitability windows, or resolution levels. We argue that, thanks to this lo-
calization property, excitability obeys a superposition principle and that ex-
citability windows at distinct resolutions can interact to generate multiresolu-
tion systems which are amenable to multiplex signaling. We investigate these
properties and the input-output behavior in three resolution levels in neuro-
science: i) spike excitability, or cellular fast spike, e.g., the Hodgkin-Huxley
neuron (section 2.2.1), ii) burst excitability, or cellular slow spike, in bursting
neurons (section 2.5.2), and iii) circuit excitability, or spike in the local field
potential (LFP), in excitable neuronal circuits similar to the network model of
Wilson-Cowan (section 2.4.2).

The chapter is structured as follows. Section 5.1 describes how traditional
correlation measures can be exploited to quantify the behavior of excitable sys-
tems. Section 5.2 considers the excitability input-output behavior in a monores-
olution motif for spike excitability and introduces the conceptual underpinnings

65
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for multiresolution excitability: localization properties. Section 5.3 studies ex-
citability properties in a multiresolution motif in the temporal dimension with
burst excitability. Section 5.4 adds the spatial dimension in multiresolution mo-
tifs with circuit excitability. Section 5.5 suggests the capability for multiplex
signaling in multiresolution objects. In section 5.6, we emphasize the impor-
tance of the hierarchy in feedback loops, in addition to the sign, in order to get
the localization properties and physiological implications of this hierarchy are
presented.

Contributions. The main contributions of this chapter are (i) the quantifica-
tion of the behavior of excitable systems with correlation measures, (ii) the
association of input-output behavior characteristics to the excitability mo-
tif, (iii) the identification of localization properties in excitable systems, (iv)
the application of a superposition principle to form multiresolution excitable
systems, (v) the exploration of multiplex signaling in objects with multireso-
lution excitability, and (vi) the identification of the importance of hierarchical
feedback loops.

The material of this chapter has not yet been published.

5.1 Excitable systems have an exogenous and
an endogenous behavior

In section 2.3.3, we described the +FB then –FB excitability motif. This
motif is composed of a fast positive feedback loop (+FB) and a slower negative
feedback loop (–FB). The two feedback loops are responsible for distinct aspects
of the behavior (see section 2.3.1): the positive feedback introduces bistability
in the system (the robust coexistence of two stable attractors), i.e., it generates
a two-state automaton, whereas the negative feedback is responsible for the
exogenous behavior. The static level sets the balance between the two extremes:
the positive feedback—switch-like characteristics—and the negative feedback—
sigmoidal-like characteristics.

Excitability has been extensively studied, both in biological and chemical
systems with motifs and threshold behaviors [11, 73, 140], and in dynamical
system theory with phase-planes and bifurcation analyses [83, 128, 129]. We
propose to adopt a novel approach to study excitability by investigating the
input-output behavior and transfer properties of excitable systems. This ap-
proach comes from signal processing theory and is complimentary to what is
found in the neurodynamics literature.

The input-output behavior of excitable systems is studied by considering
the system input I, state X, and output O (5.1, Left). From these three signals,
we extract the auto-correlation (Acorr) and the cross-correlation (Xcorr) rela-
tions (5.1, Right). Correlations are classic measures of the similarity between
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Figure 5.1 – Input-output behavior of excitable systems. (Left) Block diagram for
an excitable system with input I, state X and output O. Illustration of I, X, and O
signals. (Right) Auto-correlation and cross-correlation representations.

two signals as a function of the lag of one relative to the other [28, 195] (see
appendix A.3.6). The auto-correlation measures the similarity of the state sig-
nal with itself and reveals the endogenous rhythmic activity in the system. In
contrast, the cross-correlation measures the similarity between the input and
the output signals and quantifies the transfer properties of the system. Auto-
correlation and cross-correlations analyses have been used in neurophysiology
previously [28]. The novelty resides in using these traditional techniques to
quantify the behavior of excitable systems.

The auto-correlation and the cross-correlation reveal two distinct states in
excitable systems: an exogenous state and an endogenous state. These states
differ in their transfer properties and intrinsic behavior. In the exogenous
state, the output of the system primarily reflects the input and the cross-
correlation is composed of a sharp peak; there is no intrinsic behavior and the
auto-correlation shows no autonomous activity. In the endogenous state, the
output primarily reflects memory of the past and there is no peak in the cross-
correlation; there is a strong intrinsic behavior and the auto-correlation shows
rhythmic autonomous activity.

In this chapter, we distinguish between the exogenous and the endogenous
state in three excitable systems encountered previously: i) the Hodgkin-Huxley
neuron (section 2.2.1), ii) the bursting neuron (section 2.5.2), and iii) the E-I
network (section 2.4.2). The auto-correlations and cross-correlations are com-
puted with a random impulse train as an input on the system. The width of
the impulses and the minimum time interval between two impulses is function
of the excitability timescale (see appendix A.4.3 for details).

5.2 Monoresolution excitability motif
One of the seminal work about monoresolution excitability is the descrip-
tion, by Hodgkin and Huxley, of spike excitability—or cellular fast spike—in
a conductance-based model [120]. Conductance-based models describe the dy-
namic interactions between the membrane potential Vm and gating variables
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Figure 5.2 – Properties of the monoresolution excitability motif with the Hodgkin-
Huxley neuron. (Left) Motif and resolution: the fast sodium current INa and the
slow delayed-rectifier potassium current IK generate a fast- and fine-resolution ex-
citability motif (see appendix A.1.1 for the neuron model). (Right) Properties. The
auto-correlation (Acorr) and the cross-correlation (Xcorr) graphs show the transfer
properties and reveal a two-state automaton: a resting exogenous state responsive
to inputs (orange) and an excited endogenous state with rhythmic intrinsic activ-
ity (blue). Membrane potential and input traces show the localization properties in
amplitude and in time.

that control the ionic flow through the membrane (section 2.2.1). The Hodgkin-
Huxley model and reduced versions focus on the two currents responsible for
the generation of action potentials, the fast sodium current INa and the slow
delayed-rectifier potassium current IK , and give the motif representation in
Figure 5.2, Left (section 2.4.1).

For the monoresolution excitability motif, the input I consists in a spike
train, the state X and the output O are similar and correspond to the neuron
membrane potential (see appendix A.4.3). The auto-correlation and cross-
correlations graphs show that this system possesses two distinct states (Fig-
ure 5.2, Right): a resting exogenous state (in orange) and an excited endoge-
nous state (in blue). The resting exogenous state possesses a sharp peak in the
cross-correlation and no autonomous activity in the auto-correlation. In con-
trast, the excited endogenous state possesses no peak in the cross-correlation
and rhythmic autonomous activity in the auto-correlation.

In the input-output behavior perspective, the monoresolution excitability
motif can be abstracted as a two-state automaton, the state of which is con-
trolled by the system input: a static depolarizing input switches the system
from the exogenous state to the endogenous state and vice versa (Figure 5.2,
Right, Potential and Input traces).

In addition, the excitability motif is endowed with localization properties,
both in amplitude and in time (Figure 5.2, Right, Potential and Input traces).
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Figure 5.3 – The +FB then –FB excitability motif. The excitability motif is composed
of a fast positive feedback loop (+FB)—or auto-catalysis—and a slower negative
feedback loop (–FB). The motif can be repeated in different excitability windows, or
at different resolution levels (defined by a spatiotemporal scale), as indicated by the
shade of grey. The different excitability windows interact, generating multiresolution
excitability.

Localization in amplitude means that a subthreshold input does not trigger a
fast spike in the neuron (input 1 is subthreshold and results in no fast spike)
while superthreshold inputs trigger a fast spike in an all-or-none manner (inputs
3 and 4 are superthreshold and the fast spike amplitude is the same in both
cases). For a depolarizing step of current, the amplitude of the stimulation
must remain below a certain level to avoid depolarization blocks during which
action potentials are absent. Localization in time imposes a minimum time
duration for the input to trigger a fast spike (input 2 is of short time duration
and results in no fast spike) and explains why a longer input produces fast
spikes of similar time length (input 5 is a long depolarizing step; however,
the resulting fast spikes possess a similar timescale as fast spikes triggered by
impulses, for instance with inputs 3 and 4).

These localization properties are a consequence of the interaction of the
feedback loops, which set the behavior of the system in an excitability win-
dow. The timescales of the feedback loops set the excitability window in a
specific time dimension, which produces localization in time. In addition, the
spatial scale—neuron or network level—at which the feedback loops act sets
the excitability window in a specific spatial dimension, which produces local-
ization in space. The spatiotemporal scale establishes the resolution level of
the excitability window (Figure 5.3).

We argue that, thanks to these localization properties, excitability, although
a non-linear phenomenon, approximately obeys a superposition principle. We
study the superposition of different resolution levels and how the different ex-
citability windows interact to form multiresolution excitability. We focus on
two multiresolution systems in neuroscience: burst excitability—or cellular slow
spike—in a bursting neuron and circuit excitability—or spike in the local field
potential (LFP)—in a two-neuron circuit.



70 Chapter 5. Localized transfer properties of excitable behaviors

5.3 Bursting as coexisting fast and slow excitabil-
ity

The burst-firing pattern has been described in section 2.5 and the peculiar
role played by the low-threshold T-type calcium channel ICa,T has been em-
phasized in previous chapters. Section 4.1 details the action of two ionic cur-
rents, the slow regenerative ICa,T and the ultraslow restorative IKCa, for the
hyperpolarized-induced bursting property, i.e., the ability to switch between a
single-spike discharge mode and a burst-firing mode when the membrane is hy-
perpolarized: ICa,T provides a slow positive feedback on membrane potential
variations and IKCa an ultraslow negative feedback.

In the motif formalism, bursting corresponds to the superposition of the
excitability motif in two temporal resolution windows (Section 2.5.3). In the
fast excitability window, the excitability motif is identical to the one described
in the previous section (dark grey window in Figure 5.4, Left). Similarly to what
is done in the previous section, the input I consists in a spike train, the state X
and the output O correspond to the neuron membrane potential. In the slow
excitability window, the excitability motif results from the interaction of the
slow ICa,T and ultraslow IKCa feedback loops (light grey window in Figure 5.4,
Left). In this slow excitability window, the system output is averaged over time
to reflect the lower resolution and a burst is referred to as a cellular slow spike.
For the system in the slow excitability window, the input I consists in a train of
hyperpolarizing steps, the state X and the output O are similar and correspond
to the time-average of the neuron membrane potential (see appendix A.4.3).

The multiresolution excitability of the bursting neuron possesses four dis-
tinct states and can be abstracted as a four-state automaton: to the fast ex-
ogenous state (which is now defined as slow tonic firing) and fast endogenous
state (fast tonic firing) of the fast excitability motif, are added the slow rest-
ing exogenous state (in orange) and slow excited endogenous state (in blue)
of Figure 5.4. The auto-correlation graphs of Figure 5.4 (Left) show no in-
trinsic activity in the exogenous state and a rhythmic intrinsic activity in the
endogenous state. In the slow excitability window, the state of the automa-
ton is controlled by the system input: a static hyperpolarizing input switches
the system from the exogenous state to the endogenous state and vice versa
(Figure 5.4, Right, Average and Input traces).

Transfer properties in both excitability windows are function of the slow
excitability state (Figure 5.4, Right): in the fast excitability window, fast de-
polarizing inputs are transmitted in the slow exogenous state but filtered in
the slow endogenous state (cross-correlation graphs in the fast excitability win-
dow); in the slow excitability window, slow hyperpolarizing inputs are trans-
mitted in the slow exogenous state but filtered in the slow endogenous state
(cross-correlation graphs in the slow excitability window).
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Figure 5.4 – Coexisting fast and slow excitability motifs in the bursting neuron.
(Left) Motif and resolution: the slow T-type calcium current ICa,T and the ultraslow
calcium-activated potassium current IKCa generate a slow excitability motif on top
of the fast excitability motif of the INa and IK currents (see appendix A.1.1 for the
neuron model). Endogenous and exogenous behaviors in the slow excitability window:
the auto-correlation (Acorr) graphs reveal a resting exogenous state (orange) and an
excited endogenous state with rhythmic intrinsic activity (blue). (Right) Membrane
potential or time-averaged voltage (Average), input, and cross-correlation graphs
(Xcorr) for fast excitability and slow excitability in the slow exogenous and slow
endogenous states.
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The coexistence of fast and slow excitability ensures excitability properties
in each resolution level. On top of the localization properties in the fast ex-
citability window, both amplitude and time localization properties develop in
the slow excitability window (Figure 5.4, Right, Average, and Input traces).
Localization in amplitude means that a subthreshold input does not trigger a
slow spike in the neuron (input 1 is subthreshold and results in no slow spike)
while superthreshold inputs trigger a slow spike in an all-or-none manner (in-
puts 3 and 4 are superthreshold and the slow spike amplitude is the same in
both cases). For an hyperpolarizing step of current, the amplitude of the stim-
ulation must remain below a certain level to avoid suppressing all activity in
the neuron. Localization in time imposes a minimum time duration for the
input to trigger a slow spike (input 2 is of short time duration and results in
no slow spike) and explains why a longer input produces slow spikes of simi-
lar time length (input 5 is a long hyperpolarizing step; however, the resulting
slow spikes possess a similar timescale as slow spikes triggered by impulses, for
instance with inputs 3 and 4).

5.4 Circuit spike as coexisting fine and coarse
excitability

Transient network oscillations and the peculiar role played by the low-threshold
T-type calcium channel ICa,T have been described for an E-I circuit in sec-
tion 4.6. This E-I circuit, represented in Figure 5.5 (Left), is excitable and is
highly similar to the one presented in the work of Wilson-Cowan detailed in
section 2.4.2. The major difference lies in the fact that we keep the description
of the circuit at the cellular level rather than averaging in a population model
(mean-field E-I network). In this circuit, the source of the positive feedback on
neuron E is cellular in the form of the slow regenerative ICa,T current (instead
of the recurrent connections in the E population of the Wilson-Cowan model).
The source of negative feedback is the ultraslow synaptic connection via neuron
I (Isyn).

In the motif formalism, transient network oscillations can be described with
the superposition of the excitability motif in two spatiotemporal resolution
windows: in the fine (fast cellular scale) excitability window, the excitability
motif is identical to the one described in the previous section (dark grey window
in Figure 5.5, Left) and the input, output and system state are similar as well.
In the coarse (slow circuit scale) excitability window, the excitability motif
results from the interaction of the slow ICa,T and the ultraslow Isyn feedback
loops (light grey window in Figure 5.5, Left). In this coarse excitability window,
the system input I consists in a train of hyperpolarizing steps on neuron I, the
state X and the output O are the LFP (see appendix A.4.3), and an excursion
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of the LFP following a superthreshold input is referred to as a circuit spike.
The analysis is similar to the previous section except that we add the spatial
dimension in the circuit analysis.

The multiresolution excitability of the excitable circuit possesses four dis-
tinct states and can be abstracted as a four-state automaton: to the fine exoge-
nous state and fine endogenous state of the fine excitability motif, are added
the coarse resting exogenous state (in orange) and coarse excited endogenous
state (in blue) of Figure 5.5. The auto-correlation graphs of Figure 5.5 (Left)
show no intrinsic activity in the exogenous state and a rhythmic intrinsic activ-
ity in the endogenous state. In the coarse excitability window, the state of the
automaton is controlled by the system input: a static hyperpolarizing input on
neuron I switches the system from the exogenous state to the endogenous state
and vice versa (Figure 5.5, Right, LFP and Inputs traces).

Transfer properties in both excitability windows are function of the coarse
excitability state (Figure 5.5, Right): in the fine excitability window, fast de-
polarizing inputs on neuron E are transmitted in the coarse exogenous state
but filtered in the coarse endogenous state (cross-correlation graphs in the fine
excitability window); in the coarse excitability window, slow hyperpolarizing
inputs on neuron I are transmitted in the coarse exogenous state but filtered in
the coarse endogenous state (cross-correlation graphs in the coarse excitability
window).

The coexistence of fine and coarse excitability ensures excitability proper-
ties in each resolution level. On top of the localization properties in the fine
excitability window, both amplitude and time localization properties develop
in the coarse excitability window (Figure 5.5, Right, LFP, and Inputs traces).
Localization in amplitude means that a subthreshold input does not trigger
a circuit spike (input 1 is subthreshold and results in no circuit spike) while
superthreshold inputs trigger a circuit spike in an all-or-none manner (inputs
3 and 4 are superthreshold and the circuit spike amplitude is the same in both
cases). For an hyperpolarizing step of current, the amplitude of the stimula-
tion must remain below a certain level to avoid suppressing all activity in the
circuit. Localization in time imposes a minimum time duration for the input to
trigger a circuit spike (input 2 is of short time duration and results in no circuit
spike) and explains why a longer input produces circuit spikes of similar time
length (input 5 is a long hyperpolarizing step; however, the resulting circuit
spikes possess a similar timescale as circuit spikes triggered by impulses, for
instance with inputs 3 and 4).

5.5 Multiplex signaling
The multiresolution excitability introduced in sections 5.3 and 5.4 allows for
multiplex signaling (Figure 5.6): a single physical object—a bursting neuron
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Figure 5.5 – Coexisting fine and coarse excitability motifs in the excitable E-I cir-
cuit. (Left) Architecture for the E-I circuit (see appendix A.1.2 for the network
model). Motif and resolution: the slow T-type calcium current ICa,T and the ul-
traslow synaptic current Isyn generate a coarse excitability motif on top of the fine
excitability motif of the INa and IK currents. Endogenous and exogenous behav-
iors in the coarse resolution: the auto-correlation (Acorr) graphs reveal a resting
exogenous state (orange) and an excited endogenous state with rhythmic intrinsic
activity (blue). (Right) Membrane potential or LFP, inputs, and cross-correlation
graphs (Xcorr) for fine excitability and coarse excitability in the coarse exogenous
and coarse endogenous states.
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Figure 5.6 – Multiresolution objects are endowed with multiplex signaling capabilities.
A single physical object allows for a two-resolution level communication. (Left) Burst-
ing neuron multiplexing. (Right) Two-neuron circuit multiplexing. Top row: fine
grain communication via spikes with fast depolarizing inputs. Cross-correlation
graphs of the system output (the membrane potential) with the system input (a train
of fast depolarizing inputs (Xcorr Signal)) and with a random input (Xcorr Noise).
Bottom row: coarse grain communication via bursts (resp. circuit spikes) with slow
hyperpolarizing inputs. Cross-correlation graphs of the system output (neuron time-
averaged membrane potential and LFP, respectively) with the system input (a train of
slow hyperpolarizing inputs (Xcorr Signal)) and with a random input (Xcorr Noise).

or a two-neuron circuit, respectively—bears a two-resolution level communica-
tion. With the monoresolution motif of section 5.2, signaling is only possible
in the fast timescale of action potential and at the cellular spatial scale. Mul-
tiresolution motifs introduce multiplex signaling, i.e., the input controls the
spatiotemporal scale in which the communication takes place.

In the bursting neuron model, the input controls the excitability window
selected for the signaling (Figure 5.6, Left): a fast depolarizing input sets the
cursor on the fast excitability window and allows for fine grain communication
via cellular fast spikes. By contrast, a slow hyperpolarizing input sets the
cursor on the slow excitability window and the communication is coarse grain
via bursts, or cellular slow spikes. Figure 5.6 (Left) shows the cross-correlation
graphs in each excitability window with an input signal (Xcorr Signal) and
with a random input (Xcorr Noise). The peaks in the cross-correlation graphs
with an input signal indicates that both types of input are processed in their
corresponding excitability window.

Similarly, the two-neuron circuit is also a two-resolution object but in the
spatial and temporal dimensions (Figure 5.6, Right): a fast depolarizing input
on neuron E sets the cursor on the fine excitability window and allows for
fine grain communication via neuron spikes, or cellular fast spikes. A slow
hyperpolarizing input on neuron I sets the cursor on the coarse excitability
window and the communication is coarse grain via circuit spikes. The peaks
in the cross-correlation graphs of Figure 5.6 (Right) also highlight that each
input signal type is processed in its corresponding excitability window.
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Figure 5.7 – Positive feedback from synaptic connections prevents hierarchy in feed-
back loops. (Left) Architecture for the I-I circuit. Motif and resolution: the ultraslow
synaptic current Isyn generates a positive feedback on top of the motifs in the lower
resolution windows. (Right) Properties: LFP and input traces show the lack of lo-
calization properties. The auto-correlation (Acorr) and the cross-correlation (Xcorr)
graphs reveal a bistable behavior: a resting OFF state with no intrinsic activity
(orange) and an excited ON state with rhythmic intrinsic activity (blue). Once the
circuit is switched to the ON state, it remains excited and the system output is similar
with a train of slow hyperpolarizing inputs (Signal) and a random input (Noise).

5.6 Discussion
5.6.1 Localization and hierarchical sources of feedback
In networks, positive feedback can also be provided at the network level, via
synaptic connections. One instance of such positive feedback is provided by the
I-I two-neuron circuit studied in chapter 3 and given in Figure 5.7 (Left). The
synaptic connections via two inhibitions provide a positive feedback on neuron
1 (Figure 5.7, Left).

With this architecture, the motif representation lacks hierarchy between
the positive and negative feedback loops: the positive feedback is ultraslow
and spatially spread (Figure 5.7, Left). In order to get the excitability motif, a
negative feedback in a slower and coarser dimension is required. This highlights
the importance of the spatiotemporal dimension, in addition to the sign, of the
feedback loops.

This lack of hierarchy destroys localization properties (Figure 5.7, Right).
There is no localization in time because a transient hyperpolarizing input on
neuron 2 triggers a switch and induces continuous oscillations in the circuit
as shown in the oscillatory activity of the LFP. Transient inputs do not result
in transient outputs but rather in a permanent switch between an OFF (no
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intrinsic activity - orange) or ON (rhythmic intrinsic activity - blue) mode
(Figure 5.7, Right, Acorr). Once the ON mode is triggered, any type of transfer
capability disappears and a train of slow hyperpolarizing inputs or a random
input give rise to the same circuit behavior (Figure 5.7, Right, Xcorr).

Regarding the spatial localization, the coarse circuit excitability in the E-I
network is studied in Figure 4.9 (Right) of chapter 4: the spatial dimension
of the input directly impacts the spatial dimension of the output. A similar
analysis is performed here with exponential decay in the synaptic maximal con-
ductances, emulating a decrease in the reciprocal connection strength between
two neurons with an increase in spatial distance along a one-dimensional axis
(Figure 5.8, Left). In addition, the cellular positive feedback source is removed
in neuron 9, 10 and 13. As expected, an input on neuron 1 and 5 results in
no activity in the LFP for the E population whereas an input on neuron 3 and
6 results in LFP oscillatory activity. For the positive feedback from network
connections in the I-I network with exponential decay in the synaptic maximal
conductances (Figure 5.8, Right), there is no localization property in space:
in the network, an input on one neuron results in the switch of the entire
population.

This observation highlights a major difference between the source of positive
feedback provided by a cellular mechanism—in this case the ICa,T current—and
by a network mechanism, the Isyn current. Both sources provide a feedback
loop of positive sign but solely the cellular mechanism respects the hierarchy,
in time and space, in the feedback loops to get the excitability motif and the
corresponding localization properties.

5.6.2 Physiological implications
The role of T-type calcium currents in brain oscillations has been extensively
studied in the literature [32,216,232,233,243]. However, their peculiar role for
spatial and temporal localization properties had never been highlighted before.
In this section, we give several physiological examples where multiresolution
excitability and multiplex signaling are at play.

The prime example of physiological system where T-type calcium currents
generate multiresolution properties lies the thalamus. The thalamus acts as
a relay between different subcortical areas and the cerebral cortex, by gating
and modulating the information flow [218]. Different thalamic circuits process
information from different sensory modalities, e.g., vision, audition and touch.
An archetype of thalamic circuits is provided by the lateral geniculate nucleus,
which relays the visual information from the retina and connects to the thalamic
reticular nucleus [176]. The neurons in these two nuclei, the thalamocortical
(TC) and thalamic reticular (RE) neurons, respectively, exhibit a dense dis-
tribution of T-type calcium channels and possess two distinct response modes,
single-spike discharge and burst-firing [176,217]. The TC and RE neurons form
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Figure 5.8 – The lack of hierarchy prevents spatial localization property. Architecture
for the network, LFPs and input traces. The grey color represents the absence of
cellular positive feedback. The light green and light red colors represent existing
connections and are used to lighten the scheme. (Left) The cellular positive feedback
of the E-I network brings spatial localization property. (Right) The network positive
feedback of the I-I network prevents spatial localization property and the switch is
global.
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an E-I circuit from which various oscillatory rhythms emerge, mediated by both
intrinsic and extrinsic (or network) mechanisms [176,220,232,243].

The wake-up call mechanism instantiates a rhythm emerging from cellular
properties [216]. Experimental evidences suggest that the geniculate relay cells
can fire arrhythmically in burst mode during waking behavior, maximizing ini-
tial stimulus detection [208,216,217,221]. The wake-up call triggers arrhythmic
bursts, localized in both time and space, similarly to the burst excitability, or
cellular slow spike model. The two-resolution system that emerges allows to
multiplex between the two firing modes depending on the contextual environ-
ment: single-spike discharge for high linearity or burst-firing for signal detec-
tion [62, 158, 217]. The spatial localization property constrains the bursts on
restricted territories and allows for discrete and segregated patterns to develop
in the network [231].

Sleep spindles (waxing-and-waning field potentials at 7–14 hertz) corre-
spond to an illustration of cellular and network mechanisms working in combi-
nation [54, 176]. Spindles arise during periods of drowsiness and synchronized
sleep, and take the form of rhythmic, synchronized bursting waves [175, 217].
Under sleep spindles, the responsiveness to stimulation of peripheral receptive
fields is greatly reduced [175, 217, 231]. The rhythm develops from the inter-
action of the inhibitory RE neurons, amongst themselves and with the TC
neurons [10, 57, 176, 178]. This circuit has a positive feedback at the network
level with no localization properties and therefore gives rise to an ON or OFF
behavior: a global oscillatory mode unresponsive to external perturbations and
a transfer mode in which the ability to respond to barrages of phasic excitatory
inputs is greatly enhanced [177,217]. Highly synchronized sleep oscillations may
develop into absence epilepsy, a behavioral state that can be viewed as a brain
disconnection from the external world [31,222,232].

Another example of thalamic multiplexing has been highlighted in recent
papers: Sherman et al. propose to differentiate the action of drivers from the
one ofmodulators [219]. The drivers carry the message from the receptive fields,
defining the activity pattern, and are localized in both time and space; the
modulators can alter transmission properties and are spatially and temporally
more spread [217,219,220].

One illustration of spatial localization property in another network can be
found in the layer V of the cortex involved in vision. Models of this layer V of
the cortex include an E-I circuit and T-type calcium currents [138] and could
therefore represent an instance of the circuit spike described earlier. In this
brain region, oscillatory activity in the alpha band (8–12 hertz) gates infor-
mation by inhibiting task-irrelevant regions, thus routing information to task-
relevant regions [135,137]: alpha oscillations provide a functional inhibition and
reduce the processing capabilities. Attention modulates the alpha activity for a
functionally relevant sensory gating mechanism: attention increases alpha-band
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activity in the hemisphere ipsilateral to, and decreases alpha-band activity in
the hemisphere contralateral to the attended site in visual tasks [137,266].

Another potential candidate for localization properties and superposition
of excitability motifs is the resurgent sodium current present in the Purkinje
neurons of the cerebellum [45, 206]: this current is also a slow regenerative
current dynamically modulated. The cerebellum is involved in the regula-
tion of complex movements and in cognitive tasks, e.g., language, memory,
and attention [201]. The Purkinje cells form the sole output of the cerebel-
lar cortex which innervates the deep cerebellar nuclei, the main output of the
cerebellum [51, 201]. Purkinje cells provide an essential timing signal to the
cerebellar nuclei and are primordial for the orchestration of motor behaviors.
Purkinje cells can fire both simple spikes and complex spikes [51]. Complex
spikes consist in small bursts of action potentials elicited upon stimulation
of climbing fibers [51, 206]. The resurgent sodium current is believed to play
an essential role in these complex spikes as it activates immediately follow-
ing action potentials and elicits the firing of multiple spikes in an all-or-none
manner [141,206,207]. Multiplexing is exploited in the spatiotemporal activity
pattern of Purkinje cells, in the form of the selection between complex-spike
activity and simple-spike activity in each spatially segregated populations of
Purkinje cell [51]. In addition, Purkinje neurons are known to be intrinsically
bistable and complex spikes are thought to switch Purkinje neurons between
their two states: the hyperpolarized quiescent state and the depolarized high-
frequency spiking state [156, 157, 159, 260, 268]. From these observations, the
pictures that emerges is more complex than a simple slow cellular spiking ab-
straction and requires further investigations.

Multiplex signaling has also been proposed for the electro-sensory system of
the weakly electric fish [144]. The transition from a single-spike to a burst-firing
code is correlated with feature extraction, i.e., the presence of a communication
or prey signal [144]. Spatiotemporally varying stimuli features are encoded in
the spatiotemporal property of neural activity [91]. In addition, bursts can
improve the reliability of information transmission across unreliable synapses
and provide an effective mechanism for selective communication among neu-
rons by increasing the reliability of synaptic transmission to specific intraburst
frequencies [130,144,154]. In this view, the single-spike and burst-firing modes
form a continuum of sensory responses [144].

5.7 Summary
In this chapter, we characterized the excitability motif with its input-output
behavior. We used classic correlations measures to reveal the two distinct states
in excitable systems, the exogenous and the endogenous states. We showed that
excitability, although a non-linear phenomenon, obeys a superposition princi-
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ple: thanks to localization properties, different excitability resolution windows
can be superposed and interact, generating multiresolution objects. We inves-
tigated transfer characteristics in multiresolution excitability motifs.

Excitability is described by its motif, the +FB then –FB motif, and the
excitability window resolution is set by the spatial and temporal scales of the
feedback loops that compose the motif. The three types of excitability stud-
ied in this dissertation are spike excitability, burst excitability, and circuit
excitability.

In each resolution window, the excitable system is endowed with localization
properties—in amplitude, time and space—and a duality between exogenous
and endogenous states. With these multiresolution objects, spike excitability
properties are still at play at slower or coarser resolution levels.

We also showed that multiresolution objects are endowed with multiplexing
capabilities: the input controls the resolution in which the communication takes
place.

Finally, we emphasized the necessary hierarchy in the feedback loops for
localization and we differentiated two sources of positive feedback in networks:
(i) a fast and fine cellular positive feedback which gives rise to localization
properties and therefore allows for spatial modulation, and (ii) a slow and coarse
network positive feedback which produces a general and permanent switch. In
physiology, both sources are probably present and are at play for different types
of activity pattern.

We anticipate that this superposition principle extends to other resolution
levels and is not limited to neuroscience: at higher resolution levels, ion channel
opening and closing could instantiate such +FB then –FB motifs; at lower
resolution levels, circuits, or combination of circuits, could provide an example
of the +FB then –FB motif. Such systems are legion in systems biology (e.g.,
the toggle switch [247]).
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Chapter 6

Conclusion

This dissertation emphasizes the importance of investigating the interplay be-
tween different resolution levels by extracting elements at high resolution levels
for their role and impact at lower resolution levels. The simplification of sys-
tems to the description of solely their coarser elements results in the suppression
of finer resolution levels and the destruction of intrinsic multiresolution charac-
teristics. At the other side of the spectrum, highly detailed models at very high
resolution levels are not computationally tractable and analyzable for large sys-
tems. The interplay between resolution levels was studied in neuroscience in
the hope of a better understanding of brain functions and diseases.

Starting from two examples, this dissertation stresses the significance of the
interplay between resolution levels: it suggests to identify fundamental mecha-
nisms, in the form of feedback loops, from high resolution levels for the activity
at lower resolutions. In this dissertation, this approach is used to tackle system-
level questions and to study the role of feedback in maintaining robustness and
modulation across scales, from the neuron to the network resolution levels. The
approach is applied to two neurophysiological examples, the mutual-inhibition
network of the HCOs and the E-I network of the basal ganglia, and extended
to the general concept of multiresolution excitability motif.

The conclusion is organized as follows. The first section summarizes the
main contributions of this dissertation and their implications. The second
section enlarges the view with further perspectives.

6.1 Summary
Interplay between resolutions

The brain is a complex system made of many components, each shaping the
brain activity and functioning at distinct resolution levels. Mathematical mod-
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els capture the activity of these components in their respective resolution. The
interplay between the different resolution levels, and more precisely the impact
of lower resolutions on the activity at higher resolutions levels is still unclear.
To narrow this gap, we propose to investigate the interactions between resolu-
tion levels by extracting the important elements, in the form of feedback loops,
from one resolution to the next.

Motifs have been largely exploited in systems biology to identify shared de-
sign principles and simplify systems. The novelty lies in the exploitation of the
motif approach to study the modeling of the brain across scales, i.e., to cap-
ture, in models, the mechanisms at different resolution levels in order to tackle
system-level questions, mainly robustness and modulation. The approach is
particularized to study of the role of feedbacks in maintaining robustness and
modulation across scales, from the neuron to the network resolution levels.

A cellular positive feedback loop for network robustness and modu-
lation

The cellular post-inhibitory rebound (PIR) property is well-known to play a
key role in underlying neural network oscillations. PIR is an intrinsic cellular
property that elicits transient membrane depolarization when released from
hyperpolarization. Two ionic currents have been identified for the generation
of PIR: the hyperpolarization-activated cation current and the low-threshold
T-type calcium current. Our novel contribution is to predict that PIR per
se is not a sufficient cellular excitability property to ensure modulation and
robustness of network oscillations. In addition, the current dynamics, i.e., its
slow positive feedback (regenerative) nature, is an important parameter.

Because both currents are sources of PIR currents but only the calcium
current acts, through its slow activation, as a source of positive feedback in
the slow timescale, our results propose a novel and somewhat fundamental
complementarity between calcium and cation channels in PIR mechanisms.

This observation also suggests that the network modulation and robustness
properties can be investigated by looking at single-cell experiments: slow re-
generativity can be detected in the neuron response to a transient excitatory
pulse, when the neuron is under the influence of a hyperpolarizing current. The
triggering of a burst indicates a bistable behavior due to a slow regenerative
source and predicts modulation and robustness properties at the network level.

A cellular positive feedback loop for localization properties of net-
work oscillations

Cellular positive feedback can also underlie hyperpolarized-induced bursting
(HIB), a cellular excitability switch property, from single-spike discharge to
burst-firing mode. In contrast to PIR, HIB is a permanent source of endoge-
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nous behavior. HIB endows E-I networks with cellular-based network switch
capabilities and procures robustness, modulation, and localization properties
to network oscillations. The proposed mechanism is simple, generic, and ro-
bust and suggests the orchestration of network oscillations via a cellular switch
mediated by neurotransmitters.

Because it is controlled at the cellular level, the network switch possesses
both temporal and spatial localization properties. As such, it is a wonderful
candidate to explain transient physiological oscillations associated, for instance,
to movement control or attention shift. To our knowledge, this is the first
attempt to model the modulation of beta oscillations in the basal ganglia both
in healthy conditions (in relation to movement initiation) and in Parkinson’s
disease.

Localized transfer properties of multiresolution excitable systems

The basic building blocks of excitability, the fast positive and slow negative
feedback loops, endow the system with localization properties. As such, we
claim that excitability obeys a superposition principle and that excitability
windows at distinct resolutions can interact to generate multiresolution ex-
citable systems.

We propose to study the excitability motif, in each resolution level, with
its input-output characteristics and investigate its transfer properties in the
two opposite states, resting exogenous and excited endogenous, as well as the
transition between those states. We use classic correlation measures to quantify
the behavior of excitable systems.

We introduce the concept of circuit excitability, by analogy to spike and
burst excitability, which denotes a circuit spike in the form of the excursion of
the LFP following a superthreshold input before it resumes to its stable resting
state.

We also highlight the importance of hierarchical feedback loops for local-
ization properties and differentiate between a cellular positive feedback with
localization properties and a network positive feedback leading to global per-
manent switches. Physiological systems probably emphasize one or the other
mechanism depending on the situation as illustrated in the thalamus.

The emergence of gating properties and multiplexing

Signal processing aspects are also tackled in the dissertation. The transient
network oscillations in the E-I network are suggested to provide a gating mech-
anism, similar to the one described in the thalamocortical network. This gating
function mechanism provides a causal link between a transient increase in neu-
romodulator level and network state: an oscillatory OFF state where incoming
spikes are filtered and a transfer ON state where incoming spikes are trans-
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mitted. In addition, the localized aspect of the network switch enables for a
spatial control of the gating function, i.e., the targeting of specific pathways
while maintaining other pathways unaffected.

Multiresolution excitable systems can also benefit from multiplexing capa-
bilities: the input controls the spatiotemporal scale in which the communication
takes place. A single object, a bursting neuron or a two-neuron circuit in the
present dissertation, is therefore capable of fine grain communication via neu-
ron spike and coarse grain communication via neuron burst or circuit spike.
Depending on the environmental context, one type of communication can be
preferred over the other.

6.2 Prospects

6.2.1 A neuromorphic gating control mechanism for in-
formation transfer

In section 4.6, we proposed that the cellular-based network switch underlies
a gating function mechanism. This functional mechanism opens (transfer ON
state where spikes are transmitted) or closes (oscillatory OFF state where spikes
are filtered) the gate to incoming spikes. The gating mechanism can be tem-
porally and spatially controlled and provides a causal link between a transient
increase in neuromodulator level and network state.

In this section, we suggest to exploit this physiological concept in engineered
applications: in a biologically inspired manner, it could be used in artificial neu-
ral networks as a routing mechanism to control the information flow along many
divergent routes, just as it is done in brain circuits. This routing capacity could
be one of the novel features of spiking neural networks compared to threshold
and sigmoidal nets and could bring new information processing capabilities to
artificial neural networks.

The gating function corresponds to the switch, at the cellular level, between
single-spike discharge and burst-firing (see section 4.1). Numerous previous
works have highlighted the functional implication of the discharge mode on
the relationship between incoming excitatory inputs and action potential gen-
eration (e.g., [177]): in the single-spike discharge mode, the pattern of action
potentials generated is an almost faithful representation of the characteristics
of incoming depolarizing inputs; by contrast, in the burst-firing mode, the pat-
tern of action potentials is not a trustful reflection of the input spike train
and the amplitude of the burst discharge carries little information about the
depolarizing inputs (it is rather an endogenous function of internal variables,
i.e., the membrane potential before the burst and the time interval since the
last burst occurred).

In the reduced-model used in chapter 4, the cellular switch is controlled by
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Figure 6.1 – The modulation parameter gs controls the information processing mode.
(Left) Single-spike discharge ‘transferring’ mode (gs < 0): membrane potential with-
out and with incoming depolarizing inputs (in yellow) reveals that the pattern of
action potential represents the incoming depolarizing inputs. (Right) Burst discharge
‘blocking’ mode (gs > 0): membrane potential without and with incoming depo-
larizing inputs (in yellow) reveals that the pattern of action potentials carries little
information about the incoming depolarizing inputs.

the modulation parameter gs. Therefore, this parameter controls the switch be-
tween two distinct information processing modes (see Figure 6.1): a single-spike
‘transferring’ mode—action potentials are generated in relative independence
of one another and the neuron has the ability to respond to excitatory inputs—
and a burst ‘blocking’ oscillatory mode with a strong endogenous rhythm prone
to synchronization—the neuron’s responsiveness to stimulation of peripheral
receptive fields is greatly reduced.

The cellular switch has the remarkable ability to quickly and easily spread
from the unicellular level to the network level (see section 4.4). This is be-
cause the endogenous bursting rhythm is much more prone to synchronization
than the exogenous single-spike rhythm. As a consequence, a heterogeneous
population of neurons is likely to act as a parallel population of disconnected
integrators when the neurons are in their single-spike mode. But the same
population can generate a synchronous endogenous oscillation at the network
level when the neurons switch to their bursting mode (see Figure 4.9). As a
consequence, the ‘transferring’ and ‘blocking’ capabilities of two-mode spiking
neurons are naturally enhanced at the network level and define a global exoge-
nous state, or ‘ON’ state (the input spikes are transmitted through the spiking
neural network and the global activity of the network reflects the depolarizing
inputs), and a global endogenous neural state, or ‘OFF’ state (the input spikes
are filtered and are not reflected in the global network activity).

The functional switch can be used in artificial (spiking) neural network
applications. Spiking neural networks are called the third generation of neural
network models [160] (see section 2.1.3). The first generation of neural networks
used the McCulloch Pitts neurons, also called perceptrons or threshold gates,
as computational units. Examples of such neural networks are the Hopfield nets
and the Boltzmann machines [160]. Their particularity is to be universal for
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digital computations, i.e., computations with digital inputs and outputs. The
second generation of neural networks was based on neurons with an activation
function, in general the sigmoid function. Typical neural networks of this
generation are sigmoidal neural nets and multilayer perceptrons [160]. These
neural networks are universal for analog computations, i.e., computations with
analog inputs and outputs.

In recent years, the growing recognition that neural information is coded in
spike timings and not only in firing rates [252], gave rise to the third generation
of artificial neural networks [160]. Spiking neuron models are more biophysi-
ologically realist and code the information in single spikes rather than in the
rate of firing. Spiking neuron models have been widely used in computational
neuroscience [93] as well as in artificial intelligence and neuromorphic applica-
tions [139]. However, the computational gain of spiking neurons compared to
threshold and sigmoidal gates is still under investigation [139, 160]. We pro-
pose that the functional gating properties could be one of the novel features of
spiking neural networks and suggest three applications.

Reservoir Computing

Reservoir Computing has many different implementations, liquid state ma-
chines (LSMs) [162] being one of them, of the same conceptual framework:
a reservoir—a fully connected one-hidden-layer recurrent neural network—
exhibits dynamics at the ‘edge of chaos’ and is read out by simple external
linear functions [251]. Computational units can consist of a broad range of
node types: perceptrons, sigmoidal gates, or spiking neurons [161]. The reser-
voir is not trained, only the weights to the output layer are [205]. Under some
conditions on the reservoir and the class of possible readout functions, the LSMs
have universal computational power with regard to computational operations
on analog functions of time [161].

The main appeal of Reservoir Computing is its ease of training: the recur-
rent neural network is sparsely connected with most of its weights fixed a priori
to randomly chosen values. Only the readout layer is trained. The training can
be performed with any suitable statistical learning method, e.g., least-mean-
square error solutions or margin-maximization criteria known from training
support vector machines, in a single pass through the training set [162, 205].
But this simplicity of training comes with one big challenge: creating a highly
enough dimensional dynamical state for the reservoir, particularly if the same
network is used in parallel to perform multiple computations [205].

Inputs are integrated temporally and the complex network dynamics are
explicitly used as means to integrate information [55]. However, no network
information sensitivity state is exploited due to the use of the simple integrate-
and-fire neuron model. Other behaviors of spiking neurons have been studied
and have shown an increase in the computational power of the spiking neu-
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ral networks [161] but no new capability has been introduced in LSMs and
neuromorphic applications.

We propose that the cellular-based network switch controlled by modulators
can introduce the network state as a computational tool. The network state,
governed by intrinsic properties of neurons, could be determined for specific
information transfer requirements. On top of the parallel multicomputational
capacity of the LSMs, modulatory inputs would introduce temporal and spatial
control over a single network to produce different functional outputs. Modu-
lators could turn ON and OFF specific spiking neural subnetworks, enlarging
the computational possibilities.

Computational routing

The new feature described above could be used for routing the information
flow in computational applications. Distinct subnetworks could be activated
or inactivated through specific modulatory action on the functionally distinct
circuits, blocking-off the task-irrelevant pathways (similarly as described in
section 5.6.2 for the alpha-band oscillations in the visual cortex). The switch
mechanism provides spiking neural networks with a top-down control to en-
able certain processes and integration of only some subsets of the available
information.

Feedback with learning

By integrating synaptic plasticity in the computational framework, spiking neu-
ral networks can learn to generate spatiotemporal spiking patterns [21]. The
use of a biologically-inspired Spike-Timing Dependent Plasticity (STDP) rule—
a presynaptic spike followed by a postsynaptic spike leads to an increase of the
synaptic connection strength and vice versa—for the synaptic weights towards
reservoir and outputs neurons leads to optimal learning [21].

Synchronization plays a key role in this STDP learning rule by promoting
neural plasticity and can produce profound effects on learning and task imple-
mentation [37]. A control of subnetwork synchronization can strengthen the
synaptic connections for a specific information flow and reinforce this route for
future tasks. This allows for learning of more complex spatiotemporal patterns.

6.2.2 Hardware implementation
Living organisms are able to successfully perform challenging tasks such as per-
ception, classification, association, and control. In hope for similar successes
in artificial systems, neuromorphic engineering uses neurophysiological models
of perception and information processing in biological systems to emulate their
functions but also resemble their structure [179]. In this perspective, engineers
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Figure 6.2 – Hardware implementation of the three-timescale bursting neuron model.
(Left) Hardware. (Right) Oscilloscope recordings show the two modes of discharge:
single-spike or burst-firing. Courtesy of Alessio Franci.

‘morphe’ the structure of neural connections into silicon circuits, creating neu-
romorphic microchips [19]. These hardware implementations of spiking neurons
can also be effective to emulate in real-time large-scale neural networks [9,127]:
silicon neurons are hybrid analog/digital very large scale integration (VLSI)
circuits and the simulation speed is independent on the numbers of neurons in
the network.

Hardware implementation of the cellular-based network switch described
in this dissertation could lead to useful applications. For instance, the sig-
nal processing properties—gating and multiplexing—endowed in the network
can be exploited in engineered applications. A first step in this direction has
been carried out by Alessio Franci (Department of Mathematics, Universidad
Nacional Autónoma de Mèxico, Mexico) and Fernando Castaños (Automatic
Control Department, Cinvestav, Mexico). Similarly to the approach used in [9],
they designed a hardware implementation of a spiking neuron based on dynam-
ical systems theory. From the three-timescale bursting neuron model described
in section 2.5.2, one can isolate the essential building blocks to realize the
winged-cusp singularity and its universal unfolding that organize three time-
scale bursters [88]. The winged-cusp singularity and its universal unfolding
can be realized by a feedback interconnection of an hysteresis and a bump
nonlinearities (the interconnection laws are parametrized by the unfolding pa-
rameters) [90]. By adding simple first-order filters in the static feedback inter-
connections, the circuit can implement rest-spike bistability organized by the
winged-cusp and, with the addition of an ultraslow negative feedback, bursting
neurons [90]. With simple electronic components, Alessio Franci and Fernando
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Castaños designed a hardware implementation of such a circuit (Figure 6.2).
The next step should be the implementation of an E-I network with gating
properties.

6.2.3 Multiresolution excitability in technology
In this dissertation, we highlight the importance, for system-level questions, of
studying a system by the interplay of its different resolutions rather than each
resolution individually. The multiresolution approach emerges in order to gain
some insights on how elements at high resolution levels impact lower resolution
levels. The simplification of systems to the description of solely their coarser
elements results in the suppression of finer resolution levels and the destruction
of intrinsic multiresolution characteristics. At the other side of the spectrum,
highly detailed models at very high resolution levels are not computationally
tractable and analyzable for large systems. The multiresolution approach aims
at narrowing the gap between those two extremes and at extracting essential
elements, in the form of feedback loops, to be maintained from one resolution
to the next.

The multiresolution approach has been widely used in other fields, such
as in signal processing [152, 163, 164]. In computer vision for instance, the
multiresolution approach analyzes images at several resolutions simultaneously.
The original image is decomposed into a sum of signals, each is a specific
scale (both in space and in frequency). Different types of representation have
been proposed, such as the scale-space theory and the wavelet theory. The
multiresolution approach provides a simple hierarchical framework to represent
images, at the interface of the spatial and the Fourier domains [163].

The multiresolution excitability described in chapter 5 is very specific to
biological and chemical systems. By contrast, technology uses both positive
(switches, e.g., transistors in microprocessors) and negative (regulators, e.g.,
thermostats in heating systems) feedback loops but not in a mixed configuration
such as in the +FB then –FB motif (on this matter, the interested reader can
watch the TEDxLiège talk of Prof. Sepulchre).

However, the interplay of the +FB and –FB loops gives rise to localization
properties (in amplitude, time, and space) and the multiresolution characteris-
tics of natural systems. Engineers could take advantage from what is observed
in nature and design new technologies with mixed feedback loops. Potential
applications could take the form of multiresolution sensors (much alike the
electro-sensory system of the weakly electric fish described in section 5.6.2) or
multiresolution memories (multiplexing for storage and recall as a function of
the scales of the input signal). The power of the +FB then –FB motif could
potentially endow technologies with new capabilities.

https://www.youtube.com/watch?v=OXoJJX3GOaQ
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Appendix A

Numerical tools

All the numerical simulations and analyses were performed with MATLAB,
MathWorks. The models were implemented in a MATLAB code and simulated
using a forward Euler method with a time step of 0.005ms.

A.1 Conductance-based model
A.1.1 Neuron model
The conductance-based model is inspired from the crab stomatogastric gan-
glion (STG) conductance-based neuron model [155, 244]. The model contains
the standard Hodgkin-Huxley currents (see section 2.2.1): the transient sodium
current, INa, a fast depolarizing current, and the delayed-rectifier potassium
current, IK , a slower hyperpolarizing current, plus a leak current, IL. In addi-
tion, there are three ionic currents; the low-threshold T-type calcium current,
ICa,T , the hyperpolarization-activated cation current, IH , and the calcium-
activated potassium currents, IKCa. The membrane potential dynamics writes
as follows:

CV̇m = −INa − IK − IL − ICa,T − IH − IKCa + Iapp,

where C = 1µF/cm2 is the membrane capacitance and Iapp is the applied
current in µA/cm2.

Each ionic current i, except for IKCa, takes the standard Hodgkin-Huxley
form:

Ii = gim
pi
i h

qi
i (Vm − Ei) ,

where gi is the maximal conductance for current i, pi and qi are integers, and
Ei is the reversal potential of the ion i. Table A.1 lists the values of gi, pi, qi,
and Ei for the different currents.
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Table A.1 – Parameters for the membrane currents of the neuron model.

Ii gi pi qi Ei
INa 60 3 1 50
IK 40 4 0 -80
IL 0.035 0 0 -49

ICa,T 0.3 3 1 120
IH 0.12 1 0 -20

Notation is explained in the text. All conductances are in mS/cm2 and
membrane potentials in mV .

Activation and inactivation variable dynamics follow the classical formalism:

τm,i(Vm)ṁi = m∞,i(Vm)−mi,

τh,i(Vm)ḣi = h∞,i(Vm)− hi,

where the functions for τm,i, m∞,i, τh,i, and h∞,i are given in Table A.2. Note
that, if pi = 0 and/or qi = 0, τm,i and m∞,i and/or τh,i and h∞,i are not listed,
respectively.

Table A.2 – Functions for the membrane currents of the neuron model.

Ii m∞,i(Vm) h∞,i(Vm) τm,i(Vm) τh,i(Vm)

INa
1

1+e(
Vm+35.5

−5.29 )
1

1+e(
Vm+48.9

5.18 )
1.32−

1.26

1+e(
Vm+120

−25.0 )

0.67

1+e(
Vm+62.9

−10.0 ) ∗(
1.5 + 1

1+e(
Vm+34.9

3.6 )

)
IK

1

1+e(
Vm+12.3

−11.8 )
7.2−

6.4

1+e(
Vm+28.3

−19.2 )

ICa,T
1

1+e(
Vm+57.1

−7.2 )
1

1+e(
Vm+82.1

5.5 )
43.4−

42.6

1+e(
Vm+68.1

−20.5 )
840− 718.4

1+e(
Vm+55
−16.9 )

IH
1

1+e(
Vm+80

6 )
272 +

1149

1+e(
Vm+42.2

−8.73 )

Notation is explained in the text. All time constants are in ms.
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The ionic current IKCa takes a similar form to the one described in [78]:

IKCa = gKCa

(
[Ca2+]in

[Ca2+]in +Kd

)2

(Vm − EK) ,

where gKCa = 3.4, d[Ca2+]in
dt = −k1ICa,T − k2[Ca2+]in, KD = 170, k1 = 0.1,

and k2 = 0.01.

A.1.2 Network model
There are two types of network studied: the I-I network of chapter 3 and
the E-I network of chapter 5. Excitatory synapses are α-Amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) synapses and inhibitory synapses are
gamma-aminobutyric acid (GABA) synapses. The network size varies with the
simulation: two-neuron networks or sixteen-neuron networks, with two popu-
lations of eight neurons. The sixteen-neuron network is used in Figures 3.5-3.7
in order to study the impact of variability in the parameters and the effect of
different noise sources and in Figure 5.8 to study spatial localization proper-
ties. For each network, the two neuronal populations (either one neuron or
eight neurons) are reciprocally connected all-to-all.

The synapses are exponential synapses and the synaptic current between
two neurons takes the form [101]:

Isyn = gsyn (Vm − Esyn) 1
N

N∑
i=1

sAi, (A.5)

ṡAi = kfAx∞(Vi) (1− sAi)− krAsAi,
x∞(V ) = [1 + exp (− (V −Θs) /σs)]−1

,

where Vi is the presynaptic membrane potential, N the number of presynaptic
neurons (1 or 8), kfA = 2ms−1, and krA = 0.1ms−1, Θs = −45mV , σs = 2mV .
For AMPA synapses, gAMPA = 0.1mS/cm2 and EAMPA = 0mV . For GABA
synapses, gGABA = 0.3mS/cm2 and EGABA = −80mV .

To introduce the spatial dimension in Figure 5.8, the synaptic strength from
neuron i to neuron j decays with distance in the form of a Gaussian function:

gSD = gsyne
− (j−i)2

(2∗c2
ij

)

where gsyn is the synaptic strength defined previously, cij is the space constant
controlling the spread of connectivity (0.75 in this dissertation), and i, j are
the positions of the neuron in the populations E and I. gSD is normalized over
the presynaptic population to get the same overall connection strength for each
neuron in the postsynaptic population.
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A.2 Reduced model
A.2.1 Neuron model
The reduced model is the three-timescale bursting model of section 2.5.2. It is
a modified version of the model described previously [77,87–89]:

v̇ = v2 + bvxs − x2
s ± gsxs − gusxus + Iapp + Istatic if v ≥ vth, then

τsẋs = asv − xs v ← c, xs ← ds,

τusẋus = ausv − xus, xus ← xus + dus.

where v merges the membrane potential and fast variables, xs merges all slow
recovery variables, and xus all ultraslow adaptation variables.

Iapp represents the applied current. Istatic is the static current that de-
termines the resting potential. This current depends on the value of the slow
equivalent gain, ḡs, in the form: Istatic = 50 ∗ |ḡs| + ḡ2

s . The neuron model
is submitted to a geometrical modification such that the currents, Istatic and
Iapp, are null at the transcritical bifurcation [87]. Otherwise stated, the param-
eters are fixed to physiological appropriate values: b = −3, gus = −1, τs = 1,
τus = 10, as = 0.1, aus = 0, vth = 80, c = 15, ds = 15, and dus = 40.

The effect of T-type calcium channels on the neuron excitability is accounted
for by a voltage dependence of the slow equivalent gain, gs, which reflects the
ultraslow deinactivation of T-type calcium channels at low threshold (gs =
±gs):

τgs ġs = ags

(
v − v 1

2

)
− gs + gs,min

where v 1
2

is the inactivation threshold and gs,min the minimal value of gs
reached when all virtual T-type calcium channels are inactivated. gs is also
restricted to a maximal value gs,max through the saturation rule

if gs ≥ gs,max, then gs = gs,max.

This results in a piecewise linear inactivation function centered at v 1
2
≥ 0

and whose minimal and maximal values are gs,min and gs,max, respectively. The
values of the parameters are: τgs = 22, ags = 0.89, v1/2 = −2.5, gs,min = −8,
and gs,max = 16.

A.2.2 Network model
The E-I network of chapter 4 is composed of sixteen neurons in each of the
two populations. The model parameters τs and τus slightly differ between the
two populations to introduce heterogeneity between the two populations. For
population E, τs = 0.66 and τus = 10; for population I, τs = 1.25 and τus = 20.
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The applied current Iapp is constant for the E population (Iapp,E = 50) and
takes value 0 for the depolarized state and −100 for the hyperpolarized state
for the I population.

The two populations are reciprocally connected all-to-all with GABA in-
hibitory synapses and AMPA excitatory synapses. The synaptic current from
neuron i to neuron j takes the form [131]:

Isyn,ij =− gk,i (vj − Ek) ,

where vj is the post-synaptic membrane potential, and the subscript k indi-
cates the receptor type, GABA or AMPA. Each synaptic gain satisfies the
equation ġk,i = −gk,i/τk and gets incremented by the synaptic strength gk
at each spike of the presynaptic neuron i. The synaptic current to neuron j
is: Isyn,j = 1

N

∑N
i=1 Isyn,ij , where N is the number of presynaptic neurons.

The synaptic parameters are: τAMPA = 5, EAMPA = 40, gAMPA = 0.5,
τGABA = 6, EGABA = −30, and gGABA = 2.

In Figure 4.9 (Left) the model equations for the external nucleus neurons
(sixteen-neuron population) are [125]:

Cv̇ = k (v − vr) (v − vt)− u+ I if v ≥ vth, then
u̇ = a [b (v − vr)− u] , v ← c, u← u+ d,

with C = 50, k = 1, vr = −80, vt = −25, vth = 40, a = 0.01, b = −20, c = −55,
and d = 150. The effect of a neuromodulator is accounted for in a scaling coef-
ficient, β2, which determines the relationship between the neuromodulator oc-
cupancy and the effect magnitude on the applied current: I = Iapp ∗ (1− β2φ2)
with φ2 = 1, expressing the proportion of active modulator receptors, β2 = 0.2
for the basal level of modulator, and β2 = 0.6 during the transient increase in
modulator. Heterogeneity is introduced in the external nucleus drive by varying
the applied current on the external nucleus neurons: one-half of the external
nucleus neurons received the average current (Iapp = 1400), one-quarter an
Iapp 10% above the average, and one-quarter an Iapp 10% below the average.
The neurons in each group result from a random distribution of all the external
nucleus neurons. The inhibitory connections from the external nucleus to the
I population are of the GABA type with gGABA = 10.

The spike train on population E are spikes with time intervals selected
from a Poisson distribution with an enforced minimum interval of 2. Each
time interval is computed via 2− log(rand(1))/.03 where rand(1) is a pseudo-
random number selected from a uniform distribution on [0, 1]. The synapses
are AMPA synapses with gAMPA = 2.

Similarly, to introduce the spatial dimension in Figure 4.9 (Right), the
synaptic strength from neuron i to neuron j decays with distance in the form
of a Gaussian function. A representation of the decaying connection strength
is given in Figure A.1.
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Figure A.1 – Spatial aspect of the network configuration. The synaptic strength
from neuron i to neuron j, gSD, is a monotonically decaying distance function, as
represented by the different shades of grey. The I population Ipop is controlled by
four distinct applied currents Iapp,1−4. Four different LFPs, LFP1−4, are recorded
from the four subpopulations in the E population Epop.

A.3 Tools for simulation analysis

A.3.1 Variability
Physiological variability is modeled by randomly selecting (by generation of uni-
formly distributed pseudorandom numbers with the MATLAB function rand)
the values for the parameter subjected to variability in an interval, called
variation range, centered on a given parameter value. The variability level
quantifies the width of this interval, in percentage of the given value. For in-
stance, a 200% variability in gPIR means that, for a given parameter value of
0.3mS/cm2, the variation range has a width of 200%∗0.3 = 0.6 and is centered
on 0.3. The parameters are therefore randomly selected out of the interval
[0mS/cm2, 0.6mS/cm2].

A.3.2 Network rhythm
A network is categorized as having a stable rhythmic activity (rhythm ON) if
all the neurons in the network are still bursting in the stationary state (after the
transient initiation phase). Due to the specific network structure—connection
all-to-all from one population to the other, and vice versa—all the neurons in
one population receive the same input (coming from all the neurons in the other
population). Therefore, if all the neurons are bursting, the bursts have been
elicited by the same transient hyperpolarizing input—bursting cannot happen
without this hyperpolarization—and the bursts are synchronous, i.e., all the
bursts overlap but not necessarily the spikes. This provokes HCO anti-phase
oscillations. Bursting in neurons is detected by having two consecutive spikes
less than 100ms apart.

In chapter 3, the frequency is the inverse of the time duration between the
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beginning of two bursts, or period, averaged over the two neurons of the two-
neuron network. The duty cycle is the ratio between the burst duration and
the period, averaged over the two neurons. The duty cycle ratio is the ratio
between the duty cycle in neuron 1 (the neuron upon which acts the external
hyperpolarization) and in neuron 2 (the other neuron). Each value for the
mean frequency, mean duty cycle and mean duty cycle ratio was computed
from ten simulations with the same set of parameter but with 40% variability
in gsyn and 20% variability in gPIR. Only simulations endowed with rhythmic
activity in the sense defined previously were considered to compute the means
and standard deviations. If no rhythmic activity was detected, the computed
means and standard deviations were set to 0. The proportion of oscillatory
HCO quantifies the percentage of simulations that showed rhythmic activity
out of the ten simulations with the same set of parameter.

In chapter 4, the quantities Tosc and Tburst of Figure 4.8 are, respectively,
the duration between two burst onsets, and the duration of the burst, from the
burst onset to the last spike. The parameters are identical to the ones given
previously. Modulation is introduced by varying a single parameter, different
for each panel.

A.3.3 Noise
A Gaussian white noise is added in the voltage equation to model the typical
spike train input received from the many other unmodeled neurons [153]. The
noise is modeled by

√
2Dξ(t), where D is the noise intensity and ξ(t) is drawn

from a normal distribution with zero mean and unitary standard deviation and
is different for each neuron.

A.3.4 Local field potential and time-average
The local field potential (LFP) is the mean field measure of the average behavior
of large numbers of interacting neurons and it reflects the linear sum of numer-
ous overlapping fields generated by current sources and sinks [28]. Therefore,
the LFP dynamics results from the collective synaptic activity of the neuronal
population and can be modeled by the normalized sum of the postsynaptic cur-
rents Isyn,j : LFP =

∑M
j=1 Isyn,j/M , where M is the number of postsynaptic

neurons in the population. The LFPs are low-pass filtered at 100 hertz via
a one-dimensional digital filter to reflect the use of macro-electrodes in LFP
acquisition.

In the slow excitability window of Figures 5.4 and 5.6, the membrane po-
tential is averaged to reflect the slower timescale. This is performed with a
smoothing of the membrane potential signal with a moving-average filter with
a window size of 200ms.
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A.3.5 Spectrogram
The spectrogram analyses (Spect.), or time-frequency plots, result from a loga-
rithmic representation of the spectrogram (using the Goertzel algorithm) of the
short-time Fourier transform of the LFP. For the short-time Fourier transform,
we consider a sampling frequency Fs = 1000 and a window of Fs/4 = 250.
This sets the Rayleigh frequency at 4. The time step between two consecutive
windows is 5. The frequencies of interest cover the [15, 50] frequency range
with a step of 0.1.

A.3.6 Correlations
In chapters 4 and 5, the auto-correlations (Acorr.) and cross-correlations
(Xcorr.) are computed for a random input current by using the MATLAB
cross-correlation function estimate. The random input current takes the form
of a train of impulses with time intervals selected from a Poisson distribution
with an enforced minimum interval and fixed impulse width and amplitude.
For the cross-correlations against noise in Figure 5.6, a similar function is used
but with a different Poisson distribution for the time intervals.

For the reduced model in chapter 4, the cross-correlations (Xcorr.) are
computed over a 1000 period for a given Iapp (depolarizing or hyperpolarizing)
from the MATLAB cross-correlation function estimate. In Figures 4.6 and 4.7,
the cross-correlations are given by pairing two-by-two all the neurons in each
population. In Figure 4.9, the cross-correlations are given for each neuron in
the E population with respect to the input spike train.

A.4 Simulation details
A.4.1 Chapter 3
In this chapter, the two currents responsible for PIR are: a low threshold T-
type calcium current, ICa,T , and a hyperpolarization activated cation current,
IH . The calcium-activated potassium current is null (gKCa = 0). The maximal
synaptic conductance takes value gsyn = 4mS/cm2.

To capture the cellular dynamics at the network level (Figures 3.3-3.7), we
use a reduced cellular model with three ionic currents: the two Hodgkin-Huxley
currents responsible for action potentials, INa and IK , and a single “PIR cur-
rent”, IPIR, responsible for the PIR. Based on the observation (Figure 3.2) that
the excitability properties of a restorative model are similar with an instanta-
neously activated T-type calcium current and with an IH current, we model
the IPIR current with the T-type calcium channel parameters and functions of
Tables A.1 and A.2, but with an instantaneous activation when considering a
restorative current and with a slow activation when considering a regenerative
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current. In this way, the two PIR currents only differ in the nature of their
slow feedback, but they possess identical I/V curves. Our reduced model does
not capture the physiological sag brought by an IH current but the results of
the paper do not depend on that cellular property. We insist that the variation
of the activation time constant in our reduced model is not physiological but
only meant to capture the restorative or regenerative nature of the PIR in an
otherwise identical reduced model. Our PIR current can be thought as the
aggregated current resulting from all physiological currents contributing to the
PIR.

The simulations of Figure 3.1, are performed using the conductance-based
neuron model described above, with gCa,T = 0mS/cm2 for Mechanism A and
gH = 0mS/cm2 for Mechanism B. The applied current, Iapp, takes values of
−0.8µA/cm2 and −3.8µA/cm2 for Mechanism A and values of −0.55µA/cm2

and −1.95µA/cm2 for Mechanism B. Simulations in Figure 3.1 (Center) do not
present any parameter variability, the two neurons and synaptic connections
are identical. Physiological variability is simulated in Figure 3.1 (Bottom) with
40% variability in gsyn and 20% variability in gH and gCa,T .

The cell models in Figure 3.2 were performed using the conductance-based
neuron model described above, with gCa,T = 0mS/cm2 (Figure 3.2, Left),
gH = 0mS/cm2 and instantaneous activation (Figure 3.2, Center), and gH =
0mS/cm2 and slow activation (Figure 3.2, Right). The applied current is iden-
tical as to Figure 3.1 but takes a value of 10µA/cm2 for 10ms for the fast
depolarizing input.

In Figure 3.3, the maximal synaptic conductance, gsyn (from 0mS/cm2 to
10mS/cm2), and the synaptic time constant (1/krA, krA varies from 0ms−1

to 1ms−1), vary simultaneously for the two neurons. The variability level is
40% for gsyn and 20% for gPIR. Membrane potential plots (gsyn[mS/cm2],
krA[ms−1]): top left panel–(1.5, 0.1) and (4.5, 0.05); top right panel–(8.5,
0.75) and (4.5, 0.05); bottom panel–(6, 0.15) with variability. In Figure 3.4,
the maximal PIR conductances, gPIR,1 for neuron 1 and gPIR,2 for neuron 2
(from 0.25mS/cm2 to 0.75mS/cm2), vary independently for the two neurons.
The variability level is 40% for gsyn and 20% for gPIR. The zoom for the duty
cycle and duty cycle ratio covers a range from 0.25mS/cm2 to 0.50mS/cm2.

For Figure 3.5, the intrinsic neuron parameter is gPIR = 0.3mS/cm2 with
a variability level from 0% to 200%. For Figure 3.6, the extrinsic neuron
parameter is gsyn = 2mS/cm2 with a variability level from 0% to 200%. In
Figure 3.7, D, the noise intensity, varies from 0 to 0.25.

A.4.2 Chapter 4
For the conductance-based neuron model of this chapter (Figures 4.1-4.4),
gCa,T = 0.48, gH = 0.06, and gKCa = 3.4. The kinetics of the gating vari-
ables for the ICa,T are slightly modified to give rise to hyperpolarized-induced
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bursting (see Table A.3). The other figures use the reduced model described
above.

Table A.3 – Functions for the ICa,T current.

m∞,Ca,T (Vm) h∞,Ca,T (Vm) τm,Ca,T (Vm) τh,Ca,T (Vm)

ICa,T
1

1+exp(Vm+67.1
−7.2 )

1
1+exp(Vm+80.1

5.5 )
21.7−

21.3
1+exp(Vm+68.1

−20.5 )

205−
89.8

1+exp(Vm+55
−16.9 )

Notation is explained in the text. All time constants are in ms.

For the simulations of Figures 4.1 and 4.3, the applied current, Iapp, takes
values of −1.2µA/cm2 for the depolarized state and −1.9µA/cm2 for the hyper-
polarized state. For Figure 4.2 intraburst increase is achieved with gKCa ∗ 0.2
and interburst increase with gH ∗0.45, all other parameters being constant. The
applied current takes value −1.9µA/cm2. For Figure 4.3, the fast activation
is set by τm/10 and the slow inactivation is set by τh/10. Auto-correlations
and cross-correlations of Figure 4.4 are computed over a 20s period, with a
static signal of −1.9µA/cm2. A random impulse train—100ms minimum in-
terval, 5ms impulse-width and 4µA/cm2 impulse-amplitude—is superposed to
this static signal.

For the simulations of Figures 4.5 and 4.6, the applied current, Iapp, takes
values 0 for the depolarized state and −150 for the hyperpolarized state.

In Figure 4.7, there is a 20% variability in the intrinsic parameters τs, τus,
and gus, and a 20% variability in the extrinsic parameters gAMPA and gGABA.

Figure 4.8 B: τus,E = 20; Figure 4.8 C: τAMPA = 15 and τGABA = 18;
Figure 4.8 D: gs,max = 12; Figure 4.8 E: gAMPA = 2 and gGABA = 5.

In Figures 4.7 and 4.9, a Gaussian white noise is added with noise intensity
D = 1.

A.4.3 Chapter 5
For the conductance-based neuron model of this chapter, gNa = 120, gCa,T =
0.4, gH = 0.04, and gKCa = 2. The kinetics of the gating variables for the
ICa,T are slightly modified to give rise to hyperpolarized-induced bursting (see
Table A.3).

The simulations of Figure 5.2 are performed using the conductance-based
neuron model described above, with gCa,T = gH = gKCa = 0mS/cm2. The ap-
plied current, Iapp, takes values of−0.5µA/cm2 for the static signal, −1.8µA/cm2

for Iapp,1, 3.5µA/cm2 for Iapp,2,3,5, and 5.5µA/cm2 for Iapp,4. Auto-correlations
and cross-correlations are computed over a 5s period, with a static signal of
−0.5µA/cm2 for the exogenous behavior and of 3.5µA/cm2 for the endogenous
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behavior. A random impulse train—100ms minimum interval, 5ms impulse-
width and 4µA/cm2 impulse-amplitude—is superposed to this static signal.

The simulations of Figure 5.4 are performed using the conductance-based
neuron model described above. For the fast excitability window, the applied
current, Iapp, takes values of −1.4µA/cm2 for the exogenous behavior and
−2µA/cm2 for the endogenous behavior. The impulses have a 5ms impulse-
width and 2.6µA/cm2 impulse-amplitude. Cross-correlations are computed
over a 15s period with a random impulse train—100ms minimum interval, 5ms
impulse-width and 4µA/cm2 impulse-amplitude—superposed to the static sig-
nal. For the slow excitability window, the applied current, Iapp, takes values
of −1.4µA/cm2 for the static signal, −1.8µA/cm2 for Iapp,1, −2µA/cm2 for
Iapp,2,3,5, and −2.4µA/cm2 for Iapp,4. Auto-correlations and cross-correlations
are computed over a 50s period from the averaged potential, with a static signal
of −1.4µA/cm2 for the exogenous behavior and of −2µA/cm2 for the endoge-
nous behavior. A random impulse train—3s minimum interval, 25ms impulse-
width and −0.6µA/cm2 impulse-amplitude—is superposed to this static signal.

The simulations of Figure 5.5 are performed using the conductance-based
neuron model described above and an E-I circuit connectivity. For the fine
excitability window, the applied current, Iapp,I , takes values of −1.4µA/cm2

for the exogenous behavior and −2µA/cm2 for the endogenous behavior. The
Iapp,E static current takes value of −0.2µA/cm2 and the impulses have a 5ms
impulse-width and 1.8µA/cm2 impulse-amplitude. Cross-correlations are com-
puted over a 15s period with a random impulse train—100ms minimum inter-
val, 5ms impulse-width and 4µA/cm2 impulse-amplitude—superposed to the
static signal Iapp,E . For the coarse excitability window, the applied current,
Iapp,I , takes values of −1.4µA/cm2 for the static signal, −1.5µA/cm2 for Iapp,1,
−2µA/cm2 for Iapp,2,3,5, and −2.4µA/cm2 for Iapp,4, and Iapp,E takes value of
−0.2µA/cm2. Auto-correlations and cross-correlations are computed over a 50s
period from the LFP, with a static signal of −1.4µA/cm2 for the exogenous
behavior and of −2µA/cm2 for the endogenous behavior. A random impulse
train—3s minimum interval, 40ms impulse-width and −0.6µA/cm2 impulse-
amplitude—is superposed to this static signal.

For Figure 5.6, the signals are the ones for the cross-correlations in Fig-
ures. 5.4 and 5.5 and are cross-correlated with the input signal (Xcorr Signal)
or with a signal with the same characteristics but another Poisson distribution
for the time intervals (Xcorr Noise).

The cell model of Figure 5.7 is slightly different with gNa = 60mS/cm2,
gCa,T = 0.3mS/cm2, gH = gKCa = 0mS/cm2, and KD = 120. The circuit
is an I-I circuit with gGABA = 4mS/cm2. The applied currents, Iapp,I1 and
Iapp,I2, take values of −0.55µA/cm2 for the static signal, and −1.1µA/cm2 for
the step input. Auto-correlations and cross-correlations are computed over a
50s period from the LFP, with static signals of −0.55µA/cm2. For the OFF
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mode, no step has been presented to the circuit whereas a step has switched
the circuit for the ON mode. A random impulse train—3s minimum interval,
40ms impulse-width and−0.6µA/cm2 impulse-amplitude—is superposed to the
static signal Iapp,I1. A signal with the same characteristics but different Poisson
distribution for the time intervals is used for the cross-correlation against noise.

Figure 5.8 uses the network models of Figure 5.5 (Left) and Figure 5.7
(Right) but with eight neurons in each population. The stimulation currents
take the same value as Iapp,I and Iapp,I2, respectively. Synaptic decay affects
the synaptic connections to incorporate the spatial dimension.



Appendix B

Omitted derivations

In this appendix, we propose a state-space model for the E-I network of chap-
ter 4 with the neurons in the burst-firing mode. The model possesses an hybrid
formulation and can be used, under some assumptions, to compute Tosc, the
oscillation period or the duration between two burst onsets, and Tburst, the du-
ration of the burst, from the burst onset to the last spike. The mathematical
derivations are based on considerations for bursting oscillators in Chapter 6 of
Pierre Sacré’s dissertation [213].

B.1 State-space model
Starting from the three-timescale bursting model of section 2.5.2, we reduce
the set of equations to the study of the dynamics of the ultraslow variable
xus(t) (see Figure B.1). The xus(t) dynamics is approximated by the dynamics
of the variable z(t), described by two equations, fB and fR—equation for the
bursting state and equation for the resting state, respectively—and with two
boundary conditions, zSN and zSH which represent the saddle-node and saddle-
homoclinic bifurcation boundaries, respectively.

The state-space model for a single neuron writes in the hybrid formalism:

While p = 1 and z ≤ zSH (I) While p = −1 and z ≥ zSN (I){
ṗ = 0
ż = fB(z)

{
ṗ = 0
ż = fR(z)

With reset conditions: if z ≥ zSH (I) and p = 1 or z ≤ zSN (I) and p = −1

p+ = −p
z+ = z

105



106 Appendix B. Omitted derivations

Figure B.1 – State-space model. The dynamics of the three-timescale model (Vm) is
characterized by the dynamics of its ultraslow variable xus and approximated by the
variable z, with two set of equations, fB and fR, and two boundary conditions, zSN

and zSH .

with

fB = 1/τus
(
−z + τusdus

Tf

)
fR = 1/τus (−z)
Tf = f(z, I) ≈ cst

zSH = I/gus

zSN = F (vSN ) + I

gus

F (vSN ) = v2
SN + bvSNwSN − w2

SN , vSN = −bgs
2 + ab

, wSN = −2vSN
b

Tf represents the intraburst firing period and is considered constant, and I is
the external applied current. Numerical validation of the model was performed
and the monotonic increase of fB and monotonic decrease of fR between the
boundary conditions was verified numerically.

Two neurons i and j are connected via the external applied current with:

Ii = f(zi, zj , pi, pj , Ii, Ij) = −ui ∗ (vi − vu)

where vu is the reversal synaptic potential Ek.
vi represents the membrane potential of neuron i:

vi = f(zi, pi, Ii) =
{
V LC(zi, Ii) if pi = 1
Veq(zi, Ii) if pi = −1
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where V LC is an approximation of the value of vi on the limit circle during the
bursting state and Veq is the value of vi during the resting state (stationary
fixed point):

V LC(z, I) = 1
Tf

∫ Tf

0
VLC(s, z)ds ≈ cst

Veq(z, I) = −

(
gs −

2gs − a
√
R+ abgs

2 (−a2 + ba+ 1)

)
/a

R = 4gusz − 4I + 4Ia2 + 4gs + b2g2
s − 4a2gusz − 4Iab+ 4abgusz

ui is function of the state of the other neuron j (see [40] for analytical
details):

ui = f(zj , pj , Ij) = g

Tf
Q (tj ,min(tj ,∆j))

=
{

g
Tf
Q (tj , tj) if pj = 1

g
Tf
Q (tj ,∆j) if pj = −1

tj = f(zj , pj , Ij)

=

 −τus ∗ ln
zj− dusτusTf

Cup− dusτusTf

if pj = 1

−τus ∗ ln zj
Cdown

if pj = −1
Cup = zSN

Cdown = zSH/e
(−∆j/τus)

∆j = t(zSH , pj = 1)
Q(t, a) = e−α(t−a) (1 + α(t− a))− e−αt (1 + αt)

where g the maximal synaptic conductance.

B.2 Linear state-space model
The system is linearized to have Ii = f(zi, zj , pi, pj) by approximating vi =
f(zi, pi, Ii) ≈ f(zi, pi) and ui = f(zj , pj , Ij) ≈ f(zj , pj) (see Figure B.2).

The hybrid system writes as follows:

(pi, zi) ∈ {pi = 1, zi ≤ zSH(Ii)}
{
ṗi = 0
żi = zi/τ̄us + d̄us

(pi, zi) ∈ {pi = −1, zi ≥ zSN (Ii)}
{
ṗi = 0
żi = zi/τ̄us

(pi, zi) ∈ {pi = 1, zi ≥ zSH(Ii)} ∪ {pi = −1, zi ≤ zSN (Ii)}
{
p+
i = −pi
z+
i = zi
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Figure B.2 – Linearization of state-space model. Approximation in blue of vi =
f(zi, pi, Ii) and ui = f(zj , pj , Ij) by vi ≈ f(zi, pi) and ui ≈ f(zj , pj), respectively.

with:

zSH = K̄zIi

zSN = K̄zIi + V̄SN

Ii = f(zi, zj , pi, pj) = −ui(vi − v̄u)

vi = f(zi, pi) =
{
h̄1zi + l̄1 if pi = 1
h̄2zi + l̄2 if pi = −1

ui = f(zj , pj) =
{
ḡ1zj + q̄1 if pj = 1
ḡ2zj + q̄2 if pj = −1

where the upper bar denotes that the quantity is fixed for a given set of simu-
lation parameters.

B.3 System of equations for Tosc and Tburst

Under some assumptions, there exist a set of 11 equations with 10 unknowns
to determine Tosc and Tburst. Assumptions:
• i is an excitatory neuron (E) and j is an inhibitory neuron (I);

• the two neurons burst in synchrony;

• the activity patten goes as follows: (i) the neuron i starts its burst, (ii)
the neuron j starts its burst, (iii) the neuron i ends its burst, and (iv)
the neuron j ends its burst;

• the influence of the inhibitory burst is over when the excitatory burst
begins.

The unknowns are represented on Figure B.3. There are two equations for
the dynamics of z(t):

Neuron in bursting phase : z(t) = zmine
−t/τ̄us + d̄us

(
1− e−t/τ̄us

)
Neuron in resting phase : z(t) = zmaxe

−t/τ̄us
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Figure B.3 – Set of equations to compute Tosc and Tburst. Excitatory neuron i and
inhibitory neuron j burst in synchrony. The unknowns are introduced for the set of
equations.

From there, we draw the set of equations:

zmin,i = zSN,i = K̄zIi + V̄SN = K̄z(Iapp,i + Imin,i) + V̄SN

zmin,i = zmax,ie
−TR,i/τ̄us

zmin,j = zSN,j = K̄zIj + V̄SN = K̄z(Iapp,j + Imin,j) + V̄SN

zmin,j = zmax,je
−TR,j/τ̄us

zmax,i = zSH,i = K̄zIi = K̄z(Iapp,i + Imax,i)
zmax,i = zmin,ie

−TB,i/τ̄us + d̄us(1− e−TB,i/τ̄us)
zmax,j = zSH,j = K̄zIj = K̄z(Iapp,j + Imax,j)
zmax,j = zmin,je

−TB,j/τ̄us + d̄us(1− e−TB,j/τ̄us)
TB,i + TR,i = TB,j + TR,j

TR,i = ∆R + TR,j −∆B

TB,i = ∆B + TB,j −∆R

with
Imin,i = −ui(vi − v̄u,i) = −(ḡ2zm,j + q̄2)((h̄2zmin,i + l̄2)− v̄u,i)
zm,j = zmax,je

−(TR,j−∆B)/τ̄us

Imin,j = −uj(vj − v̄u,j) = −(ḡ1zm,i + q̄1)((h̄2zmin,j + l̄2)− v̄u,j)
zm,i = zmin,ie

−∆B/τ̄us + d̄us(1− e−∆B/τ̄us)
Imax,i = −ui(vi − v̄u,i) = −(ḡ1zM,j + q̄1)((h̄1zmin,i + l̄1)− v̄u,i)
zM,j = zmin,je

−(TB,j−∆R)/τ̄us + d̄us(1− e−(TB,j−∆R)/τ̄us)
Imax,j = −uj(vj − v̄u,j) = −(ḡ2zM,i + q̄2)((h̄1zmin,i + l̄1)− v̄u,j)
zM,i = zmax,ie

−∆R/τ̄us

Tosc = TB,i + TR,i = TB,j + TR,j

Tburst,i = TB,i

Tburst,j = TB,j
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