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Université du Luxembourg, Campus Kirchberg, Mathematics Research Unit, BLG

6 rue Richard Coudenhove-Kalergi, L-1359 Luxembourg, Grand Duchy of Luxembourg

E-mail: yvik.swan@uni.lu

(Received September 16, 2011; Accepted March 1, 2012)

[Communicated by István Berkes]

Abstract

Let X = {Xn}n≥1 and Y = {Yn}n≥1 be two independent random

sequences. We obtain rates of convergence to the normal law of randomly

weighted self-normalized sums

ψn(X,Y ) =
∑n

i=1XiYi/Vn, Vn =
√
Y 2
1 + · · ·+ Y 2

n .

These rates are seen to hold for the convergence of a number of important

statistics, such as for instance Student’s t-statistic or the empirical correlation

coefficient.

1. Introduction

Let X = {Xn}n≥1 and Y = {Yn}n≥1 be two random sequences. In this paper

we investigate the rate of convergence to the normal distribution of the randomly

weighted self-normalized sums

ψn = ψn(X,Y ) =
n∑

i=1

XiYi/Vn, Vn =
√
Y 2
1 + · · ·+ Y 2

n . (1)
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The random variables ψn appear in some important statistics. For example,

when testing the null that the mean of a population Y is equal to 0, one uses the

Student t-statistic

Tn =

√
nȲ(

1
n−1

∑n
i=1(Yi − Ȳ )2

)1/2
.

Denoting by ψn = ψn(1,Y ) =
∑n

i=1 Yi/Vn the usual self-normalized partial sums,

one can easily see that

Tn = ψn[(n− 1)/(n− ψ2
n)]

1/2,

so that ψn and Tn are equivalent (in terms of a 1–1 correspondence). See, e.g.,

Efron [8], Logan et al. [13] or Giné et al. [10] for a discussion.

More generally, we could phrase the above testing problem as H0 : β = 0

versus H1 : β �= 0 in the linear model Zi = βXi + Yi. (The setup Xi = 1 for all

1 ≤ i ≤ n is contained as a special case.) Then ψn(X,Z), which reduces under

H0 to ψn(X,Y ), will serve as a natural test statistic. As a matter of fact our

research was originally motivated by this problem (see Hallin et al. [11]). We were

interested in obtaining asymptotic normality of this test under as general as possible

assumptions on the errors Yi.

Another related example where ψn appears is the empirical correlation co-

efficient. If the sequences X and Y are centered then the empirical correlation

is

ρn(X,Y ) = ψn(X,Y )/Bn =

∑n
k=1XkYk
BnVn

, Bn =
√
X2

1 + · · ·+X2
n.

We will see how, under moment conditions on X, convergence rates for ψn can be

transfered to ρn (see Lemma 2.2 below).

Besides their statistical applications, self-normalized sums have proven to be

challenging mathematical objects with interesting properties. As a consequence they

have attracted considerable attention in probability theory. For example Logan et

al. [13] studied the limiting distributions of ψn(1,Y ) when Y is a centered i.i.d.

sequence with heavy tails, and conjectured that ψn(1,Y ) is asymptotically normal

if and only if Y is in the domain of attraction of the normal law. Giné et al. [10]

proved that this conjecture holds true, while Chistyakov and Götze [7] settled the

question of the convergence of Student’s statistic by giving necessary and sufficient

conditions for these sums to allow limiting distributions which are not concentrated

on {±1}. More recently Benktus et al. [3] studied the limiting distribution of the

non-central t-statistic under different assumptions on Y ; they show, inter alia, how

this limiting distribution depends critically on the existence of fourth moments for

the Yi. For a comprehensive study of these and related questions we refer the reader

to the book Lai et al. [12].
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In a slightly different setup, Breiman [5] provides necessary and sufficient

conditions for the weak convergence of randomly weighted self-normalized sums of

the form
∑

iXiYi/
∑

i Yi. Mason and Zinn [14] settle several questions left open

by Breiman [5], and deduce the asymptotic distribution of ψn(1,Y ) in the case of

symmetry.

In this paper we will be interested in the rate of convergence to the normal

distribution of ψn(X,Y ) as well as of ρn(X,Y ). The case when X = 1 and {Yi}
are independent with finite variance is already well established. Bentkus et al. [2]

give sharp rates for convergence of Student’s statistic, and thus equivalently for

ψn(1,Y ), in the non-i.i.d. case. Explicit constants in these bounds were derived by

Shao [16]. See also Bentkus and Götze [4] for further references. There seem to be

no similar investigations for ψn(X,Y ). To the best of our knowledge, no similar

results for the convergence rate of the correlation coefficient ρn(X,Y ) exist.

Our approach is as follows. We first state in Lemma 2.1 a general result, which

is simple to prove and which provides a bound that holds without any hypothesis

on Y , be it on its moments or dependence structure. The main target is then to

work out the thus obtained rates explicitly by imposing different assumptions on the

sequence {Yi}. This is done through a number of subsequent results. An interesting

feature in our approach is that (with one exception) we do not work with truncation

arguments, even when assuming an infinite variance for the Y ’s.

We will state our main results in Section 2 below. The proofs are given in

Section 3.

2. Results

Recall that if P and Q are any probability measures on the real line, then

the Wasserstein distance is given by dW (P,Q) = suph∈H

∣∣∫ hdP − ∫
hdQ

∣∣ , where
H is the class of Lipschitz 1 functions, i.e., H = {h : R → R; ‖h′‖ ≤ 1} with

‖f‖ = supx∈R
|f(x)|. The Kolmogorov distance dK(P,Q) is defined similarly, with

H replaced by the class of indicator functions hz(·) = I{· ≤ z}, z ∈ R. If V and

S are random variables on the space (Ω,A, P ) then dW (V, S) will be written for

dW (P ◦ V −1, P ◦ S−1), where P ◦ V −1 is the image measure of V under P . Similar

is the definition for dK(V, S).

Throughout Z stands for a standard normal random variable and we are

interested in

dW (ψn(X,Y ), Z) and dW (ρn(X,Y ), Z),

and

dK(ψn(X,Y ), Z) and dK(ρn(X,Y ), Z),

under the assumption that X and Y are independent.

The following simple lemma gives the first step in our approach.
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Lemma 2.1. Let ψn(X,Y ) be defined as in (1), where X and Y are two

mutually independent sequences. Assume that {Xk} is i.i.d. with EX1 = 0, EX2
1 =

1, ξ3 = E|X1|3 <∞. Then

dK

(
ψn(X,Y ), Z

)
≤ 0.56 ξ3Δ, (2)

where

Δ =

n∑
k=1

E|δk,n|3 with δk,n = Yk/Vn. (3)

Furthermore

dW

(
ψn(X,Y ), Z

)
≤ ξ3Δ. (4)

Proof of Lemma 2.1. We show (2). Let Yn = (Y1, . . . , Yn), Fn(yn) be the

joint law of Yn and set v2n =
∑n

i=1 y
2
i . Then using a version of the Berry–Esseen

theorem for independent random variables, we obtain for any z ∈ R

|P (Z ≤ z)−P (ψn(X,Y ) ≤ z)|
=

∣∣∣
∫
Rn

P (Z ≤ z)− P (ψn(X,Y ) ≤ z|Yn = yn)dFn(yn)
∣∣∣

≤
∫
Rn

|P (Z ≤ z)− P (ψn(X,yn) ≤ z)| dFn(yn)

≤ CE|X1|3
∫
Rn

n∑
i=1

(yi/vn)
3dFn(yn) = Cξ3EΔ.

By a recent result of Shevtsova [17], C ≤ 0.56.

The proof of (4) can be done in the exact same way, using Corollary 4.2 in [6].

We remark that in Lemma 2.1 we do not put any restrictions on the sequence

{Yk}. This means that, in theory, we can obtain non-trivial bounds even if this

sequence is not independent or identically distributed. Of course, the difficulty then

resides in working out Δ explicitly, which we do under different assumptions in

Theorems 2.1, 2.2 and 2.3 below. We will see that Lemma 2.1 provides optimal

bounds in several special cases.

Let us consider first the following special case, which gives an application

to self-normalized sums ψn(1,Y ) when the Yi are not necessarily independent nor

identically distributed. We assume instead that

(Y1, . . . , Yn)
d
= (±Y1, . . . ,±Yn) (5)

for all choices of +,−. This form of symmetry, known as sign-symmetry, is more

general than spherical symmetry (see, e.g., Serfling [15]) and can be likened with

the concept of orthant symmetry discussed by Efron [8]. Sign-symmetry is obviously

satisfied if the Yi are symmetric and independent random variables. Under this

condition the following result (which should be also compared to Mason and Zinn

[14, Corollary 6]) holds.
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Corollary 2.1. Assume that (5) holds and set Sn =
∑n

k=1 Yk. Then

dW (Sn/Vn, Z) ≤ Δ and dK(Sn/Vn, Z) ≤ 0.56Δ,

with Δ =
∑n

k=1 E|δk,n|3.
The proof follows simply by applying Lemma 2.1 to ψn(X,Y ) with {Xk}

i.i.d. Rademacher variables, i.e., Xk = ±1 with probability 1/2. Then due to (5) we

have that Sn/Vn and ψn(X,Y ) have the same distribution.

The next lemma gives a simple criterion for switching from ψn(X,Y ) to

ρn(X,Y ). While we impose 4 moments for X1, we keep the assumptions on Y1
general.

Lemma 2.2. Let the assumptions of Lemma 2.1 hold and assume in addition

that m4 := EX4
1 <∞. Then, if n/ logn ≥ 8m4,

dW (ψn(X,Y ),
√
nρn(X,Y )) ≤

√
2m4

n
.

Let us consider once more the testing problemH0 : β = 0 versusH1 : β �= 0 in

the linear model Zi = βXi+Yi. The previous lemma in connection with Lemma 2.1

shows, if the regressors Xi are centered (a condition which is convenient but could

be modified) and have 4 moments then we get under H0 for very general errors Yi
the convergence of the correlation test statistic

√
nρn(X,Z) to the normal, with an

approximation error of order O(n−1/2 +Δ).

When {Yk} is a stationary sequence, then Δ = nE|δ1,n|3 and obtaining a

rate of convergence to the normal distribution is entirely reduced to calculating the

third absolute moment of δ1,n. We now concentrate on obtaining Δ under different

moment and tail assumptions on the sequence {Yk} under the i.i.d. setup. We first

work out Δ under the sole assumption E|Y1|p < ∞, p ∈ (2, 3]. In this case we

obtain the “usual” convergence rates.

Theorem 2.1. Let {Yi} be an i.i.d. sequence, let p ∈ (2, 3] and assume EY 2
1 =

1 and E|Y1|p <∞. Then

Δ = nE |δ1,n|3 ≤ nE |δ1,n|p ∼ E|Y1|p n1−p/2. (6)

(Note that the first inequality in (6) follows from |δ1,n| ≤ 1.)

Remark 2.1. A look at the proof of Theorem 2.1 suggests that similar results

may be obtained under different dependence conditions, too. In fact, besides some

purely analytic estimates, which hold for any sequence {Yk}, we only make use of

moment inequalities which exist in different generality for many weak dependence

and mixing concepts, respectively.

Next we consider the case when we have knowledge on the tail probabilities

of the Yk. Let Γ(p) denote Euler’s gamma function.
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Theorem 2.2. Let {Yi} be an i.i.d. sequence, let 1 ≤ α < 2 and assume

P (Y 2
k > x) ∼ �(x)x−α, where �(x) is slowly varying at ∞. If σ2

Y := EY 2
1 <∞, then

we have for any γ > α

nE |δ1,n|2γ ∼ Γ(γ − α)Γ(1 + α)

σ2
Y Γ(γ)

n1−α�(n).

Example 2.1. Consider the case P (|Y1|p > x) ∼ x−1(log x)−2, p ∈ (2, 3).

Then E|Y1|β = ∞ for any β > p, while E|Y1|p < ∞. Applying the above result

with γ = 3/2 we obtain

Δ = nE |δ1,n|3 ∼ Γ((3− p)/2)Γ(1 + p/2)

σ2
Y Γ(3/2)

n1−p/2

log2 n
.

Hence the additional knowledge of the tail behavior yields a slightly better rate than

the one obtained in (6).

We now turn to the case when we have infinite second moments.

Theorem 2.3. Let {Yi} be an i.i.d. sequence, let P (Y 2
1 > x) ∼ �(x)x−1, with

�(x) slowly varying at ∞. If E(Y 2
1 ) = ∞, then, for any γ > 1, we have

nE |δ1,n|2γ ∼ 1

γ − 1

�(an)

L(an)
,

where L(x) =
∫ x

(�(t)/t)dt and {an} is a sequence satisfying an ∼ nL(an).

Example 2.2. Assume that P (Y 2
1 > x) ∼ x−1(log x)−2. Then EY 2

1 < ∞
and by Theorem 2.2 we get that for all n ≥ 1

dK(ψn(X,Y ), Z) ≤ A(log n)−2,

for some large enough constant A. If P (Y 2
k > x) ∼ x−1(log x)−1 then EY 2

1 = ∞.

But since �̃(x) = log log x and an ∼ n log logn we still get by Theorem 2.3 applied

with γ = 3/2

dK(ψn(X,Y ), Z) ≤ A((log n) log logn)−1,

and thus an explicit convergence rate to the normal law.

We conclude with a result which shows that, even in the case when Y1 is in

the domain of attraction of an α-stable law with α strictly less but close to 2, we

can get non-trivial bounds.
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Theorem 2.4. Let {Yi} be an i.i.d. sequence, assume that P (|Y1| > x) ∼
�(x)x−α with α ∈ (0, 2). Then for any γ > 1

nE |δ1,n|2γ ∼ Γ(γ − α/2)

Γ(γ)Γ(1− α/2)
. (7)

Example 2.3. We apply this result with γ = 3/2. Let α = 2 − ε for small

ε > 0. Observing that under the above assumptions Γ(3/2− α/2)/Γ(3/2) < 2, and

1/Γ(ε) ∼ ε for ε→ 0, we get by Lemma 2.1 that for large enough n

dK(ψn(X,Y ), Z) ≤ 0.56 ξ3 ε.

When the distribution of the Yk is symmetric, we can conclude that for sufficiently

large sample size n we have dK(Sn/Vn, Z) ≤ 0.56 ε.

3. Proofs

In the sequel we need the following version of Hoeffding’s inequality (see, e.g.,

Shao [16, p. 145]).

Lemma 3.1. Let {Zi, 1 ≤ i ≤ n} be independent non-negative random vari-

ables with μ =
∑n

i=1EZi and σ
2 =

∑n
i=1EZ

2
i <∞. Then for 0 < x < μ

P
( n∑

i=1

Zi ≤ x
)
≤ exp

(
− (μ− x)2

2σ2

)
.

Proof of Lemma 2.2. Let

φ :=
√
nρn(X,Y ).

Note that φ =
√

n
B2

n
ψ. Then, for all h ∈ H, by the mean value theorem we get

(recall that ‖h′‖ ≤ 1)

|Eh(φ)− Eh(ψ)| ≤ E
[∣∣∣
√

n

B2
n

− 1
∣∣∣|ψ|].

Let ε ∈ (0, 1). Then the last term is bounded by 1
2A

(1)
n +A

(2)
n , where

A(1)
n := E

[∣∣∣ n
B2

n

− 1
∣∣∣|ψ|I{B2

n > (1− ε)n}
]

and

A(2)
n := E

[∣∣∣
√

n

B2
n

− 1
∣∣∣|ψ|I{B2

n ≤ (1− ε)n}
]
.
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Define κ4 = E(X2
1 − 1)2. Then

A(1)
n ≤ 1

1− ε
E
[∣∣∣ 1
n

n∑
i=1

(X2
i − 1)

∣∣∣|ψ|]

≤ 1

1− ε

(
E
[∣∣∣ 1
n

n∑
i=1

(X2
i − 1)

∣∣∣2])1/2

× (E|ψ|2)1/2 =
1

1− ε

√
κ4
n
.

For estimating A
(2)
n we use

|ψ| =
∣∣∣

n∑
i=1

Xi
Yi
Vn

∣∣∣ ≤ ( n∑
i=1

X2
i

)1/2( n∑
i=1

Y 2
i

V 2
n

)1/2

= Bn.

Thus

A(2)
n ≤ E|√n−Bn|I{B2

n ≤ (1− ε)n} ≤ √
nP (B2

n ≤ (1− ε)n).

By Lemma 3.1 we get that P (B2
n ≤ (1 − ε)n) ≤ exp(−ε2n/(2m4)). Collecting our

estimates we have

|Eh(φ)− Eh(ψ)| ≤ 1

2

1

1− ε

√
κ4
n

+
√
n exp(−ε2n/(2m4)).

For large enough n we have ε2 := (2m4 logn)/n ≤ 1/4, and since m4 = κ4 + 1 we

conclude

|Eh(φ) − Eh(ψ)| ≤
√
κ4
n

+
1√
n
≤

√
2m4

n
.

Proof of Theorem 2.1. Let Ỹi,n = Yi ∧ n1/p. Then

EỸ 2
i,n = 1− εn with εn → 0. (8)

Further

EỸ 4
i,n =

∫ n1/p

0

x4dP (Y1 ≤ x) ≤ n2/p

∫ ∞

0

x2dP (Y1 ≤ x) = n2/p. (9)

Now fix an arbitrarily small ε > 0 and let n be large enough in order to have

εn ≤ ε/2. Using Lemma 3.1 with (8) and (9) it follows that

P (Ỹ 2
2,n + · · ·+ Ỹ 2

n,n ≤ (1− ε)(n− 1)) ≤ exp
(
− ε2

8
(n− 1)1−2/p

)
. (10)

Next we observe that
( Y 2

1

Y 2
1 + · · ·+ Y 2

n

)p/2

≤ min
{
1,

|Y1|p
(Ỹ 2

2,n + · · ·+ Ỹ 2
n,n)

p/2

}

≤ I{Ỹ 2
2,n + · · ·+ Ỹ 2

n,n ≤ (1 − ε)n}+

+|Y1|p
( 1

n(1− ε)

)p/2

I{Ỹ 2
2,n + · · ·+ Ỹ 2

n,n > (1− ε)n}
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This and (10) give

nE|δ1,n|p = nE
( Y 2

1∑n
k=1 Y

2
k

)p/2

≤ nP (Ỹ 2
2,n + · · ·+ Ỹ 2

n,n ≤ (1− ε)n) + E|Y1|p
( 1

1− ε

)p/2

n1−p/2

∼ E|Y1|p
( 1

1− ε

)p/2

n1−p/2 (n→ ∞).

(11)

On the other hand, we have

nE
( Y 2

1∑n
k=1 Y

2
k

)p/2

≥ E|Y1|pI{|Y1|p < n}E
( 1

n−1
∑n

k=2 Y
2
k + n(2−p)/p

)p/2

n1−p/2

≥ E|Y1|pI{|Y1|p < n}
( 1

1 + n(2−p)/p

)p/2

P
( 1

n

n∑
k=2

Y 2
k ≤ 1

)
n1−p/2

∼ E|Y1|pn1−p/2 (n→ ∞),

(12)

where in the last step we used the law of large numbers to obtain P ( 1n
∑n

k=2 Y
2
k ≤

1) → 1. Now (11) holds for arbitrarily small ε > 0. Together with (12) the proof

follows.

Proof of Theorem 2.3. We borrow an idea of Albrecher and Teugels [1].

The crucial trick is to write

1

xγ
=

1

Γ(γ)

∫ ∞

0

sγ−1e−sxds, γ > 0.

Then, since

E
∣∣∣δ21,n

∣∣∣γ = E
∣∣∣ Y 2

1∑n
k=1 Y

2
k

∣∣∣γ ,
we obtain

E|δ21,n|γ =
1

Γ(γ)

∫ ∞

0

sγ−1 (ϕ1(s))
n−1

ϕ2(s)ds,

with ϕ1(s) := E(e−sY 2

1 ) and ϕ2(s) := E([Y 2
1 ]

γe−sY 2

1 ). Choosing an → ∞ such that

na−1
n L(an) → 1, one easily shows (see [1]) that for any s > 0

lim
n→∞

ϕn−1
1

( s

an

)
= e−s. (13)

In order to determine ϕ2(s) we introduce

Γγ,s(x) =

∫ x

0

tγe−stdt, γ > 1, s, x > 0.
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Note that limx→∞ Γp,s(x) = s−(γ+1)Γ(γ + 1). Further we let F be the distribution

function of Y 2
1 . Using integration by parts, we get∫ ∞

0

F (x)dΓγ,s(x) = s−(γ+1)Γ(γ + 1)−
∫ ∞

0

Γγ,s(x)dF (x).

A simple consequence is that∫ ∞

0

Γγ,s(x)dF (x) =

∫ ∞

0

(1 − F (x))dΓγ,s(x) =

∫ ∞

0

xγe−sx(1 − F (x))dx.

Since γΓγ−1,s(x) − sΓγ,s(x) = xγe−sx, we conclude that

ϕ2(s)=

∫ ∞

0

xγe−sxdF (x)

= γ

∫ ∞

0

Γγ−1,s(x)dF (x) − s

∫ ∞

0

Γγ,s(x)dF (x)

= γ

∫ ∞

0

xγ−1(1− F (x))e−sxdx− s

∫ ∞

0

xγ(1− F (x))e−sxdx.

By our assumption 1 − F (x) ∼ x−1�(x) and thus by Karamata’s Tauber theorem

(see, e.g., Bingham et al. [, Theorem 1.7.6]) we have for any ρ > −1∫ ∞

0

xρ(1− F (x))e−sxdx ∼ Γ(ρ)s−ρ�(1/s) as s→ 0.

Combining this with our just derived formula for ϕ2(s) we have for γ > 1

ϕ2(s) ∼ �(1/s)

sγ−1
Γ(γ − 1) as s→ 0. (14)

Finally consider the quantity

nE|δ21,n|γ =
n

Γ(γ)

∫ ∞

0

tγ−1ϕn−1
1 (t)ϕ2(t)dt.

It is easy to show that n
∫∞

ε tγ−1ϕn−1
1 (t)ϕ2(t)dt → 0 for all ε > 0. Hence we

can restrict the integration to the compact interval [0, ε], on which Lemma 5.1

of Fuchs et al. [9] can be used to uniformly bound the integrand above by an

integrable function. Using the already defined an, we therefore get from (13), (14)

and dominated convergence

nE|δ21,n|γ ∼
n

Γ(γ)

∫ ε

0

tγ−1ϕn−1
1 (t)ϕ2(t)dt

∼ n

Γ(γ)

( 1

an

)γ
∫ ∞

0

tγ−1ϕn−1
1 (t/an)ϕ2(t/an)dt

∼ Γ(γ − 1)

Γ(γ)

n�(an)

an
, as n→ ∞.

The relation n�(an)
an

∼ �(an)
L(an)

concludes the proof.

The proof of Theorem 2.2 is similar to the proof of Theorem 2.3 and will

therefore be omitted.
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