

How do "scoops" influence the perception of singing accuracy?

Pauline Larrouy-Maestri

Neuroscience Department Max-Planck Institute for Empirical Aesthetics

Peter Q Pfordresher

Auditory Perception and Action Laboratory
Psychology Department
University at Buffalo

Musical errors

Larrouy-Maestri, P., Lévêque, Y., Schön, D., Giovanni, A., & Morsomme, D. (2013). The evaluation of singing voice accuracy: A comparison between subjective and objective methods. *Journal of Voice*.

Musical errors

Larrouy-Maestri, P., Lévêque, Y., Schön, D., Giovanni, A., & Morsomme, D. (2013). The evaluation of singing voice accuracy: A comparison between subjective and objective methods. *Journal of Voice*.

Larrouy-Maestri, P., Magis, D., Grabenhorst, M., & Morsomme, D. (revision). Layman versus professional musician: Who makes the better judge? PlosOne

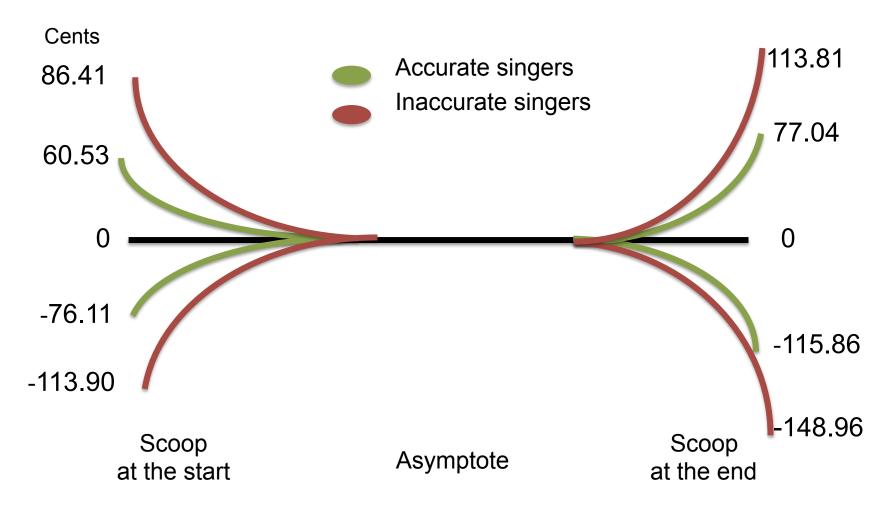
Pitch fluctuations within tones

Trained singers

- Vocal generosity effect (Hutchins et al., 2012)
- Complex signal (e.g. Larrouy-Maestri et al., 2014a; Sundberg, 2013) including vibrato (Ekholm et al., 1998; Garnier et al., 2007; Rothman et al., 1990)
- Influence on the perception of pitch accuracy (Larrouy-Maestri et al., 2014b)

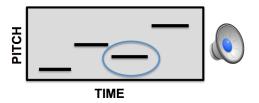
Untrained singers

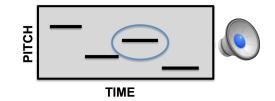
- Something happens at the start
 - Stevens & Miles (1928)
 - Few studies (Hutchins & Campbell, 2009; Saitou, Unoki, & Akagi, 2005) + Check poster of J. Mantell!


→ Pitch fluctuations within tones?

- Data analysis of Pfordresher & Mantell (2014)
- 12 "inaccurate" and 17 "accurate" singers
- Melodies of 4 notes: 1854 tones

Pitch fluctuations within tones


→ How do "scoops" influence the perception of singing accuracy?

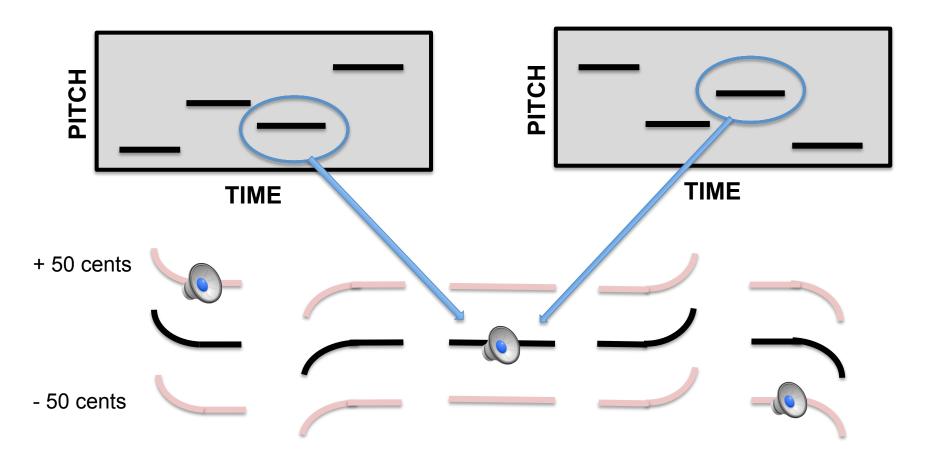


Experiments

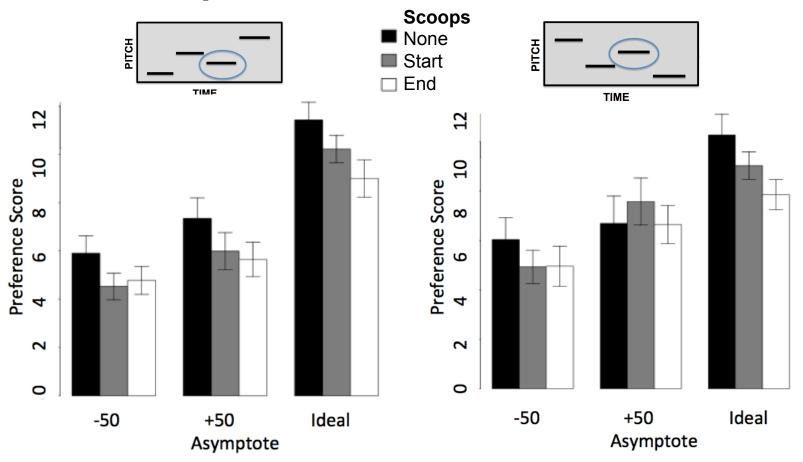
Two melodies

- Manipulations of one tone
 - Asymptote
 - Scoops at the start and/or at the end
- 102 undergrads in 4 Experiments
- For each melody
 - Pairwise comparison
 - Ranking from "most out of tune" to "most in tune"
 - → Reliability
 - → Effect of one/several manipulations on the rating

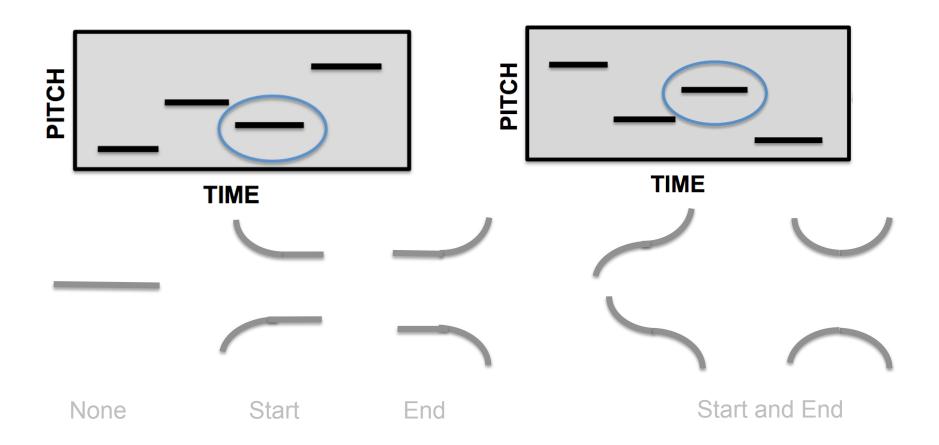
Comparaison par paires			
File			
Initialize			
Compare Sc Sc			
Which one is the most in tune?			
Sound 1Sound 2Similar			
Next			
Remaining Total			
98 105			
Save			



1. Do Scoops matter?

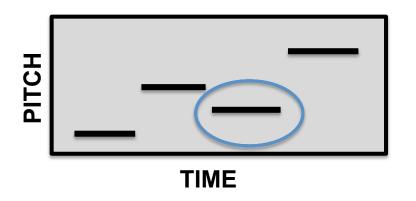


1. Do Scoops matter?



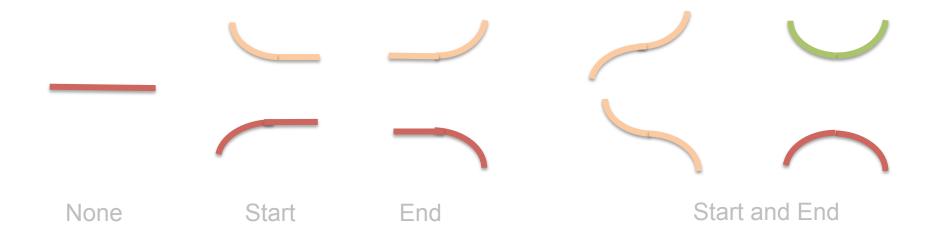
- → Effect of **Asymptote** (f(2,100) = 113.41, p < .001), but also of **Scoops** (f(1,50) = 35.03, p < .001)
- → Interaction Asymptote*Scoops (f(2,100) = 7.17, p < .001)
- → None > Start > End: Perfect > Motor adjustment > Lack of stability

2. Focus on the Scoops



- Asymptote: Ideal
- All kinds of scoops

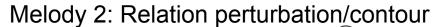
2. Focus on the Scoops: Relation with contour

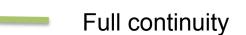

Melody 1: Relation perturbation/contour

No continuity

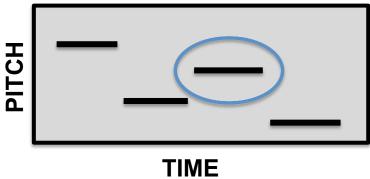
Semi continuity

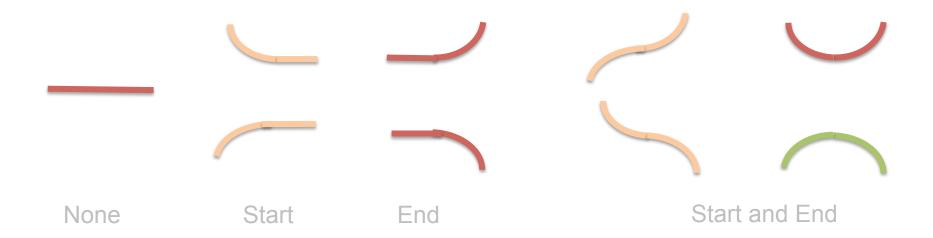
Full continuity



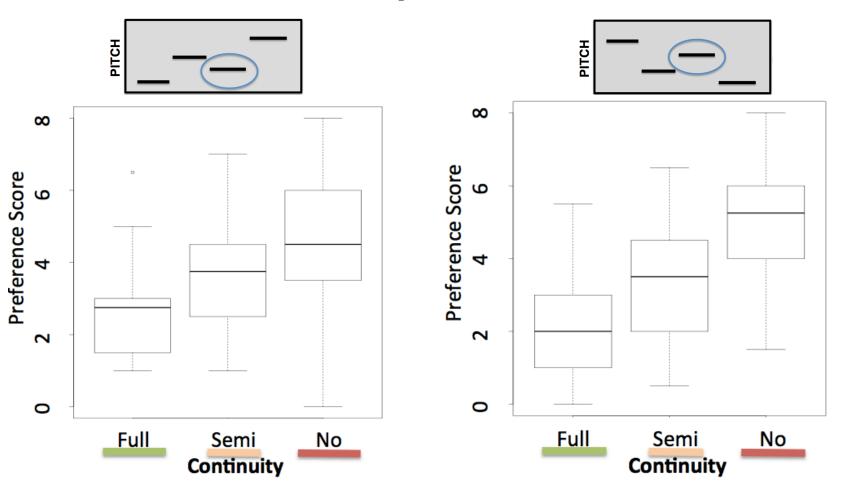


2. Focus on the Scoops: Relation with contour




No continuity

Semi continuity

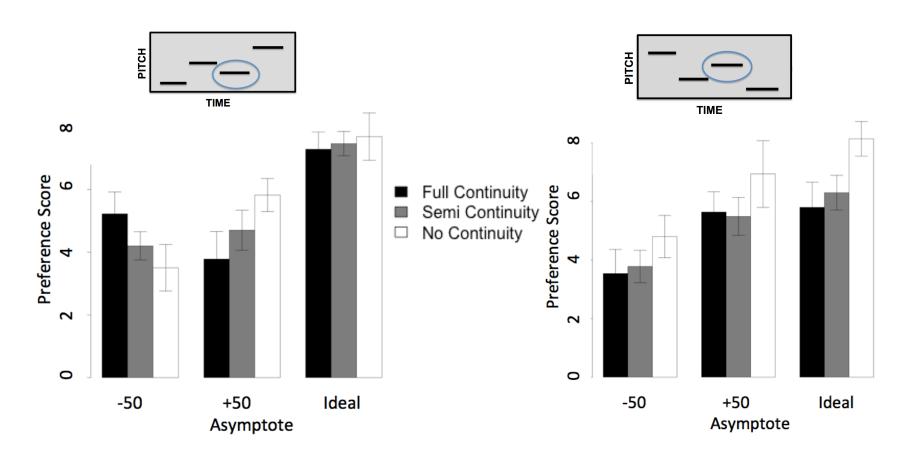


2. Focus on the Scoops: Relation with contour

- → Clear preference for NO continuity (f(2,102) = 66.66, p < .001): Role in segmentation between tones (glides make difficult to find the tone)
- → Argument for sequential process?

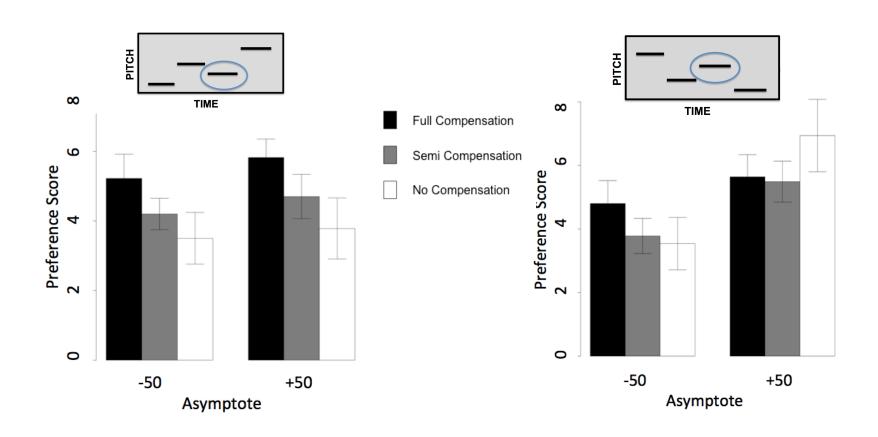
Summary

- Scoops matter, particularly at the end
- Preference for « no continuity »
- Relation with the global pitch of the tone


→ How do "scoops" influence the perception?

- sequential process
- averaging process
- Continuity versus Compensation
- New manipulations: Asymptote AND Start/End
- Same procedure with new participants

3. Continuity effect



→ Confirm the preference for **No continuity** (except for Melody 1, flat tone)

3. Compensation effect

→ Confirm the preference for Compensation (except for Melody 2, sharp tone)

3. Continuity vs. Compensation?

	Continuity	Compensation
TIME	ns	***
DITUME DITUME	**	ns

* <.05 ** <.01 *** <.001

- Both seem relevant
- It depends on the melody
 - Weird profile for "flat tone" in Melody 1 (continuity)
 - Weird profile for "sharp tone" in Melody 2 (compensation)
 - Because of the characteristic of these melodies?

→ What about melodies with different patterns?

4. Continuity vs. Compensation?

	Continuity	Compensation
TIME	ns	***
TIME	**	ns
TIME	*	**
TIME	*	***
All melodies	***	***

* <.05 ** <.01 *** <.001

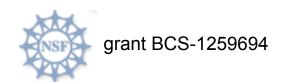
Take home message

- Scoops in singing performances
- Influence of Scoops in melodic perception
 - Global deviation of the tones does not tell the full story
 - Tolerance regarding motor constraints
 - Glides (i.e., continuity) make the melody sounds "out of tune"
 - → Opportunity to **refine objective tools** for pitch accuracy evaluation
- Multiple perspectives
 - Sequential: Preference for non-continuity/segmentation
 - Global: Average within tones
 - → Next step to answer this question: Rate, magnitude...

Undergrad assistance from UB

Malak Sharif

Zahra Malakotipour



Michael Wright

Paul Kovacs

Thank you for your attention!

Reference

- Ekholm, E., Papagiannis, G. C., & Chagnon, F. P. (1998). Relating objective measurements to expert evaluation of voice quality in western classical singing: Critical perceptual parameters. *Journal of Voice, 12*, 182–196.
- Garnier, M., Henrich, N., Castellengo, M., Sotiropoulos, D., & Dubois, D. (2007). Characterisation of voice quality in Western lyrical singing: From teachers' judgements to acoustic descriptions. *Journal of Interdisciplinary Music Studies*, *1*, 62–91.
- Hutchins, S., & Campbell, D. (2009). Estimating the time to reach a target frequency in singing. Ann N Y Acad Sci, 1169, 116-120.
- Hutchins, S., Roquet, C., & Peretz, I. (2012). The Vocal Generosity Effect: How Bad Can Your Singing Be? Music Perception, 30(2), 147-159.
- Larrouy-Maestri, P., Magis, D., Grabenhorst, M., & Morsomme, D. (revision). Layman or professional musician: Who makes the better judge? PlosOne.
- Larrouy-Maestri, P., Lévêque, Y., Schön, D., Giovanni, A., & Morsomme, D. (2013). The evaluation of singing voice accuracy: A comparison between subjective and objective methods. *Journal of Voice*, 27(2), 259.e251-e255.
- Larrouy-Maestri, P., Magis, D., & Morsomme, D. (2014a). Effects of melody and technique on acoustical and musical features of Western operatic singing voices. *Journal of Voice*.
- Larrouy-Maestri, P., Magis, D., & Morsomme, D. (2014b). The evaluation of vocal accuracy: The case of operatic singing voices. *Music perception*.
- Pfordresher, P. Q., & Mantell, J. T. (2014). Singing with yourself: evidence for an inverse modeling account of poor-pitch singing. Cognitive Psychology, 70, 31-57
- Rothman, H. B., Rullman, J. F., & Arroyo, A. A. (1990). Inter-and intrasubject changes in vibrato: Perceptual and acoustic aspects. *Journal of Voice*, *4*, 309-316.
- Saitou, T., Unoki, M., & Akagi, M. (2005). Development of an F0 control model based on F0 dynamic characteristics for singing-voice synthesis. Speech Communication, 46(3-4), 405-417.
- Stevens, F. A., & Miles, W. R. (1928). The first vocal vibrations in the attack in singing.
- Sundberg, J. (2013). Perception of Singing. In D. Deutsch (Ed.), *The psychology of music* (pp. 69-105). San Diego, CA: Academic Press.