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SUMMARY
Alluvial aquifers are generally composed of several facies with complex architectures and
interconnections depending on the fluvial system. In this context, electrical resistivity tomography (ERT)
may provide important information on the spatial distribution of hydrogeological parameters. However,
ERT inversion introduces some bias in the resulting resistivity distribution due to regularization and
resolution issues. In this study, we refine ERT inversions by incorporating prior information in order to
improve the identification of facies through a probabilistic relationship derived from collocated
measurements. We then analyze with synthetic cases the effect of spatially varying sensitivity on the
probabilistic relationship. As expected, when sensitivity decreases, the distributions of resistivity for the
different facies tend to be superimposed. A mean distribution thus overestimates the ability of surface ERT
to discriminate hydrofacies in depth.
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 Introduction 

Alluvial aquifers are generally composed of several facies (clay, loam, sand, gravel) with complex 
architectures and interconnections depending on the fluvial system. In this context, borehole logs and 
classical hydrogeological tests might not be sufficient to capture the complexity of the deposits and 
their influence on groundwater flow and solute transport. Geophysical methods can provide additional 
information on the spatial distribution of hydrogeological parameters. Among them, electrical 
resistivity tomography (ERT) is well-suited to study alluvial deposits. Indeed, the method has already 
been widely used to image deposits in alluvial aquifers and to improve the understanding of the 
depositional model (e.g., Bersezio et al., 2007; Doetsch et al., 2012). 

For qualitative purposes, a simple interpretation of the tomograms may be sufficient. However, for a 
more quantitative integration of geophysical data into subsurface models, it is necessary to consider 
issues such as the choice and accuracy of the considered petrophysical relationship(s) (Irving and 
Singha, 2010), the spatially-dependent resolution of tomograms (e.g., Ruggeri et al., 2013) or the 
effect of regularization on the results (Caterina et al., 2014). 

In this study, we use ERT to identify facies in an alluvial aquifer through a probabilistic relationship. 
First, ERT inversion is refined compared to traditional smoothness constraint inversion by 
incorporating detailed prior geostatistical and geological information. Then, the ability of ERT to 
identify facies is assessed using collocated borehole measurements and a probabilistic relationship is 
defined. Finally we analyze with synthetic cases the effect of spatially varying data sensitivity on this 
probabilistic relationship. 

Methods 

We used the program CRTOMO (Kemna, 2000) for ERT inversions. The objective function for the 
smoothness constraint solution is expressed as  
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where Wd is the data weighting matrix, f is the non-linear operator mapping the logarithm of the 
conductivities of the model m to the data set d, Wm is the roughness matrix, and λ is the regularization 
parameter. We consider the incorporation of prior information through the geostatistical regularization 
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where Cm is the model parameter covariance matrix and m0 is the prior model. The implementation of 
Cm (Caterina et al., 2014) enables the definition of non-stationarity by considering several zones with 
different correlation length in m0 that are disconnected during inversion. To assess the quality of the 
inversion, we use the cumulative sensitivity matrix (Kemna, 2000) 
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where J is the Jacobian of the last iteration. 

After inversion, we compare the ERT results with borehole logs to compute the distribution of 
resistivity ρ for each facies Ai (gravel, sand or clay): f(ρ|Ai). Using Bayes’ rule, this can be used to 
compute the conditional probability of each facies P(Ai|ρ) 
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where P(Ai) is the proportion of the facies deduced from boreholes. 

Effect of regularization 

We first test the ability of ERT to discriminate three facies (clay, sand and gravel) in the alluvial 
aquifer of the Meuse River on an experimental site of the University of Liege. The alluvial deposits 
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 are 10 to 12 m thick and lie on a Carboniferous shale bedrock. The position of the bedrock is known 
from borehole logs and seismic refraction surveying. 

The ERT data were collected on 64 electrode profiles with 2m spacing using a dipole-dipole 
configuration (n ≤ 6 and a ≤ 9). The error on the data was assessed using reciprocal measurements. 
We derived a linear error model with an absolute error of 0.002 Ohm and a relative error of 0.26%. 
The inversion was stopped when the RMS of the error weighted data misfit reached 1 (the data are 
fitted within their error level).  

Figure 1 Inversion of ERT data with (A) smoothness constraint and (B) non-stationary geostatistical 
inversion. (C) Comparison of resistivity distribution with electromagnetic logs in Pz3. 

The standard smoothness constraint inversion (Figure 1A) highlights important lateral resistivity 
variations in the deposits. However, the comparison with EM logs (Figure 1C), located in the middle 
of the profile, shows that this inversion fails to reproduce the decrease in resistivity between -5 and 
-10m. To improve this solution, we added independent information in the inversion process. From EM 
logs at the site, we deduced the correlation lengths of resistivity and computed the model parameter 
covariance matrix (equation 2). We also built a prior model taking into account the position of the 
bedrock. We obtain the solution of Figure 1B which better fits the resistivity distribution in Pz3. 

Figure 2 Resistivity distribution of each facies obtained by comparison of ERT results with borehole 
logs. (A) The smoothness constraint inversion is not able to discriminate precisely sand and gravel 
because their mode is relatively close whereas (B) the geostatistical inversion identifies them better. 

In total 12 ERT profiles were considered and compared to the facies observed in 20 boreholes at the 
site. The proportion of clay, gravel and sand are respectively 18%, 42% and 40%. The ERT resistivity 
distribution was computed for each facies and each inversion method. We see in Figure 2 that the 
geostatistical inversion is able to better discriminate the sand and gravel facies. The smaller resistivity 
of gravel is attributed to its higher water content and the absence of fine sediments. 

Figure 3 Probability maps of gravel obtained using equation 4 for the smoothness constraint solution 
(A) and the geostatistical solution (B). 
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Through Bayes’ rule (equation 4), we computed the probability of gravel according to the resistivity 
distribution (Figure 3). Due to the smoothing effect, the smoothness constraint solution (Figure 3A) 
tends to overestimate the probability of gravel below -5m. The differences are only due to the 
incorporation of prior information which enables us to better estimate the resistivity distribution. 
 
Effect of sensitivity 
 
The probability maps in Figure 3 were computed without considering the spatial variations in 
resolution and sensitivity of the ERT data. Indeed, it is well-known that the sensitivity of ERT 
surface-array data decreases rapidly when we move away from the electrodes, i.e. at the sides of the 
section and at depth (Figure 4). However, the effect on the probability distribution is difficult to see in 
the field due to a lack of data. 

 
Figure 4 The cumulative sensitivity distribution displays the well-known decrease with depth because 
the electrodes are located at the surface.   
 
To overcome this limitation, we have simulated 96 synthetic models with gravel (140 Ohm.m) and 
clay (100 Ohm.m) anomalies in a sand background (250 Ohm.m). We simulated the resistance data 
(same dipole-dipole configuration and noise level as the field data) and inverted all data sets with the 
smoothness constraint inversion.  
 

 
Figure 5 (A) Mean resistivity and double standard deviation interval according to the sensitivity for 
the different facies. The dotted lines represent the resistivity values used for forward modelling. (B) 
Conditional probability of facies for two different values of sensitivity.  
 
After inversion, we calculated the resistivity distribution for each facies according to the opposite of 
the logarithm of the sensitivity values classified in bins of 1 unit (e.g., 0 < - log10 S < 1). Figure 5A 
illustrates the results. We see that the standard deviations of the distributions are rather similar for the 
facies and independent of the depth, which means that the standard deviation is mainly related to the 
inversion process and regularization. In contrast, the means of the distributions are well separated for 
high sensitivities, whereas for low sensitivities they fall upon the same value, meaning that ERT is not 
informative regarding the true resistivity distribution anymore.  
 
Using Bayes’ rule, we computed the conditional probability at two different levels of sensitivity 
(Figure 5B). The solid lines correspond to high sensitivity, and show that the distributions are well-
identified and the intermediate facies (gravel) may be detected with a probability close to 90%. For 
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 low sensitivities (dotted lines), the distributions are superimposed and it is difficult to discriminate the 
facies. The maximum possible probability for gravel is around 50%. Only extreme values can be 
interpreted with confidence. 

Conclusions 

Our results confirm that electrical resistivity tomography is a suitable tool to image lateral and vertical 
heterogeneity in alluvial deposits. However, for a more thorough integration of geophysical results in 
hydrogeological models, it is necessary to quantify the uncertainty related to the predictions.  

We have used a probabilistic approach to analyze how surface ERT results were affected by the 
inversion procedure (regularization) and the sensitivity pattern. The results show that incorporating 
independent prior information is crucial to obtaining an ERT resistivity distribution closer to the true 
distribution. The use of a prior model based on seismic and borehole data, along with a geostatistical 
constraint, enabled to refine the resulting image. 

We investigated the role of sensitivity using synthetic simulations. They highlight that for high 
sensitivities, ERT is able to discriminate easily between different facies. However, when sensitivity 
decreases, the distributions of resistivity for the different facies tend to be superimposed, yielding a 
poor discrimination of facies. A mean distribution, as generally calculated for field cases, thus 
overestimates the ability of surface ERT to discriminate hydrofacies in depth, whereas it is 
underestimated near the surface.  
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