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Exit-channel dynamics in barrierless unimolecular reactions: Criteria
of vibrational adiabaticity

V. B. Pavlov-Verevkina� and J. C. Lorquetb�
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Conversion of translational into vibrational energy during the last step of a unimolecular reaction is
brought about by the curvature of the reaction path. The corresponding coupling is analyzed by an
angle-action reaction path Hamiltonian �RPH�. The accuracy of the vibrational adiabatic
approximation is found to be completely independent of the shape of the potential energy V�s�.
Vibrations are adiabatic when two independent dimensionless parameters are small. The first one,
denoted as �, controls the dynamic coupling. The physical significance of the condition ��1 is that
the amplitude of the vibrations normal to the reaction path should be much smaller than the radius
of curvature of the reaction path. The second parameter, denoted as �, governs the static coupling.
It results from the dependence of the vibrational frequency � on the reaction coordinate s. The
higher �, the lower its derivative with respect to s and, more unexpectedly, the higher the
translational energy �, the lower � is. A criterion for locating a particular dividing surface in
barrierless reactions is proposed. This surface separates two regions of space: one where energy
flows freely, and one where energy conversion between translation and vibration is hindered by
adiabatic invariance. The nature of the dynamical constraint that prevents the product translational
energy distribution from being fully statistical can be identified by a maximum entropy analysis. The
constraint is found to bear on the translational momentum ps, i.e., on the square root of the
translational energy �1/2. This can be understood by applying Jacobi’s form of the least action
principle to the vibrationally adiabatic RPH. © 2005 American Institute of Physics.
�DOI: 10.1063/1.2006107�

I. INTRODUCTION

Substantial progress in the understanding of reaction dy-
namics is derived from measurements of product energy dis-
tributions, which are determined by the shape of the
potential-energy surface at large values of the reaction coor-
dinate �i.e., beyond the dividing surface postulated by tran-
sition state theory�.1,2 The analysis of these distributions re-
veals the existence of so-called “exit-channel effects,” i.e., of
interactions as the fragments separate in space.3–13 Vibra-
tional energy distributions have been especially studied and
shown to be directly related to vibrational nonadiabaticity.

However, the present article concerns translational
kinetic-energy release distributions �KERDs�, which have
been determined with good accuracy for a number of unimo-
lecular dissociations taking place in ion beams, i.e., under
collision-free conditions and with some selection of the in-
ternal energy of the reactant.1,14–16 Very often, these reac-
tions are characterized by the absence of any reverse activa-
tion energy barrier along the reaction path and special
attention is paid here to such barrierless dissociations.

Efforts to improve on one-dimensional models of reac-
tion dynamics have opened up to the concept of curvature of
the reaction path. According to classical mechanics, a region

of large curvature leads to a loss of vibrational adiabaticity,
i.e., to a conversion of translational to vibrational energy that
is vividly described as the bobsleigh effect.3–7,17–19 The
present article aims at relating exit-channel dynamics to that
concept and at deriving information on the coupling between
the reaction path coordinate and the bath of vibrational de-
grees of freedom from a study of KERDs. Regrettably, the
study is limited to the case of rotationless molecules �zero
total angular momentum�.

Classical trajectories might be calculated by solving
equations of motion in particular cases.7,10,11,20–22 However,
this is an approach that we want to avoid because what we
are looking for is a better understanding of the tendencies
that govern vibrational nonadiabaticity.

The article is structured as follows. Section II presents a
model where the reaction path is partitioned into four dy-
namically different regions. In Sec. III, the reaction path
Hamiltonian �RPH� analysis of vibrational adiabaticity is
briefly reviewed. The two parameters that determine the ac-
curacy of the adiabatic approximation are examined in Sec.
IV, and a criterion for locating a dividing surface in barrier-
less reactions is proposed. Section V provides an extension
to polyatomic molecules. Connection with experiment is
made in Sec. VI. A maximum entropy analysis shows in Sec.
VII that adiabatic invariance constrains the dynamics as a
result of Jacobi’s form of the least action principle, thereby
providing an experimental confirmation of the RPH ap-
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proach. Section VIII concludes by showing that the range of
validity of existing theories of unimolecular reactions should
be extended by the present results.

II. PARTITIONING THE REACTION PATH

When the potential-energy curve increases monotoni-
cally along the reaction path, there is no clear indication
about the position of the dividing surface postulated by tran-
sition state theory. The variational version of this
theory1,4,9,23–25 locates it at the minimum in the sum of states
along the reaction path. However, for our purposes, it is ex-
pedient to divide the reaction path into no less than four
dynamically different domains.

�1� The first one, to be denoted as the strong coupling
region, is localized near the minimum of the
potential-energy surface. In this domain, the dy-
namics is better understood in terms of a set of
strongly coupled anharmonic oscillators among
which energy is supposed to flow freely, as as-
sumed in the Rice-Ramsperger-Kassel-Marcus
�RRKM� theory.1,2 The reaction path can be deter-
mined by solving Fukui’s equation,26 but its role is
more formal than really physically meaningful.

�2� As the potential energy increases, the dynamics is
restricted to a relatively local region of coordinate
space. In the second domain, the reaction coordi-
nate has to be singled out. If the internal energy is
not too high, the dynamical motion in that region
can be expected not to deviate too far from the
minimum-energy path. The motion along the reac-
tion path can be described as a translation, with the
modes orthogonal to it treated as molecular vibra-
tions. If so, the range of the potential-energy sur-
face that influences the dynamics can be restricted
to the description of a harmonic valley about the
reaction path.27 The interactions between transla-
tion and vibrations are nonadiabatic, i.e., they are
strong enough to bring about changes in the vibra-
tional quantum numbers �or in the actions in a clas-
sical treatment� of the vibrations perpendicular to
the reaction path.3–8 Therefore, this domain is de-
noted as the intermediate nonadiabatic range.

�3� Our contribution concentrates on the next region.
The model of a harmonic valley about the reaction
path is still appropriate, and the RPH model is the
method of choice. However, the interactions be-
tween translation and vibrations are adiabatic in
this domain, as shown by Miller et al.27 This means
that the actions or the vibrational quantum numbers
remain conserved. This does not preclude some en-
ergy exchange between the reaction coordinate and
the remaining vibrations, as will be seen later on.
Therefore, this domain is denoted as the intermedi-
ate adiabatic range.

�4� In the outermost region, referred to as the
asymptotic range, the RPH model ceases to be
valid because the valley is now too flat. The appro-
priate description is now in terms of two moieties
interacting via long-range forces. The distance be-
tween the centers of mass of the two fragments is
strictly separable from the other Jacobi coordinates
�i.e., the angles describing the rotations of the moi-
eties about the line joining the centers of mass�.28,29

If one of the fragments is charged �in which case
KERDs can be conveniently determined1,14–16�,
then the dynamics is determined by a well-defined
long-range electrostatic potential, generated by the
interaction between a point charge and either a per-
manent, or an induced dipole, or both. The orbiting
transition state theory �OTST�,1,2,16,30,31 which is
based on a partitioning between rotation and orbital
motion, attempts to relate these interactions to
KERDs. So does the statistical adiabatic channel
model �SACM�,32–36 which usually focuses on the
calculation of reaction rate constants, but which
can also be used to study KERDs. The range of
validity of methods based on a quantization scheme
appropriate to the outermost region has been ex-
tended by Bonnet and co-workers.12,13

These four regions are certainly not separated by sharp
borderlines but by fuzzy boundaries. A criterion will be pro-
posed to specify the separation between the second and third
domains. This provides a convenient reference position along
the reaction coordinate, although not a dividing surface in
the sense commonly used in statistical theories of chemical
reactivity.

To summarize, the exit-channel effects that have been
experimentally detected result from an energy exchange be-
tween the translational motion along the reaction coordinate
and the vibrations perpendicular to it. This article concen-
trates on the third region where the experimentally deter-
mined KERD is generated. The reaction path and its curva-
ture are preliminary pieces of information required to solve
the dynamical problem in the intermediate region. Our aim is
to determine the factors related to the curvature of the reac-
tion path that govern the validity of the adiabatic approxima-
tion in classical mechanics and hence the conversion of
translational energy.

III. VIBRATIONAL NONADIABATICITY IN CLASSICAL
MECHANICS

In previous works, several attempts have been developed
to characterize the quality of the adiabatic
approximation.3–6,18,33–35 In a quantum-mechanical
framework,17,18 the calculation of the elements of the S ma-
trix has been attempted. However, what is required here is
information about the validity of the adiabatic approximation
at different points along the reaction path and, more gener-
ally, in different regions of the phase space. In other words, a
more “local” approach to the problem must be developed.
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Since the analysis of exit-channel effects as the moieties
separate requires simultaneous specification of position and
momenta, a classical approach is called for.

Important developments in the field of reaction dynam-
ics have resulted from the use of a RPH. Miller et al. have
studied the intermediate regions and have analyzed the role
played by Coriolis-type couplings in the energy transfer be-
tween translational and internal degrees of freedom.27 First, a
reaction coordinate s is defined as the arc length along the
reaction path studied in a system of mass-weighted
coordinates.26 The reaction path is characterized by its cur-
vature, which, for a collinear three-atom system, is a scalar
having the dimensions of an inverse mass-weighted length.
In polyatomic molecules, the curvature is a vector consisting
of 3N−7 components, each of which measures the coupling
between the reaction coordinate and a particular normal
mode orthogonal to it.19,27,37 The RPH method is an exten-
sion to the case of polyatomic systems of the concept of
natural collision coordinate introduced by Marcus.3

For a system restricted to two degrees of freedom �e.g.,
the dissociation of a collinear triatomic molecule when the
total angular momentum is equal to zero�, Miller et al.27

derived the following action-angle Hamiltonian:

H�s,ps,q,J� =
�ps + J sin q cos q���s�/��s��2

2�1 + sin q���s��2

+ V�s� + J��s� . �3.1�

In this equation, s denotes the reaction path coordinate,
V�s� is the potential energy along it, and ps is the correspond-
ing momentum. The vibration normal to the reaction path is
described by the angle-action variables q and J. The latter
motion is supposed to be harmonic with the s-dependent fre-
quency ��s�, whose first derivative with respect to s is de-
noted as ���s�.

The dimensionless coupling parameter ��s� is defined27

as

��s� = 2J��s�2/��s� , �3.2�

with ��s� denoting the curvature of the reaction path at point
s.

Miller et al. then derive a vibrationally adiabatic Hamil-
tonian by averaging Eq. �3.1� with respect to q. The action J
is now a constant of motion.27

Had�s,ps�J� = � 1

2�
�	

0

2�

H�s,ps,q,J�dq

=
ps

2

2�1 − ��s��3/2 + Veff�s� . �3.3�

Let E denote the total internal energy of the system. The
effective potential is defined as

Veff�s� = V�s� + J��s� + 16��s���s�	���s�� , �3.4�

where

	��� = ��
4 − �

�1−�
+ 3

2�1−�
− 3

2� 
 �2 �3.5�

and

��s� = E − V�s� − J��s� =
ps

2

2�1 − ��3/2�1 − 16�	�s��
.

�3.6�

The third term in the right-hand side of Eq. �3.4� has
been recognized by Miller et al. as the diagonal part of the
nonadiabatic coupling.27 Therefore, the quantity ��s� defined
in Eq. �3.6� represents the kinetic energy along the reaction
coordinate. The dimensionless parameter

��s� = �J���s�/��s��2/�16��s�� �3.7�

will shortly be seen to play a fundamental role in the condi-
tions of validity of the adiabatic approximation.

To study the validity of the adiabatic approximation, we
compare the two phase portraits of our system that arise from
each of the two Hamiltonians H and Had. That of the latter is
immediately derived from the equation Had=E:

ps
ad = 
2�1 − ��s��3/2�E − Veff�s���1/2

= 
2��s��1 − ��s��3/2�1 − 16��s�	���s����1/2. �3.8�

To derive the phase portrait in subspace �s , ps� from the
full Hamiltonian in �3.1�, the value of ps is obtained by solv-
ing the equation H�s , ps ,q , J�=E. It is then averaged over
the cyclic variable q. This procedure leads to

�ps = �2��s� . �3.9�

The smaller the dimensionless quantity

�ps =
��ps − ps

ad�
�ps

, �3.10�

the more accurate the adiabatic approximation.
The two dimensionless parameters ��s� and ��s� tend to

zero as s increases. Therefore, they are expected to be small
in the third, adiabatic intermediate region. A double series
expansion of Eq. �3.10� leads to

�ps = �3/4�� + �1/2�� + �3/32��2 + �3/8���

+ �1/8��2 + ¯ . �3.11�

The same type of analysis has been repeated for other
dynamical variables such as ṡ, ps

2, and ṡ2. The analogues of
Eqs. �3.10� and �3.11�have been calculated. In all cases, the
relative errors �ṡ, �ps

2, and �ṡ2 are found to be expressed in
terms of the two parameters � and �. Thus, although the
numerical coefficients that appear in their double series ex-
pansion differ from those that appear in Eq. �3.11�, the gen-
eral conclusion is the same. Two independent conditions
must be fulfilled for the adiabatic approximation to be ful-
filled: ��1 and ��1.

IV. DISCUSSION

A. Dynamic and static coupling

An important conclusion emerges from Eq. �3.11�: The
validity of the adiabatic approximation is completely inde-
pendent of the function V�s�, i.e., of the profile of the poten-
tial energy along the reaction path �Morse function, inverse
power law, etc�.
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The accuracy of the adiabatic approximation is found to
be determined by two independent parameters, ��s� and
��s�. Each one plays its specific role. The interaction be-
tween translation and vibration that results from the curva-
ture of the reaction path �i.e., from a nonzero value of �� has
been termed the “dynamic coupling.”17,18 It subsists even
when the vibrational potential does not depend on s, i.e.,
even when ���s�=0. The “static coupling” between transla-
tion and vibration results from the dependence of the vibra-
tional frequency � on s, i.e., from the nonzero value of
��.17,18 This coupling subsists even when the curvature of
the reaction path is equal to zero.

In the present work, both parameters � and � have been
defined locally, i.e., have been expressed as a function of the
reaction coordinate s. This is in clear contrast with the Mas-
sey parameters reported in the literature for the same
process,17,18 which are integral parameters, i.e., numbers.
They result from S-matrix scattering calculations which aim
at calculating the probability of transition resulting from a
complete collision process.

The Hamiltonians H�s , ps ,q ,J� and Had�s , ps �J� exist
only provided that ��1.19 The elementary requirement that
ps

ad calculated by Eq. �3.8� be real leads to a further condition
on � :16��s�	���s���1. This condition can be transformed
further if the exact expression of 	��� �Eq. �3.5�� is replaced
by an excellent approximation,

	��� � �1/16���1 + �/2�/�1 − ��� , �4.1�

which generates an explicit condition of the validity of the
adiabatic approximation,

� � �1 − ��/�1 + �/2� = 1 − �3/2�� + �3/4��2 + ¯ .

�4.2�

The corrections to the translational energy with respect
to its zero-order expression ps

2 /2 can be obtained by substi-
tuting Eq. �3.5� or �4.1� into Eq. �3.6�:

��s� = �ps
2/2��1 + 3�/2 + � + 3�� + 15�2/8 + �2 + ¯ � .

�4.3�

We now try to specify the physical meaning of param-
eters � and �.

B. Dynamic coupling and dividing surfaces

It is possible to give a clear and intuitive meaning to the
adiabatic parameter �. The vibrational energy Evib can be
expressed either as J� or as �1/2��2xm

2 , where xm is the
�mass weighted� amplitude of the harmonic vibration. Then,
from Eq. �3.2�,

��s,J� = �xm�s,J�/R�s��2, �4.4�

where R�s�=��s�−1 is the radius of curvature of the reaction
path. Therefore, a necessary condition of validity of the adia-
batic approximation for a particular value of J is that the
amplitude of the vibrations normal to the reaction path
should be much smaller than the radius of curvature of the
reaction path �both being expressed in mass-weighted units�.
Now, in the inner region, close to the bottom of the potential
well, the reaction path is strongly curved and R is very small.

The internal energy is mostly kinetic. The coupling param-
eter � is then very large and there is no restriction to energy
flow, as should be the case in the statistical region. The op-
posite must be true in the third region of the reaction path
where the adiabatic approximation is valid.

On this basis, a criterion for locating a particular divid-
ing surface in barrierless reactions can be proposed. The cri-
terion is based, not on the geometrical properties of the
potential-energy surface, but on the validity of the adiabatic
approximation. The value �=1 indicates the onset of the
range where the adiabatic approximation starts to be math-
ematically possible. However, this value is too large to re-
strict interaction between translation and vibration. A better
choice to locate the onset of genuine adiabatic decoupling
might be a value s* at which, say, �=0.2. Then, the onset of
the domain where the reaction coordinate is decoupled
would be characterized by the condition xm�s*���0.2R�s*�.

Of course, this criterion does not generate the sharply
defined dividing surface postulated by the conventional tran-
sition state theory. It should be best interpreted as defining a
fuzzy region separating two regions of space: one where en-
ergy flows freely, and one where the adiabatic invariance
hinders energy exchange between the reaction coordinate
and the perpendicular vibrations.

Other theories4–6,38 have been developed where transi-
tional modes are assumed to be nonadiabatic in a certain
range and adiabatic beyond a certain value of the reaction
coordinate. The present treatment provides its own specifica-
tion for choosing this value.

To illustrate further the difficulty in defining a sharp di-
viding surface, note that the proposed criterion is J depen-
dent. This concurs with other statistical theories of unimo-
lecular reactions, as the variational transition state
theory1,4,9,23–25 or SACM,32–36 in pointing out that each dis-
sociation channel is characterized by its own generalized
transition state and is to be analyzed individually. This is true
even when the overall rotational degree of freedom is disre-
garded.

C. Static coupling and influence of the internal
energy

Parameter �, defined in Eq. �3.7�, controls the static cou-
pling. Apart from a factor of 1 /16, � measures the ratio
between the diagonal part of the nonadiabatic coupling27 and
the energy � along the reaction coordinate.

Interestingly, the three quantities which make up the ra-
tio J�� /� often vary in a concerted way. At a given internal
energy, a high-frequency stretching mode �large �� has a low
classical action J. Furthermore, its frequency often has a
characteristic value which usually varies little along the re-
action path �small ���. Reversing the argument, translational
energy is expected to flow preferentially into transitional
modes.

However, the magnitude of � also depends on the prop-
erties of the other subsystem. By definition, � is a decreasing
function of �. This contrasts with the usual requirement that
the translational motion be slow for the adiabatic approxima-
tion to hold.

074324-4 Pavlov-Verevkin and Lorquet J. Chem. Phys. 123, 074324 �2005�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

139.165.205.242 On: Tue, 01 Sep 2015 15:10:48



A simple expression obtains in a typical situation where,
in the third region, the vibrational frequency � varies expo-
nentially as a function of the reaction coordinate s,

��s� = �0 exp�s/sr� , �4.5�

with sr either positive or negative. A large value of sr implies
a stiff vibration. Conversely, sr should be small for transi-
tional modes. Then, Eq. �3.7� transforms into

��s� = J2/�16 ��s�sr
2� . �4.6�

In this expression, the properties of the two subsystems
are mixed. However, � is not a Massey parameter because it
does not express the ratio between the range of a potential
and the distance traveled during a vibrational period, or the
ratio between two different time scales.

D. Conclusions

The appropriate way to discuss the validity of the adia-
batic approximation in the study of exit-channel dynamics is
not in terms of a decoupling between two subsystems, one
fast and one slow, in spite of the fact that the derivation of
Eq. �3.3� from Eq. �3.1� has been justified by the shortness of
the vibrational period.

The ratio of the actual classical velocities of the transla-
tional and vibrational motions appears nowhere. Note that
the latter concept is not very appropriate for the present pur-
poses: during a vibrational period, the velocity varies be-
tween zero �at the turning point� and a maximum value �at
the equilibrium position�. The use of an averaged velocity
v̄= �J��1/2, which results from the equipartition theory, does
not improve the analysis because what is involved in both
parameters � and � is the ratio J /� �Eqs. �3.2� and �3.7��.
This makes any attempt to relate them to the concept of
vibrational velocity problematic.

V. THE MULTIDIMENSIONAL CASE

Miller et al. have derived the expression of the classical
multidimensional Hamiltonian in terms of mass-weighted
normal coordinates Qk and conjugate momenta Pk �Eq.
�2.17� of Ref. 27�. These coordinates can be replaced by
harmonic action-angle coordinates Jk and qk. The canonical
transformation involves a F2-type generating function and
has been fully described by these authors. This leads to an
action-angle Hamiltonian which generalizes Eq. �3.1�. It now
contains matrix elements Bk��s� that result from the Coriolis-
type coupling among the different N vibrational modes in-
duced by the motion along the curved reaction coordinate.
The matrix elements �k�s� describe the partitioning of the
curvature among the N vibrational modes. Assuming small
values of the different coupling elements �k�s�, �k��s�, and
Bk��s�, this Hamiltonian can be expressed as an awkward
multidimensional series expansion. However, many terms
vanish upon averaging over the angles qk. This leads to the
vibrationally adiabatic Hamiltonian for the s motion, which,
when limited to its leading terms, reads

Had�s,ps�
Jk�� =
1

2
ps

2�1 +
3

2�
k

N

�k�s��
+

1

16�
k

N � Jk�k��s�
�k�s� �2

+
1

2�
k

N

�
�

N

Bk��s�2JkJ�

���s�
�k�s�

+ �
k

N

Jk�k�s� + V�s� , �5.1�

where

�k�s� = 2 Jk�k�s�2/�k�s� . �5.2�

Just as done previously in Sec. III, the value of ps
ad is

derived from the equation Had=E, and is substituted in Eqs.
�3.9� and �3.10�. This leads to the accuracy index of the
adiabatic approximation,

�ps =
3

4�
k

N

�k�s� +
1

2�
k

N

�k�s�

+
1

4��s��k

N

�
�

N

Bk��s�2JkJ�

���s�
�k�s�

, �5.3�

where

�k�s� =
1

16��s��k

N � Jk�k��s�
�k�s� �2

�5.4�

and

��s� = E − V�s� − �
k

N

Jk�k�s� . �5.5�

VI. ADIABATIC APPROXIMATION IN POLYATOMIC
MOLECULES

Oudejans et al.8 have drawn a number of key observa-
tions from photodissociation experiments. We now select a
few quotations from their article and show that one can draw
a parallel between their analysis and Eq. �5.3�.

Each term of the summation in �5.3� is positive: no for-
tuitous cancellation is to be expected. Each term decreases
regularly as s increases, but at its own pace. Quoting from
Ref. 8: “It is doubtful that the onset of adiabaticity will occur
at the same region of the reaction path for all modes.”

In a polyatomic system, the reaction coordinate is pref-
erentially coupled to vibrational modes characterized by
large values of the coupling parameters �k and �k. It follows
from Eqs. �3.7�, �4.4�, and �5.4� that translational energy can
be expected to flow preferentially into soft modes character-
ized by large amplitudes �dynamic coupling� and by a rap-
idly variable frequency along the reaction path �static cou-
pling�. This accounts for the preferential couplings to
transitional modes. Stiff modes, on the other hand, tend to
evolve adiabatically. Quoting again from Ref. 8, “The theory
must allow a hierarchy of couplings and adiabaticities for the
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vibrational and rotational degrees of freedom.” “It is clear
that, as one might expect, the high-frequency modes of the
system �high-energy vibrations and rotations� tend to evolve
adiabatically, while the lower-frequency �transitional� modes
display considerable nonadiabatic couplings.”

Note finally that Eq. �5.3�, seen as a criterion for the
validity of the adiabatic approximation is based on the simi-
larity between two phase portraits: that derived from the
adiabatic Hamiltonian in �5.1� and that derived from the
more general Hamiltonian after projection on the subspace
�s , ps�. Therefore, a value �ps�1 indicates separability be-
tween the reaction coordinate and the bath of orthogonal
oscillators. However, it does not follow that each particular
action Jk is individually conserved. No indication whatever
on a possible energy redistribution among the N oscillators
can be derived from the smallness of �ps.

VII. THE MAXIMUM ENTROPY METHOD

A very successful analysis of product energy
distributions,39–42 in particular of KERDs,43–49 is provided by
the maximum entropy method �MEM�. The theory starts
from the concept of prior distribution, which is defined as a
limiting case where all available quantum states of the pair
of fragments are populated with equal probability. Thus, the
prior distribution represents the full statistical situation, i.e.,
the hypothetical KERD that would have been obtained in the
case of totally unconstrained dynamics �excepting the obvi-
ous constraint resulting from energy conservation�. The
method then establishes that any discrepancy between an ex-
perimental KERD P�� �E� and the prior distribution P0�� �E�
can be expressed in the form

P���E� = P0���E�exp�− 0�exp�− 1A1� . �7.1�

In this equation, E denotes the excess internal energy
with respect to the dissociation asymptote, A1 is an observ-
able related to the dynamical constraint that prevents the re-
action from being statistical, while 0 and 1 are Lagrange
multipliers. Note that Eq. �7.1� is really a one-parameter ex-
pression, because 0 is determined by the condition that the
distributions P�� �E� and P0�� �E� should both be normalized.

The presence of dynamical constraints leads to incom-
plete phase-space sampling and reduces the information-
theoretic entropy S. In the MEM language, this reduction is
measured by a so-called entropy deficiency DS equal to39–49

DS = − 0 − 1�A1 , �7.2�

where �A1 denotes the average value of A1,

�A1 = 	
0

E

A1P���E�d� . �7.3�

When defined with a fine-grained description of the
states, S is a constant of motion.41 Hence, S and DS are
determined by the initial conditions.41

In the present case, the MEM has to incorporate a dy-
namical constraint resulting from the adiabatic separation be-
tween the reaction path coordinate s and the orthogonal de-
grees of freedom within a one-dimensional model describing
the motion along the reaction path. Now, introducing a con-

straint in the dynamics of a system can be done at the level
of either the equations of motion or at the level of the initial
conditions. In the first case, an invariance principle is intro-
duced �e.g., conservation of energy or of angular momen-
tum�. In the second case, it may be specified, e.g., that the
initial excitation obeys the Franck-Condon principle.50

In the matter in hand, the nature of the observable A1

involved in the constraint can be understood by applying
Jacobi’s form of the least action principle51 to Had�s , ps� �Eq.
�3.3��. The actual trajectory is required to minimize the inte-
gral

	
s1

s2

�Had�s,ps� − Veff�s��1/2ds = min. �7.4�

If the quantity �Had−Veff�1/2=�1/2 is considered to be
proportional to an “index of refraction,” then Jacobi’s prin-
ciple is seen to be formally identical with Fermat’s principle
of geometrical optics. A description of collision dynamics in
terms of this generalized refractive index has been proposed
by several authors.52–54

In principle, Eq. �7.4� can be used everywhere to study
the dynamics. However, its application has particularly clear
consequences in the third region where the dynamics is well
described by a one-dimensional Hamiltonian Had�s , ps �J�. In
this case, � becomes a translational energy along the reaction
path, directly derivable from experiment. The application of
Jacobi’s principle is then straightforward because the posi-
tion of both points s1 and s2 is well defined: both are lying on
the reaction path.

Note that a variational principle confines itself with se-
lecting classical trajectories out of all virtual paths. It cannot
discriminate among possible classical trajectories. What Eq.
�7.4� indicates is that in order to obey the equations of mo-
tion, restrictions must be imposed on the possible values of
�1/2. Note furthermore that a restriction on the average ��1/2
does not imply any restriction on higher-order moments of
the distribution.40,50

Therefore, when the dynamics is analyzed in the inter-
mediate range where the adiabatic RPH model is valid and
where the conditions for vibrational adiabaticity are fulfilled,
the MEM selects the square root of the translational energy,
�1/2, as the appropriate variable in terms of which the major
correction to the statistical estimate can be expressed via Eq.
�7.1�. �By contrast, the Lagrange multipliers 0 and 1 are
determined by the initial conditions.41� This accounts for the
fact that, for barrierless dissociations of molecular cations in
an ion beam, decaying in an energy range where the lifetime
is on the microsecond time scale, KERDs are found in nearly
all cases43–49 to be satisfactorily described by the MEM
equation,

P���E� = P0���E�exp�− 0�exp�− 1�1/2� . �7.5�

Note, however, that there are exceptions to this rule. A
potential barrier along the reaction path is usually associated
with a structural reorganization. In that case, a simple expan-
sion of the form in �7.1� or �7.5� is no longer sufficient be-
cause the conversion of the barrier strongly influences the
KERD.49 Additional constraints and Lagrange multipliers are
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then required to relate the latter to the prior distribution.
Also, the experimental evidence is inconclusive for some
reactions conducted at too high internal energies �dissocia-
tion of the pyridine and benzene cations studied at E
�1.3 eV�.48 Presumably, the RPH model is then outside its
range of validity.27,55

It is particularly gratifying to note that the result of this
analysis does not depend on the number of vibrational de-
grees of freedom. More than that: the partitioning of the
vibrational energy among 3N−7 oscillators reduces the
quantum number �or the classical action� of each mode and
therefore reduces the coupling parameters �i, thereby favor-
ing vibrational adiabaticity.

A MEM analysis of experimental KERDs can also de-
termine the value and especially the sign of the Lagrange
multiplier 1. As shown by Eq. �7.5�, a positive sign �1

�0� implies that the average translational energy �� �i.e.,
the first moment of the distribution P�� �E�� is smaller than
the statistical estimate. This is found to be the case for nearly
all of the barrierless reactions studied so far. The interpreta-
tion is clear. The energy partitioning in the inner region is
determined by statistical mechanics. Immediately after leav-
ing that region, all degrees of freedom are in a state of equi-
librium. Loosely speaking, they have the same temperature.
As the system proceeds in the intermediate region, the trans-
lational energy �= �ps

2 /2��1−��s��−3/2 must decrease along
the reaction coordinate. The reason is that the potential en-
ergy increases steadily while the adiabatic regime prevents
vibrational energy from flowing into the reaction coordinate.
Hence, the s subsystem gets colder, which implies 1�0.

VIII. CONCLUDING REMARKS

Energy is not always fully randomized in an activated
molecule because of the existence of dynamical constraints.
Their presence can be discerned by a MEM analysis based
on the comparison between the experimental KERD and the
prior distribution P0�� �E�.39–42 Only a single one can be de-
tected in the barrierless dissociation of molecular cations de-
caying on the microsecond time scale. It has been identified
with �1/2 in nearly all cases studied so far.43–49 This leads to
the conclusion that, beyond the dividing surface roughly
characterized by the condition ��0.2, adiabatic invariance
decouples the reaction coordinate from the perpendicular de-
grees of freedom. The dynamics can then be described as a
one-dimensional motion governed by the RPH expressed by
�5.1�.

In a more general context, note that two well-established
statistical theories of unimolecular reactions �RRKM1,2 and
OTST1,2,16,30,31� were each formulated for a particular model.
The former assumes short-range forces and strong intermode
couplings whereas the validity of the latter is limited to long-
range interactions and asymptotic values of the reaction co-
ordinate. The RPH method analyzes the situation from a
third vantage ground and the connection with the SACM is
particularly fruitful.

When the basic assumptions of the RPH model27,55 are
fulfilled, the effective adiabatic channel energy curves pos-
tulated in the SACM can be constructed in a range where the

reaction coordinate is moderately curved. This range is fol-
lowed by the asymptotic region 4 where SACM assumes
adiabatic behavior for the orbital and rotational states. Nec-
essary conditions of validity of this assumption have been
derived by Gridelet et al.31 for an ion-induced dipole inter-
action and by Nikitin and co-workers33–35 for an anisotropic
long-range electrostatic interaction. During the transition be-
tween regions 3 and 4, the transitional modes transform from
bending vibrations to rotations and orbital motion. Each re-
gion is thus characterized by its own degrees of freedom and
its own set of quantum numbers. The correlation between
both sets has been studied by Quack and Troe56 and by
Nikitin and Troe.57

However, the RPH theory is based on the simplest pos-
sible model. The vibrations are assumed to be harmonic and
to be coupled by a Coriolis-type interaction. Certainly, more
complicated situations exist where the potential energy re-
quires the inclusion of anharmonic and of additional cou-
pling terms. In such a case, the calculation of adiabatic chan-
nel potentials would require a more elaborate determination
of the appropriate action-angle variables, which is not a
trivial problem.

Nevertheless, the RPH model is thought to be suffi-
ciently realistic to deduce at least the most important features
that govern the adiabatic separation of translation and vibra-
tions. Moreover, some parts of our analysis may be transfer-
able to more elaborate models.

Some connection with quantum mechanics can be found
in the work of Hose and Taylor.58 These authors have given
theoretical and experimental arguments for the existence of
so-called extreme-motion states, which can be thought of as
consisting of a highly excited anharmonic oscillator �in our
case the reaction coordinate� accompanied by a set of har-
monic oscillators in their ground vibrational state. These
states are generally not strongly coupled to other zero-order
states characterized by a more uniform distribution of the
internal energy, especially if the excitation is localized in a
high-frequency stiff mode. They are found to exist even in
the continuum above dissociation. Furthermore, Hose and
Taylor have shown that, as a result of a quantum version of
the Kolmogorov-Arnold-Moser theorem,51 such a situation
implies the existence of a set of action variables Jk. The
available experimental evidence59,60 supports the validity of
an adiabatic separation very similar to the one that has been
presented here.

ACKNOWLEDGMENT

Financial support from the Gouvernement de la Commu-
nauté Française de Belgique via an “Action de Recherche
Concertée” �Grant No. ARC 99-04/245� is gratefully ac-
knowledged.

1 T. Baer and W. L. Hase, Unimolecular Reaction Dynamics. Theory and
Experiments �Oxford University Press, New York, 1996�.

2 W. Forst, Unimolecular Reactions. A Concise Introduction �Cambridge
University Press, Cambridge, 2003�.

3 R. A. Marcus, J. Chem. Phys. 45, 4500 �1966�.
4 R. A. Marcus, Chem. Phys. Lett. 144, 208 �1988�.
5 G. L. Hofacker and R. D. Levine, Chem. Phys. Lett. 9, 617 �1971�.
6 G. L. Hofacker and R. D. Levine, Chem. Phys. Lett. 15, 165 �1972�.

074324-7 Exit dynamics in unimolecular reactions J. Chem. Phys. 123, 074324 �2005�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

139.165.205.242 On: Tue, 01 Sep 2015 15:10:48



7 D. G. Truhlar and D. A. Dixon, in Atom-Molecule Collision Theory. A
Guide for the Experimentalist, edited by R. B. Bernstein �Plenum, New
York, 1979�, p. 595.

8 L. Oudejans, R. E. Miller, and W. L. Hase, Faraday Discuss. 102, 323
�1995�.

9 S. J. Klippenstein, Adv. Ser. Phys. Chem. 6, 120 �1995�.
10 K. Bolton, H. B. Schlegel, W. L. Hase, and K. Song, Phys. Chem. Chem.

Phys. 1, 999 �1999�.
11 L. Sun and W. L. Hase, J. Chem. Phys. 121, 8831 �2004�.
12 L. Bonnet and J. C. Rayez, Phys. Chem. Chem. Phys. 1, 2383 �1999�.
13 P. Larregaray, L. Bonnet, and J. C. Rayez, J. Chem. Phys. 114, 3349

�2001�.
14 T. Baer, Adv. Chem. Phys. 64, 111 �1986�.
15 J. Laskin and C. Lifshitz, J. Mass Spectrom. 36, 459 �2001�.
16 B. Leyh and J. C. Lorquet, in The Encyclopedia of Mass Spectrometry,

edited by P. B. Armentrout �Elsevier, Amsterdam, 2003�, Vol. 1, p. 17.
17 S. F. Wu and R. D. Levine, Mol. Phys. 22, 881 �1971�.
18 M. S. Child, Molecular Collision Theory �Academic, London, 1974�.
19 H. Wang and W. L. Hase, Chem. Phys. 212, 247 �1996�.
20 I. Hamilton and P. Brumer, J. Chem. Phys. 82, 595 �1985�.
21 W. L. Hase, in The Encyclopedia of Mass Spectrometry, edited by P. B.

Armentrout �Elsevier, Amsterdam, 2003�, Vol. 1, p. 40.
22 T. G. Lee, M. S. Kim, and S. C. Park, J. Chem. Phys. 104, 5472 �1996�.
23 D. G. Truhlar, W. L. Hase, and J. T. Hynes, J. Phys. Chem. 87, 2664

�1983�.
24 D. G. Truhlar, B. C. Garrett, and S. J. Klippenstein, J. Phys. Chem. 100,

12771 �1996�.
25 W. L. Hase, Acc. Chem. Res. 16, 258 �1983�.
26 K. Fukui, J. Phys. Chem. 74, 4161 �1970�.
27 W. H. Miller, N. C. Handy, and J. E. Adams, J. Chem. Phys. 72, 99

�1980�.
28 J. O. Hirschfelder, Int. J. Quantum Chem. IIIS, 17 �1969�.
29 X. Chapuisat, A. Nauts, and G. Durand, Chem. Phys. 56, 91 �1981�.
30 W. J. Chesnavich and M. T. Bowers, Prog. React. Kinet. 11, 137 �1982�.
31 E. Gridelet, J. C. Lorquet, and B. Leyh, J. Chem. Phys. 122, 094106

�2005�.
32 J. Troe, J. Chem. Phys. 87, 2773 �1987�.
33 A. I. Maergoiz, E. E. Nikitin, J. Troe, and V. G. Ushakov, J. Chem. Phys.

105, 6263 �1996�.
34 A. I. Maergoiz, E. E. Nikitin, J. Troe, and V. G. Ushakov, J. Chem. Phys.

117, 4201 �2002�.
35 E. E. Nikitin and J. Troe, Ber. Bunsenges. Phys. Chem. 101, 445 �1997�.

36 J. Turulski and J. Niedzielski, J. Chem. Soc., Faraday Trans. 86, 1
�1990�.

37 D. G. Truhlar, R. Steckler, and M. S. Gordon, Chem. Rev. �Washington,
D.C.� 87, 217 �1987�.

38 B. C. Garrett, D. G. Truhlar, J. B. Bowman, and A. F. Wagner, J. Phys.
Chem. 90, 4305 �1986�.

39 R. D. Levine and R. B. Bernstein, in Dynamics of Molecular Collisions,
edited by W. H. Miller �Plenum, New York, 1976�, Pt. B, p. 323.

40 R. D. Levine and J. L. Kinsey, in Atom-Molecule Collision Theory. A
Guide for the Experimentalist, edited by R. B. Bernstein �Plenum, New
York, 1979�, p. 693.

41 R. D. Levine, Adv. Chem. Phys. 47, 239 �1981�.
42 R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics and

Chemical Reactivity �Oxford University Press, New York, 1987�.
43 P. Urbain, F. Remacle, B. Leyh, and J. C. Lorquet, J. Phys. Chem. 100,

8003 �1996�.
44 P. Urbain, B. Leyh, F. Remacle, A. J. Lorquet, R. Flammang, and J. C.

Lorquet, J. Chem. Phys. 110, 2911 �1999�.
45 P. Urbain, B. Leyh, F. Remacle, and J. C. Lorquet, Int. J. Mass. Spectrom.

185–187, 155 �1999�.
46 A. Hoxha, R. Locht, A. J. Lorquet, J. C. Lorquet, and B. Leyh, J. Chem.

Phys. 111, 9259 �1999�.
47 J. C. Lorquet and A. J. Lorquet, J. Phys. Chem. A 105, 3719 �2001�.
48 E. Gridelet, R. Locht, A. J. Lorquet, J. C. Lorquet, and B. Leyh, Int. J.

Mass. Spectrom. 228, 389 �2003�.
49 D. Fati, A. J. Lorquet, R. Locht, J. C. Lorquet, and B. Leyh, J. Phys.

Chem. A 108, 9777 �2004�.
50 V. B. Pavlov-Verevkin and J. C. Lorquet, J. Phys. Chem. A 106, 6694

�2002�.
51 H. Goldstein, C. Poole, and J. Safko, Classical Mechanics �Addison-

Wesley, San Francisco, 2002�.
52 D. W. Jepsen and J. O. Hirschfelder, J. Chem. Phys. 30, 1032 �1959�.
53 B. H. Mahan, J. Chem. Educ. 51, 308 �1974�.
54 B. H. Mahan, J. Chem. Educ. 51, 377 �1974�.
55 W. H. Miller, J. Phys. Chem. 87, 3811 �1983�.
56 M. Quack and J. Troe, Ber. Bunsenges. Phys. Chem. 78, 240 �1974�.
57 E. E. Nikitin and J. Troe, J. Chem. Phys. 92, 6594 �1990�.
58 G. Hose and H. S. Taylor, Chem. Phys. 84, 375 �1984�.
59 Y. S. Choi and C. B. Moore, J. Chem. Phys. 94, 5414 �1991�.
60 M. P. Jacobson, J. P. O’Brien, R. J. Silbey, and R. W. Field, J. Chem.

Phys. 109, 121 �1998�.

074324-8 Pavlov-Verevkin and Lorquet J. Chem. Phys. 123, 074324 �2005�

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

139.165.205.242 On: Tue, 01 Sep 2015 15:10:48


