

EUROPEAN ASSOCIATION OF GEOSCIENTISTS & ENGINEERS

# Second EAGE Workshop on Geomechanics and Energy

The ground as energy source and storage

3-15 October 2015 Celle, Germany

www.eage.org





# 

### F. BERTRAND, R. CHARLIER, F. COLLIN & A.-C. DIEUDONNÉ

University of Liège

October 2015



# Introduction



# Introduction





# Different approaches to mitigate climate change:

- Improve energy efficiency;
- Increase use of renewable energy or nuclear power;
- Reforestation;
- $CO_2$  capture and storage.

# Introduction





# Different approaches to mitigate climate change:

- Improve energy efficiency;
- Increase use of renewable energy or nuclear power;
- Reforestation;
- CO<sub>2</sub> capture and storage.

Geological sequestration,

e.g. deep unmineable coal seams.



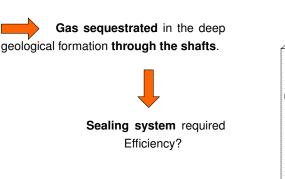

# Anderlues coal mine



Figure: Map of the outcropping or shallow subsurface coal basins (shaded area) in and around Belgium. Modified after [Piessens and Dusar, 2006].

1857-1969 : Coal exploitation, only 3.5% of the total coal volume extracted

1978-2000 : Former coal mine used as a reservoir for storage of natural gas



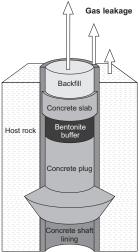
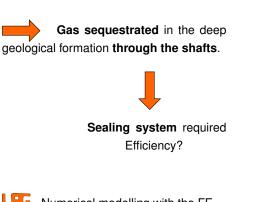
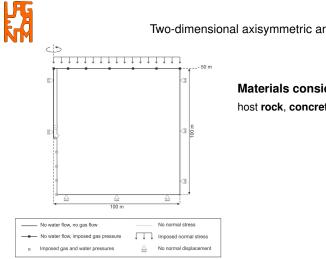




Figure: Layout of the sealing system used for the shaft n<sup>o</sup>6 of Anderlues coal mine.




Backfill Concrete slab Bentonite Host rock buffer Concrete plug Concrete shaft lining

Gas leakage

Figure: Layout of the sealing system used for the shaft nº6 of Anderlues coal mine.



Numerical modelling with the FE code Lagamine



Two-dimensional axisymmetric analysis:

Materials considered in the first model: host rock, concrete, bentonite and backfill.

Figure: Geometry and boundary conditions used for the hydromechanical analysis.

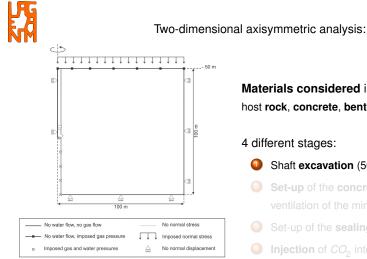



Figure: Geometry and boundary conditions used for the hydromechanical analysis.

Materials considered in the first model: host rock, concrete, bentonite and backfill.

- Shaft excavation (50 days)

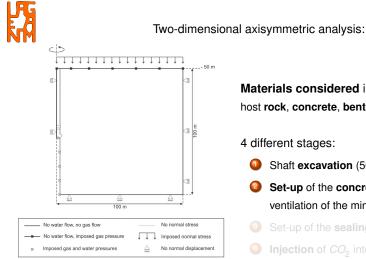



Figure: Geometry and boundary conditions used for the hydromechanical analysis.

Materials considered in the first model: host rock, concrete, bentonite and backfill.

- Shaft excavation (50 days)
- Set-up of the concrete shaft lining and ventilation of the mine (50 years)

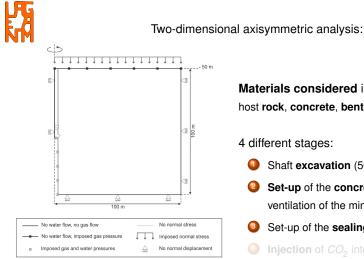



Figure: Geometry and boundary conditions used for the hydromechanical analysis.

Materials considered in the first model: host rock, concrete, bentonite and backfill.

- Shaft excavation (50 days)
- Set-up of the concrete shaft lining and ventilation of the mine (50 years)
  - Set-up of the sealing system (50 days)

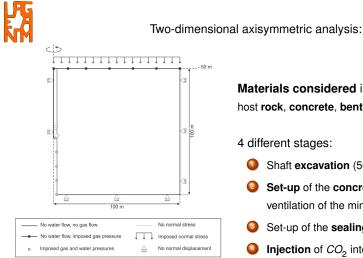



Figure: Geometry and boundary conditions used for the hydromechanical analysis.

Materials considered in the first model:

host rock, concrete, bentonite and backfill.

- Shaft excavation (50 days)
- Set-up of the concrete shaft lining and ventilation of the mine (50 years)
- Set-up of the sealing system (50 days)
- Injection of CO<sub>2</sub> into the mine (500 years)

# First 3 steps = establishment of the hydro-mechanical conditions

before CO<sub>2</sub> injection.

Shaft excavation (50 days)

- Set-up of the concrete shaft lining and ventilation of the mine (50 years)
- Set-up of the **sealing system** (50 days)
- Injection of CO<sub>2</sub> into the mine (500 years)

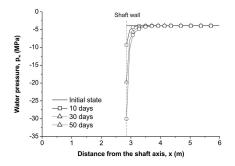



Figure: Evolution of pore water pressure profiles in the shale during the shaft excavation.

#### 3 balance equations:

- stress equilibrium equation
- mass balance equation for water
- mass balance equation for CO2
- 2 phases flow model
- 2 transport processes
  - advection of each phase (Darcy's law)
  - diffusion of the components within each phase (Fick's law)

#### 3 balance equations:

- stress equilibrium equation
- mass balance equation for water
- mass balance equation for CO<sub>2</sub>

#### 2 phases flow model

- 2 transport processes
  - advection of each phase (Darcy's law)
  - diffusion of the components within each phase (Fick's law)

#### 3 balance equations:

- stress equilibrium equation
- mass balance equation for water
- mass balance equation for CO<sub>2</sub>

#### 2 phases flow model

- 2 transport processes
  - advection of each phase (Darcy's law)
  - diffusion of the components within each phase (Fick's law)

### Modelling without coal

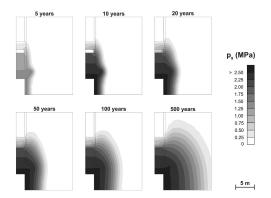



Figure: Evolution of gas pressures in the different materials during CO<sub>2</sub> storage in the coal mine.

Increase in gas pressure essentially localized in the concrete elements.

Geomechanics and Energy

#### without coal

| Time      | Backfill   | Concrete  | Shale    |
|-----------|------------|-----------|----------|
| 1 year    | 9 kg       | 0.02 kg   | 0.20 kg  |
| 5 years   | 4761 kg    | 0.52 kg   | 0.96 kg  |
| 10 years  | 3.49E04 kg | 3.34 kg   | 1.42 kg  |
| 50 years  | 4.15E05 kg | 31.67 kg  | 2.63 kg  |
| 100 years | 8.52E05 kg | 53.42 kg  | 3.72 kg  |
| 250 years | 2.09E06 kg | 93.13 kg  | 6.96 kg  |
| 500 years | 4.11E06 kg | 140.80 kg | 11.96 kg |

Table: Contribution of the different materials to the total mass of  $CO_2$  rejected to the atmosphere, determined at 50m depth.

Because of its high permeability,

the backfill drains almost all CO2 fluxes.

#### without coal

| Time      | Backfill   | Concrete  | Shale    |
|-----------|------------|-----------|----------|
| 1 year    | 9 kg       | 0.02 kg   | 0.20 kg  |
| 5 years   | 4761 kg    | 0.52 kg   | 0.96 kg  |
| 10 years  | 3.49E04 kg | 3.34 kg   | 1.42 kg  |
| 50 years  | 4.15E05 kg | 31.67 kg  | 2.63 kg  |
| 100 years | 8.52E05 kg | 53.42 kg  | 3.72 kg  |
| 250 years | 2.09E06 kg | 93.13 kg  | 6.96 kg  |
| 500 years | 4.11E06 kg | 140.80 kg | 11.96 kg |

Table: Contribution of the different materials to the total mass of  $CO_2$  rejected to the atmosphere, determined at 50m depth.

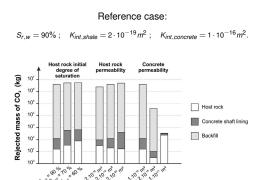
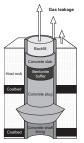
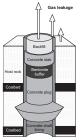



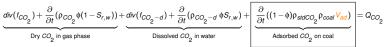

Figure: Parameters analysis, mass rejected after 500 years.

Because of its high permeability,

the backfill drains almost all CO<sub>2</sub> fluxes.

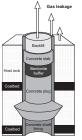



Mass balance equation for CO<sub>2</sub>

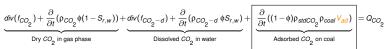

$$\underbrace{\frac{div(f_{CO_2}) + \frac{\partial}{\partial t}(\rho_{CO_2}\phi(1 - S_{r,w}))}{\text{Dry } CO_2 \text{ in gas phase}} + \underbrace{\frac{div(f_{CO_2-d}) + \frac{\partial}{\partial t}(\rho_{CO_2-d} \phi S_{r,w})}{\text{Dissolved } CO_2 \text{ in water}} = Q_{CO_2}$$

where f is the total mass flow,  $\rho$  is the bulk density,  $\phi$  is the porosity,  $S_{r,w}$  is the water degree of saturation,

Q is the volume source



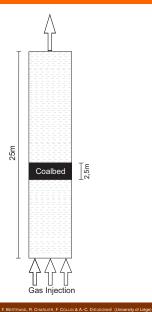

Mass balance equation for CO<sub>2</sub> taking into account adsorption:

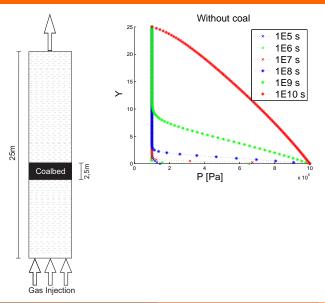


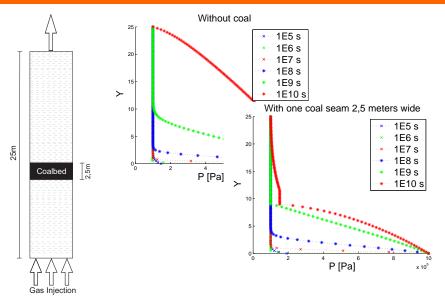

where f is the total mass flow,  $\rho$  is the bulk density,  $\phi$  is the porosity,  $S_{r,w}$  is the water degree of saturation,

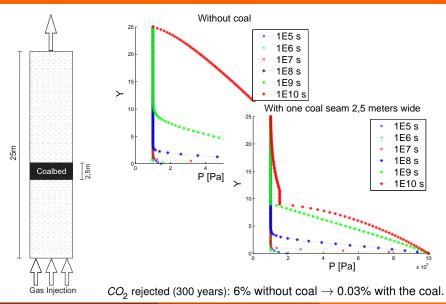
Q is the volume source and  $V_{ad}$  is the adsorbed volume of  $CO_{c}$  per unit of mass of coal.

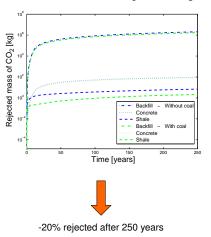



**Mass balance equation** for CO<sub>2</sub> taking into account **adsorption**:

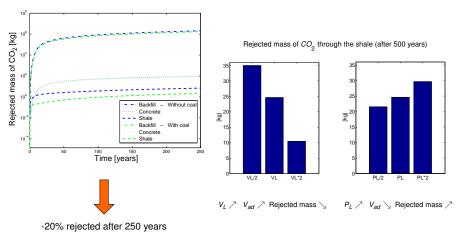




where f is the total mass flow,  $\rho$  is the bulk density,  $\phi$  is the porosity,  $S_{r,w}$  is the water degree of saturation,


Q is the volume source and V<sub>ad</sub> is the adsorbed volume of CO<sub>2</sub> per unit of mass of coal.


 $V_{ad} \text{ determined by a Langmuir Isotherm:}$   $V_{ad} = \frac{V_L \cdot P}{P_L + P}$ where P is the gas pressure and V<sub>L</sub> and P<sub>L</sub> are two parameters.
[Wu et al., 2011]: V<sub>L</sub> = 0.0477m<sup>3</sup>/kg ; P<sub>L</sub> = 1.38MPa












Back to the shaft sealing considering a coal seam 0,25m wide above the injection zone.



Back to the shaft sealing considering a coal seam 0,25*m* wide above the injection zone.

#### considering coal + shale anisotropy

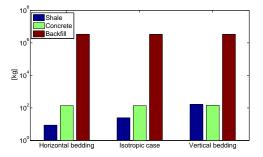


#### considering coal + shale anisotropy



#### considering coal + shale anisotropy






Mechanical anisotropy

#### Hydraulic anisotropy k∥

 $k_{\perp}$  ;

Rejected mass of CO2 (after 500 years)



### Anisotropic cases:

$$10 \cdot k_{\perp} = k_{\parallel}$$

# **Better understanding** of the *CO*<sub>2</sub> transfer mechanisms through and around a shaft and its sealing system (Anderlues).

Realistic values for the parameters + sensitivity analysis + HM conditions reproduced

Concrete permeability > Host rock permeability

 $\rightarrow$  CO<sub>2</sub> preferentially flows through the concrete then the backfill.

 Bentonite buffer has shown limited efficiency as CO<sub>2</sub> by-passes it to flow through the concrete support. besign?

• Due to adsorption, coal has a favourable impact on gas leakage.

• Depending on bedding plan orientation, **shale anisotropy** can also have a favourable impact on gas leakage.

**Better understanding** of the *CO*<sub>2</sub> transfer mechanisms through and around a shaft and its sealing system (Anderlues).

Realistic values for the parameters + sensitivity analysis + HM conditions reproduced

Concrete permeability > Host rock permeability

 $\rightarrow$  CO<sub>2</sub> preferentially flows through the concrete then the backfill.

 Bentonite buffer has shown limited efficiency as CO<sub>2</sub> by-passes it to flow through the concrete support. besign?

• Due to adsorption, coal has a favourable impact on gas leakage.

• Depending on bedding plan orientation, **shale anisotropy** can also have a favourable impact on gas leakage.

**Better understanding** of the *CO*<sub>2</sub> transfer mechanisms through and around a shaft and its sealing system (Anderlues).

Realistic values for the parameters + sensitivity analysis + HM conditions reproduced

• Concrete permeability > Host rock permeability

→ CO<sub>2</sub> preferentially flows through the concrete then the backfill.

 Bentonite buffer has shown limited efficiency as CO<sub>2</sub> by-passes it to flow through the concrete support. besign?

- Due to adsorption, coal has a favourable impact on gas leakage.
- Depending on bedding plan orientation, **shale anisotropy** can also have a favourable impact on gas leakage.

**Better understanding** of the *CO*<sub>2</sub> transfer mechanisms through and around a shaft and its sealing system (Anderlues).

Realistic values for the parameters + sensitivity analysis + HM conditions reproduced

Concrete permeability > Host rock permeability

→ CO<sub>2</sub> preferentially flows through the concrete then the backfill.

 Bentonite buffer has shown limited efficiency as CO<sub>2</sub> by-passes it to flow through the concrete support. 
Design?

• Due to **adsorption**, coal has a **favourable impact** on gas leakage.

• Depending on bedding plan orientation, **shale anisotropy** can also have a favourable impact on gas leakage.

### Conclusions

**Better understanding** of the *CO*<sub>2</sub> transfer mechanisms through and around a shaft and its sealing system (Anderlues).

Realistic values for the parameters + sensitivity analysis + HM conditions reproduced

Concrete permeability > Host rock permeability

→ CO<sub>2</sub> preferentially flows through the concrete then the backfill.

- Bentonite buffer has shown limited efficiency as CO<sub>2</sub> by-passes it to flow through the concrete support. 
  Design?
- Due to adsorption, coal has a favourable impact on gas leakage.

• Depending on bedding plan orientation, **shale anisotropy** can also have a favourable impact on gas leakage.

## Conclusions

**Better understanding** of the *CO*<sub>2</sub> transfer mechanisms through and around a shaft and its sealing system (Anderlues).

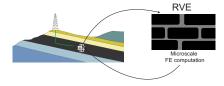
Realistic values for the parameters + sensitivity analysis + HM conditions reproduced

• Concrete permeability > Host rock permeability

→ CO<sub>2</sub> preferentially flows through the concrete then the backfill.

- Bentonite buffer has shown limited efficiency as CO<sub>2</sub> by-passes it to flow through the concrete support. 
  Design?
- Due to **adsorption**, coal has a **favourable impact** on gas leakage.
- Depending on bedding plan orientation, shale anisotropy can also have a favourable impact on gas leakage.

#### Future works


### CO2 injection = stimulation for coalbed methane recovery

 $\Delta S_{r,w} \Rightarrow \text{Shrinkage/Swelling} \Rightarrow \Delta k$ 



Take into account couplings at the micro-scale

via a multi-scale finite element method.



# Thank you for your attention!



### Piessens, K. and Dusar, M. (2006).

Feasibility of *CO*<sub>2</sub> sequestration in abandoned coal mines in belgium. *Geologica Belgica*.

# Wu, Y., Liu, J., Elsworth, D., Siriwardane, H., and Miao, X. (2011). Evolution of coal permeability: Contribution of heterogeneous swelling processes.

International Journal of Coal Geology, 88(2):152–162.

Coupled HM formulation

Stress equilibrium equation

$$div(\sigma) + b = 0$$

Mass balance equation for water

$$\underbrace{\frac{div(f_w) + \frac{\partial}{\partial t}(\rho_w \phi S_{r,w})}{\text{Liquid water}} + \underbrace{\frac{div(f_v) + \frac{\partial}{\partial t}(\rho_v \phi(1 - S_{r,w}))}{\text{Water vapour}} = Q_w}_{\text{Water vapour}}$$

Mass balance equation for CO<sub>2</sub>

$$\underbrace{\frac{div(f_{CO_2}) + \frac{\partial}{\partial t}(\rho_{CO_2}\phi(1 - S_{r,w}))}{\text{Dry } CO_2 \text{ in gas phase}} + \underbrace{\frac{div(f_{CO_2-d}) + \frac{\partial}{\partial t}(\rho_{CO_2-d}\phi S_{r,w})}{\text{Dissolved } CO_2 \text{ in water}} + \underbrace{\frac{\partial}{\partial t}((1 - \phi)\rho_{stdCO_2}\rho_{coal}V_{ad})}{\text{Adsorbed } CO_2 \text{ on coal}} = O_{CO_2}$$

#### Coupled HM formulation

Mass flows : advection + diffusion

$$\begin{split} \underline{f}_w &= \rho_w \underline{q}_l \\ \underline{f}_v &= \rho_v \underline{q}_g + \underline{i}_v \\ \underline{f}_{CO_2} &= \rho_{CO_2} \underline{q}_g + \underline{i}_{CO_2} \\ \underline{f}_{CO_2-d} &= \rho_{CO_2-d} \underline{q}_g + \underline{i}_{CO_2-d} \end{split}$$

Advection: Darcy's law

$$\underline{q}_{j} = -\frac{K_{int} \cdot k_{rw}}{\mu_{w}} \left( \underline{grad}(p_{w}) + g \rho_{w} \underline{grad}(y) \right)$$
$$\underline{q}_{g} = -\frac{K_{int} \cdot k_{rg}}{\mu_{g}} \left( \underline{grad}(p_{g}) + g \rho_{g} \underline{grad}(y) \right)$$

Diffusion: Fick's law

$$\underline{i}_{v} = -\phi(1 - S_{r,w}) \tau D_{v/CO_{2}} \rho_{g} \underline{grad} \left(\frac{\rho_{v}}{\rho_{g}}\right) = -\underline{i}_{CO_{2}}$$
$$\underline{i}_{CO_{2}-d} = -\phi S_{r,w} \tau D_{CO_{2}-d/w} \rho_{w} \underline{grad} \left(\frac{\rho_{CO_{2}-d}}{\rho_{w}}\right)$$

Mechanical properties

|                               |   | Coal | Shale | Concrete | Bentonite | Backfill |
|-------------------------------|---|------|-------|----------|-----------|----------|
| Young's modulus (MPa)         | Е | 2710 | 3000  | 33       | 150       | 38.5     |
| Poisson's ration              | ν | 0.34 | 0.3   | 0.16     | 0.3       | 0.2      |
| Cohesion (MPa)                | С | -    | 2.66  | -        | -         | -        |
| Friction angle ( $^{\circ}$ ) | ø | -    | 22.7  | -        | -         |          |
| Biot coefficient              | b | 1    | 0.4   | 0.8      | 1         | 1        |

Table: Mechanical properties

#### Hydraulic properties

Van Genuchten model to relate suction with degree of saturation:

$$S_{r,w} = \left[1 + \left(\frac{s}{P_r}\right)^n\right]^{-m}$$

Van Genuchten water relative permeability model:

$$k_{rw} = \sqrt{S_{r,w}} \left( 1 - \left( 1 - S_{r,w}^{-m} \right)^m \right)^2$$

Gas relative permeability model:

$$k_{rg} = (1 - S_{r,w})^3$$

|                                          |                  | Shale | Concrete | Bentonite | Backfill |
|------------------------------------------|------------------|-------|----------|-----------|----------|
| Intrinsic permeability (m <sup>2</sup> ) | K <sub>int</sub> | 2E-19 | 1E-16    | 8E-21     | 1E-15    |
| Porosity                                 | ø                | 0.054 | 0.15     | 0.37      | 0.33     |
| Tortuosity                               | τ                | 0.25  | 0.25     | 0.0494    | 1        |
| Van Genuchten parameter (MPa)            | $P_r$            | 9.2   | 2        | 16        | 0.12     |
| Van Genuchten parameter                  | n                | 1.49  | 1.54     | 1.61      | 1.4203   |
| Van Genuchten parameter                  | т                | 0.33  | 0.35     | 0.38      | 0.30     |

#### Table: Hydraulic parameters

F. BERTRAND, R. CHARLIER, F. COLLIN & A.-C. DIEUDONNÉ (University of Liège)

#### Hydraulic properties

For coal:

$$S_{r,w} = \frac{1}{100} \left( CSR1 \cdot \log\left(\frac{s}{10^6}\right) + CSR2 \right)$$

$$k_{rw} = \frac{(S_{r,w} - S_{res})^{CKW1}}{(1 - S_{res})^{CKW2}}$$

$$k_{rg} = CKA3 \cdot (1 - S_e)^{CKA1} \cdot (1 - S_e^{CKA2}) \quad \text{with } S_e = \frac{S_{r,w} - S_{res}}{1 - S_{res}}$$

| CSR1 | -7.5 |  |  |
|------|------|--|--|
| CSR1 | 1    |  |  |
| CKW1 | 30.2 |  |  |
| CKW2 | 30.2 |  |  |
| CKA1 | 0.5  |  |  |
| CKA2 | 10.2 |  |  |
| СКАЗ | 0.65 |  |  |

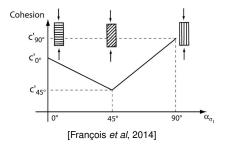

|                                          |                  | Coal  |
|------------------------------------------|------------------|-------|
| Intrinsic permeability (m <sup>2</sup> ) | K <sub>int</sub> | 1E-16 |
| Porosity                                 | ø                | 0.01  |
| Tortuosity                               | τ                | 0.25  |

Table: Hydraulic parameters for coal

#### Shale anisotropy

Mechanical shale anisotropy:

- Elasticity (Orthotropy) : *E*<sub>∥</sub>, *E*<sub>⊥</sub>, *v*<sub>∥,∥</sub>, *v*<sub>∥,⊥</sub>, *G*<sub>∥,⊥</sub>
- Plasticity : anisotropy through the cohesion



Hydraulic anisotropy:

Coal structure

### Coalbeds = dual porosity systems

Micropores + Macropores  $\iff$  Matrix + Cleats

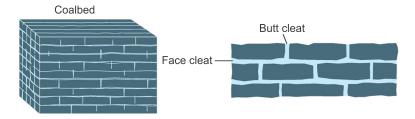



Figure: [Schlumberger, 2015]

Fluid flow through coal

### Coalbeds = dual permeability systems

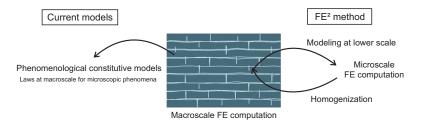
Matrix permeability << Permeability of the cleat system

Fick's law of diffusion in the coal matrix >< Darcy's law in the fracture system





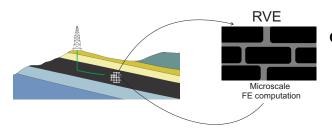
Desorption from internal coal surfaces


Diffusion through matrix and micropores



Fluid flow into natural fracture network

Cleat **permeability** is directly dependent on the width of the cleats.


### Figure: [Schlumberger, 2015]





Apply a **multi-scale method** taking advantage of the **periodical structure of coal**.

Future works : FE<sup>2</sup>



### **Constitutive equations**

(flow law, storage law) are applied only on the **microscopic scale**.

Homogenization equations are employed to compute the macroscopic flows knowing the pore pressure state at microscopic scale.