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(material nonlinearity, contacts)

8 bolted  
connections

Objective •	Compare different experimental substructuring techniques using two different systems
•	Discover the best practices for experimental-numerical substructuring

Substructuring Theory Experimental System Nonlinearity Characterization
•	Component Mode Synthesis (CMS) is used to combine two substructures to predict the dynamic response of  

the assembly

•	This is useful when testing a full assembly is impractical or trying to analyze the effects of  changing out 

different sub-assemblies

•	These predictions can be very sensitive to 

interface errors where two substructures  

are joined

•	In order to exercise the joints as seen in the 

assembly the experiment can be connected to 

known fixture or transmission simulator (TS)

•	 The Craig-Mayes method uses the transmission 

simulator theory to create an experimental  

Craig-Bampton like form of  the experimental results

•	 Experimental system consists of  the can-plate-beam system 	 
	 packed with foam and some internal instrumentation pieces

•	 Testing complete with low-level excitations to avoid non- 
	 linearities in the system

•	 14 Elastic modes extracted from experimental data

DETECTION - Wavelet Transform
Most nonlinear modes (exercising 
the joints)
•	Mode 1: First bending mode 

of  the beam in the horizontal 
plane 

•	Mode 2: First bending mode of  
the beam in the vertical plane

•	Mode 6: Axial mode, beam and 
internals out-of-phase

CHARACTERIZATION & 
QUANTIFICATION
Amplitude          Natural  
frequency 
Amplitude          Damping ratio  
Natural frequency variations
•	Mode 1: - 4% 
•	Mode 2: - 3% 
•	Mode 6: - 2.5%

PARAMETER ESTIMATION
Fitting a modal Iwan model  
on damping and natural 
frequency vs. amplitude  
curves using Hilbert transform

Beam Example Finite Element Model Substructuring Predictions
Substructuring B=D+C–A by

•	Craig-Mayes model of  C–A attached to 
Craig-Bampton model of  D ( CM-CB) and 
traditional transmission simulator (TS)

•	2 degrees of  freedom used at 3 node 
locations as connection

•	 Transmission components and properties

•	 System frequencies

•	 Transmission Simulator approach completed using 13 modes 
from the transmission simulator (A) and 17 modes of  the new 
subsystem (D)

•	 Modes of  system A kept up to 989 Hz
•	 Modes of  system D kept up to 1495 Hz

Convergence Test

•	In this simulation, the TS and CM-
CB method show similar convergence 
rates given the same TS and 
experimental modes

•	The convergence improves when TS 
modes estimate the connection points 
motion more accurately

•	After including sufficient (e.g., >6) 
experimental modes convergence 
rates show no significant 
improvement

•	Further improvement is observed 
when the first bending mode of  TS is 
included 
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HT Estimation
Modal Iwan
Fit, χ=0.27865
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Measurement	
  point	
  

Experiment	
  
[Hz]	
  

Can-­‐Plate-­‐Beam	
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  D	
  
ValidaAon	
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  [Hz]	
   %	
  Difference	
   [Hz]	
   %	
  Change	
  

134.2	
   136.8	
   1.90	
   137.2	
   2.23	
   101.9	
  

171.2	
   175.8	
   2.60	
   177.5	
   3.68	
   133.9	
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   97.32	
   848.5	
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