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In this paper, the incremental-secant mean-field homogenisation (MFH) scheme recently de-
veloped by the authors is extended to account for second statistical moments.

The incremental-secant MFH method possesses several advantages compared to other MFH
methods. Indeed the method can handle non-proportional and non-monotonic loadings, while
the instantaneous stiffness operators used in the Eshelby tensor are naturally isotropic, avoid-
ing the isotropisation approximation required by the affine and incremental-tangent methods.
Moreover, the incremental-secant MFH formalism was shown to be able to account for mate-
rial softening when extended to include a non-local damage model in the matrix phase, thus
enabling an accurate simulation of the onset and evolution of damage across the scales.

In this work, by accounting for a second statistical moment estimation of the current
yield stress in the composite phases, the plastic flow computation allows capturing with a
better accuracy the plastic yield in the composite material phases, which in turn improves
the accuracy of the predictions, mainly in the case of short fibre composite materials. The
incremental-secant mean-field-homogenisation (MFH) can thus be used to model a wide va-
riety of composite material systems with a good accuracy.

Keywords: Multi-scale; Mean-Field Homogenisation; Composites; Second Statistical
Moments;

1. Introduction

With the emergence of new engineered materials such as composite materials,
multi-scale simulations are gaining popularity as they provide an efficient way
to predict the macroscopic response of a structure made of heterogeneous materi-
als from the micro-scale information, such as the micro-structure and the micro-
constituents behaviour. A popular multi-scale approach relies on the prediction
of the macroscopic stress-strain relation of the heterogeneous material under the
form of a homogenised constitutive law to be used in a macro-scale problem. This
homogeneous constitutive law can be obtained by using analytical or numerical
methods, or a combination of both, see [1, 2] for an overview.

The first statistical moment mean-field homogenisation (MFH) method seeks
the macroscopic stress–strain relation by considering the average values, of the
different fields, in each phase of a heterogeneous material. Most of MFH methods
are based on the extension from the single inclusion Eshelby [3] solution to the
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interaction of multiple inclusions. This extension requires assumptions on these
interactions, the most common ones being the Mori–Tanaka scheme [4, 5] and the
self–consistent model [6, 7]. As these models assume a linear relation between the
average stress and strain of the constituents, the extension to non-linear material
behaviours is based on the definition of a linear comparison composite (LCC) [8–
13], which is a virtual composite whose constituents linear behaviours match the
linearised behaviour of the real constituents for a given strain state. Thus the
MFH methods for linear responses can be applied on this LCC, allowing to model
non-linear composite material responses.

The LCC can be defined under several forms. In the incremental–tangent for-
mulation [14–18], linearised relations between the stress and strain increments of
the different constituents are considered around their current strain states. The
affine method considers a linearised behaviour on the total strain field, in which
case the stress increment is computed from a polarisation stress [13, 19–24]. Both
the incremental-tangent method [16, 18] and the affine method [25] can exhibit
over-stiff results unless some isotropic projections of the tangent operator is con-
sidered in the homogenisation process. In the secant method [26], the linearised
law is pseudo-elastic in terms of total stress and strain, which limits the method
to monotonic and proportional loading paths.

In order to avoid the isotropisation step while keeping the accuracy of the method
in case of non-proportional loading, an incremental-secant formulation, in which
a secant stiffness links, in each phase, the current stress/strain state to a residual
state, has recently been proposed by the authors [27]. The residual state is ob-
tained upon a virtual elastic unloading of the composite material. Besides these
two advantages, i.e. the method directly provides isotropic instantaneous stiffness
operators, avoiding the isotropisation step, and the method remains accurate in
case of non-monotonic and non-proportional loadings, the method is of particular
interest when considering material behaviour with strain softening [28, 29]. Indeed,
because the secant formulation is applied from a virtually unloaded state, one phase
of the composite material can be elastically unloaded during the softening of the
other phase, contrarily to what happens with an incremental-tangent method [29].
In this last case, a Lemaitre-Chaboche damage model [30, 31] formulated in non-
local way [32–35] is adopted. The non-local formulation of the damage evolution is
required in order to avoid the loss of the solution uniqueness caused by the material
softening.

Despite the accurate predictions obtained with the incremental-secant method
in most cases, even for highly non-linear elasto-plastic behaviours, for short fibre
composite materials the method is still over-predicting the composite response.
Indeed as, at the time being, the developed formulation [27] uses only the average
stress tensor to predict the plastic flow in the different phases, the plastic yield
is not accurately captured. This is typical of mean-field homogenisation schemes
using only the first statistical moment values, i.e. only the average values of the
different fields. In this paper in order to improve the accuracy of the incremental-
secant method, it is intended to extend it to account for the second statistical
moment value of the von Mises stress during the homogenisation process.

Second statistical moments were already considered in the MFH process to im-
prove the prediction in the elasto-plastic case [36, 37], in particular for the secant
formulations [38–40] and for the incremental–tangent formulation [41]. The vari-
ational forms pioneered by [11] is a second-order secant formulation, also called
modified-secant MFH, as demonstrated in [38]. Finally, the incremental variational
formulations recently proposed for visco-elastic and elasto-(visco-)plastic composite
materials by [42–47] also account for the second statistical moment.
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This paper is organised as follows. In Section 2, the main ideas and equations of
the MFH are briefly recalled. In particular the linear-comparison-composite (LCC)
used for non-linear material models is defined. The incremental-secant formulation
of an elasto-plastic material is developed in Section 3, first as a local field and then
in an averaged way using first and second statistical moment estimations. Based on
this averaged incremental-secant formulation of a material law, the incremental-
secant MFH of non-linear composite materials is developed and detailed in Section
4. Finally the accuracy of the developed method is investigated in Section 5, where
it is shown that the advantages of the incremental-secant MFH formulation are kept
when considering the second statistical moment estimations, while the predictions
are more accurate in the case of short-fibre composite materials. The advantages of
the method and its limitations in the case of perfectly-plastic inclusions composite
materials are discussed in Section 6. The perspectives of the developed incremental-
secant MFH with second statistical moment estimations, in particular in the case
of non-local damage-enhanced elasto-plastic material laws, are also discussed in
this section, before drawing the general conclusions.

2. Generalities on the mean-field homogenisation for two-phase composites

In a multiscale approach, at each macro-point X of the structure, the resolution
of a micro-scale boundary value problem (BVP) relates the macro-stress tensor σ̄
to the macro-strain tensor ε̄. At the micro-level, the macro-point is viewed as the
centre of a RVE of domain ω.

Because of the energy equivalence at the two scales, the Hill-Mandell condition
implies the relation between the macro-strains ε̄ and stresses σ̄ to be equivalent
to the relation between the volume average of the strain tensor 〈ε〉ω and stress
tensor 〈σ〉ω over the RVE. For a two-phase isothermal composite material with the
respective volume fractions v0 + vI = 1 (subscript 0 refers to the matrix and I to
the inclusions), the average quantities are expressed in terms of the phase averages
as

ε̄ = v0〈ε〉ω0
+ vI〈ε〉ωI

and σ̄ = v0〈σ〉ω0
+ vI〈σ〉ωI

. (1)

In the following developments, the notations •̄i hold for 〈•〉ωi
.

By defining a linear comparison composite (LCC) representing the linearised
behaviour of the composite material phases through their virtual elastic operators,
ĈLCC

0 for the matrix phase and ĈLCC
I for the inclusions phase, the relation between

the average strain increments reads

∆ε̄I = Bε(I, ĈLCC
0 , ĈLCC

I ) : ∆ε̄0 . (2)

In this paper, the Mori-Tanaka (M-T) expression of the strain concentration tensor
Bε is used, i.e.

Bε = {I + S : [(ĈLCC
0 )−1 : ĈLCC

I − I]}−1 , (3)

where the Eshelby tensor [3] S(I, ĈLCC
0 ) depends on the geometry of the inclusion

(I) and on the matrix phase virtual pseudo-elastic operator ĈLCC
0 .

The expressionss of the tensors ĈLCC
0 and ĈLCC

I result from the assumptions be-
hind the MFH formulation. In linear elasticity, they reduce to the elastic material
fourth order tensors Cel

0 and Cel
I . For non-linear behaviours, they are constructed
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to be uniform, hence the •̂ notation. With the incremental-tangent MFH method,

they correspond to the “consistent” average tangential operators Ĉalg
0 and Ĉalg

I ,
and with the incremental-secant formalism [27] considered in this work, they cor-

respond to the secant operators ĈS
0 and ĈS

I . In particular, the secant operator of the
matrix phase is naturally isotropic for J2-elasto-plastic materials, which prevents
the isotropisation step required with the incremental-tangent method [18].

In the context of elasto-plastic materials, besides the first statistical moment
values, 〈•〉ωi

= •̄i of the stress and strain (increment) fields, the second statistical
moment of the stress and strain increment fields 〈• ⊗ •〉ωi

are also of interest to
compute the plastic flow. In particular, one can compute in the phase i the second
statistical moment of the equivalent strain increment

∆ˆ̂εeq
i =

√
2

3
Idev :: 〈∆ε⊗∆ε〉ωi

, (4)

and of the equivalent stress increment

∆ˆ̂σeq
i =

√
3

2
Idev :: 〈∆σ ⊗∆σ〉ωi

. (5)

where Idev is the deviatoric fourth order tensor.

3. Incremental-secant formulation of elasto-plastic materials with second
statistical moment estimations

In this section the secant formulation of J2-elasto-plastic behaviours is presented.
First generalities on J2-plasticity are recalled and then the local and second sta-
tistical moment enhanced incremental-secant formulations are detailed.

3.1. J2-plasticity

The elasto-plastic material formulation under the J2-elasto-plasticity assumption
is characterised by the von Mises yield criterion, which reads

f (σ (x) , p (x)) = σeq (x)−R (p (x))− σY ≤ 0 ∀x ∈ ωi , (6)

where f is the yield surface,

σeq = (σ)eq =

√
3

2
σ : Idev : σ , (7)

is the equivalent von Mises stress, σY is the initial yield stress, and R(p) > 0 is the
isotropic hardening stress in terms of p the accumulated plastic strain. During the
plastic flow, i.e. f = 0, ∆p > 0, the plastic strain rate tensor follows the plastic
flow direction

ε̇p (x) = ṗ (x)
∂f (x)

∂σ
= ṗ (x)N (x) ∀x ∈ ωi , (8)
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where N is the normal to the yield surface in the stress space. The stress tensor
follows from

σσσ (x) = Cel
i : εel (x) = Cel

i : (ε (x)− εp (x)) ∀x ∈ ωi , (9)

with the material elastic tensor in phase i

Cel
i = 3κel

i Ivol + 2µel
i Idev , (10)

expressed in terms of the elastic bulk and shear moduli.

3.2. Incremental-secant approach
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(a) Residual-incremental-secant approach
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(b) Zero-incremental-secant approach

Figure 1. Schematics of the incremental-secant formulations from [27]. (a) The residual-incremental-secant
operator is defined from the residual strain and stress. (b) The zero-incremental-secant operator is defined
from the residual strain at a zero-stress state.

The elasto-plastic material model can be presented under an incremental-secant
formulation. Considering a time interval [tn, tn+1], with the total strain tensor εn
at time tn known and the strain increment ∆εn+1 resulting from the incremental
resolution scheme supposed given, the strain tensor εn+1 at time tn+1 follows from

εn+1 (x) = εn (x) + ∆εn+1 (x) ∀x ∈ ωi . (11)

At time tn, a virtual elastic unloading step from the stress state σσσn is applied,
which corresponds to a residual strain tensor εεεres

n , see Fig. 1(a). In the incremental-
secant framework, a LCC is defined so that the composite phases are subjected to
a strain increment ∆εεεr

n+1, satisfying

εεεn+1 (x) = εεεres
n (x) + ∆εεεr

n+1 (x) ∀x ∈ ωi . (12)

To compute the stress tensor at time tn+1, the two methods illustrated in Fig.
1 can be applied. The residual-incremental-secant method computes the effective
stress tensor from the residual effective stress obtained after the virtual elastic
unloading, while the zero-incremental-secant method computes the effective stress
tensor from a zero-stress state (but not from a zero-strain-state). Indeed, with a
view to the MFH of composite materials, as lengthy discussed in [27], to accurately
capture the elasto-plastic behaviour of the matrix phase when the matrix residual
stress is located on the other side of the origin than the current stress state, the
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secant approach has to be applied in the matrix phase from a fictitious unloaded
state corresponding to a residual strain for a stress state sets to zero. In other
words in the case of inclusions remaining elastic, or exhibiting an elasto-plastic
behaviour with a derivative of the hardening law higher than the one of the elasto-
plastic matrix material, the residual stress (but not strain) in the matrix phase was
canceled.

3.2.1. Residual-incremental-secant approach

At first, a virtual elastic unloading is applied from the solution at time tn, see
Fig. 1(a), leading to the residual stress

σres
n (x) = σn (x)− Cel

i : ∆εunload
n (x) = σn (x)−∆σunload

n (x) ∀x ∈ ωi . (13)

Practically the unloading strain increment ∆εunload
n can be chosen so that the

homogenised residual stress of a composite material vanishes, as it will be discussed
in the MFH section.

Following the method pictured on Fig. 1(a), the stress tensor σn+1 at time tn+1

can also be expressed as

σn+1 (x) = σres
n (x) + ∆σr

n+1 (x) ∀x ∈ ωi , (14)

with

∆σr
n+1 (x) = CSr (x) : ∆εr

n+1 (x) ∀x ∈ ωi , (15)

where CSr is the residual-incremental-secant operator of the linear comparison ma-
terial. The Cauchy stress tensor at time tn+1 is obtained from the trial elastic stress
tensor computed from the residual stress on which is applied a plastic correction.
The elastic relation (9) is thus rewritten

σn+1 (x) = σres
n (x)+Cel

i : ∆εr
n+1 (x)−Cel

i : ∆pn+1 (x)Nn+1 (x) ∀x ∈ ωi . (16)

In this last equation, an implicit backward Euler integration was applied to the
flow rule (8) and N is the plastic flow direction. In order to be able to obtain an
isotropic residual-incremental-secant operator, the direction of the plastic flow is a
first order approximation in ∆ε –and not in ∆εr– of the usual plastic flow (8) as
discussed in [27], leading to

Nn+1 (x) =
3

2

Idev : (σn+1 (x)− σres
n (x))

(σn+1 (x)− σres
n (x))eq , (17)

and which satisfies N : N = 3
2 . This problem can thus be solved on ∆p in order

to satisfy the yield criterion (6), i.e. f (σn+1, pn+1 = pn + ∆p) = 0.
The stress increment ∆σr

n+1 evaluated from the residual state can thus be readily
obtained following

∆σr
n+1 (x) = Cel

i : ∆εr
n+1 (x)− 2µel

i ∆p (x)Nn+1 (x) = CSr (x) : ∆εr
n+1 (x) ,

(18)

which allows computing the residual-incremental-secant operator CSr (x). In the
context of J2-plasticity, it was shown in [27] that CSr (x) is an isotropic tensor
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which can be expressed as

CSr (x) = 3κr (x) Ivol + 2µr (x) Idev ∀x ∈ ωi , (19)

with κr (x) and µr (x) respectively the bulk and shear moduli of the equivalent
isotropic-linear material, see details in [27].

3.2.2. Zero-incremental-secant approach

As previously mentioned, when defining the LCC during the MFH process, it can
be necessary to modify the residual-incremental-secant approach by neglecting the
residual stress -but not the residual strain- in the matrix phase. This modification
is illustrated in Fig. 1(b) and consists in neglecting σσσres

n in the formalism described
here above, which leads to defining the zero-incremental-secant operator

CS0 (x) = 3κ0 (x) Ivol + 2µ0 (x) Idev ∀x ∈ ωi . (20)

Note that for this approach the plastic flow direction N corresponds strictly to the
yield surface normal direction.

3.2.3. Non-local damage-enhanced incremental-secant approach

The incremental-secant approach can be extended to the case of elasto-plastic
materials exhibiting damage. This has been done in [29] in the context of a
Lemaitre-Chaboche damage model [30, 31] formulated in a non-local way [32–35].
The non-local formulation of the damage evolution is required in order to avoid
the loss of the solution uniqueness at the structural level. In the context of a local
damage model, this loss occurs at softening onset of the homogenised material law
obtained by an incremental-secant MFH process.

3.3. Residual-incremental-secant operator with second statistical moment
estimations

The volume averaging in the phase i of the stress expression (16) reads

σ̄n+1 = 〈σn+1〉 = 〈Cel
i : (∆εr

n+1 −∆pn+1Nn+1) + σres
n 〉

= Cel
i : 〈∆εr

n+1〉 − Cel
i : 〈∆pn+1Nn+1〉+ 〈σres

n 〉

= Cel
i : ∆ε̄r

n+1 − Cel
i : (∆pn+1Nn+1) + σ̄res

n on ωi . (21)

Although the resulting macro stress and strain tensors are the first statistical mo-
ment volume averages of the respective local (micro) stress and strain tensors, the
evolution of the local accumulated plastic strain increment ∆pn+1 depends on the
local von Mises stress (7) through Eq. (6). As the definition (7) involves quadratic
terms, this suggests that more accurate results are expected if the second term
on the right hand side of Eq. (21) is based on second statistical moment estima-
tions of the stress field as proposed in [41]. In the following an incremental-secant
predictor-corrector return mapping scheme with a second statistical moment es-
timation of the von Mises stress is developed in the phase ωi. The residual form
of this approach is first considered, while the zero-incremental-secant form will be
deduced in the next subsection.

3.3.1. Elastic predictor

Let us consider an elasto-plastic material in phase i, which obeys J2 elasto-
plasticity. First it is assumed that the strain increment is elastic at each point of
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the considered phase. A trial stress increment, which is also called elastic predictor
∆σtr, is thus computed from the residual strain-stress state defined in Fig. 1(a)
following

∆σtr
n+1(x) = Cel

i : ∆εr
n+1(x) ∀x ∈ ωi , (22)

with the elastic stress predictor

σtr
n+1(x) = σres

n (x) + ∆σtr
n+1(x) = σres

n (x) + Cel
i : ∆εr

n+1(x) ∀x ∈ ωi . (23)

During this elastic predictor step, the real composite material is replaced by a
LCC with the same micro structure, and whose phases i have the elastic operators
Cel
i of the original phases. Applying the MFH scheme (1-3) with those elastic

operators Cel
i leads to the LCC elastic operator C̄el

C̄el =
[
vICel

I : Bε + v0Cel
0

]
: [vIBε + v0I]−1 , with (24)

Bε = {I + S : [
(
Cel

0

)−1
: Cel

I − I]}−1 . (25)

Following the argumentation in [48, 49], the elastic predictor can be obtained in
each phase from the second statistical moment estimation of the total strain, as

〈∆εr
n+1 ⊗∆εr

n+1〉ωi
=

1

vi
∆ε̄r

n+1 :
∂C̄el

∂Cel
i

: ∆ε̄r
n+1 , (26)

where ∆ε̄r
n+1 is the volume average of the composite material strain increment

measured from its residual state. The second statistical moment estimation of the
stress increment prediction can then be evaluated using Eqs. (4) and (5) as

∆ˆ̂σtr
i

eq

n+1 =

√
3

2
Idev :: 〈∆σtr

n+1 ⊗∆σtr
n+1〉ωi

= 3µel
i

√
2

3
Idev :: 〈∆εεεr

n+1 ⊗∆εεεr
n+1〉ωi

, (27)

with no sum on i intended. Note that ∆ˆ̂σtr
i

eq

n+1 is not the equivalent von Mises

stress of ∆σ̄tr
i , i.e. ∆ˆ̂σtr

i

eq 6=
√

3
2∆σ̄tr

i : Idev : ∆σ̄tr
i . Similarly the following second

statistical moment estimates can also be defined

ˆ̂σres
i

eq

n =

√
3

2
Idev :: 〈σres

n ⊗ σres
n 〉ωi

, (28)

ˆ̂σtr
i

eq

n+1 =

√
3

2
Idev :: 〈σtr

n+1 ⊗ σtr
n+1〉ωi

. (29)

The first statistical moment predictor can be evaluated from the local field (23)
as

σ̄tr
i n+1 = σ̄res

i n + ∆σ̄tr
i n+1 = σ̄res

n + Cel
i : ∆ε̄r

i n+1 . (30)

To evaluate the second statistical moment of the equivalent von Mises predictor
(29), assumptions have to be made.
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In the current context of the incremental-secant approach, we consider the ap-
proximation 〈

σres
n : Idev : ∆σn+1

〉
ωi

' σ̄res
i n : Idev : ∆σ̄i n+1 . (31)

The two Eqs. (13) and (23) can be rewritten under the form{
σn (x) = σres

n (x) + ∆σunload
n (x) ∀x ∈ ωi ;

σtr
n+1(x) = σres

n (x) + ∆σtr
n+1(x) ∀x ∈ ωi ,

(32)

yielding the second statistical moment estimations in the phase i


(

ˆ̂σeq
i n

)2
= 3

2

〈(
σres
n (x) + ∆σunload

n (x)
)

: Idev :
(
σres
n (x) + ∆σunload

n (x)
)〉
ωi

;(
ˆ̂σtr
i

eq

n+1

)2
= 3

2

〈(
σres
n (x) + ∆σtr

n+1(x)
)

: Idev :
(
σres
n (x) + ∆σtr

n+1(x)
)〉
ωi
.

(33)
Applying the assumption (31) on these two expressions leads to



(
ˆ̂σeq
i n

)2
' 3

2

〈
σres
n (x) : Idev : σres

n (x)
〉
ωi

+ 3 σ̄res
i n : Idev : ∆σ̄unload

i n +

3
2

〈
∆σunload

n (x) : Idev : ∆σunload
n (x)

〉
ωi

;(
ˆ̂σtr
i

eq

n+1

)2
' 3

2

〈
σres
n (x) : Idev : σres

n (x)
〉
ωi

+ 3 σ̄res
i n : Idev : ∆σ̄tr

i n+1 +

3
2

〈
∆σtr

n+1(x) : Idev : ∆σtr
n+1(x)

〉
ωi
.

(34)
The combination of these last two results directly yields the following approxima-
tion (

ˆ̂σtr
i

eq

n+1

)2
'
(

ˆ̂σi
eq

n

)2
−
(

∆ˆ̂σunload
i

eq

n+1

)2
− 3 σ̄res

i n : Idev : ∆σ̄unload
i n +(

∆ˆ̂σtr
i

eq

n+1

)2
+ 3 σ̄res

i n : Idev : ∆σ̄tr
i n+1 . (35)

In the context of a reloading reaching the same stress state, i.e. σ̄i n+1 = σ̄i n, this
equation leaves the second statistical moment estimation of the von Mises stress
unchanged, i.e. ˆ̂σtr

i

eq

n+1 = ˆ̂σi
eq

n .

Practically, ˆ̂σi
eq

n is a known value which was computed at the previous step,
∆σ̄unload

i n is computed during the unloading step, see next section, which allows

to compute
(

∆ˆ̂σunload
i

eq

n+1

)2
from (27) using the unloading increment as argument,

the value ∆ˆ̂σtr
i

eq

n+1 is evaluated during the current time increment from (27), which

eventually allows determining ˆ̂σtr
i

eq

n+1 from (35).

One more time, ˆ̂σtr
i

eq
is not equal to σ̂tr

i
eq

the equivalent von Mises stress of σ̄tr
i ,

which is used in the first statistical moment method, i.e.

ˆ̂σtr
i

eq 6= σ̂tr
i

eq
= (σ̄tr

i )eq =

√
3

2
σ̄tr
i : Idev : σ̄tr

i . (36)

The second statistical moment evaluation of the trial stress (35) can now be used
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to evaluate the yield criterion (6), i.e in phase i

f = ˆ̂σtr
i

eq

n+1 −R(pin)− σYi 6 0 . (37)

On the one hand, if this condition is verified, the behaviour remains elastic,
therefore:

∆σ̄r
i n+1 = ∆σ̄tr

i n+1 , ∆ε̄p
i n+1 = 0 , and ∆p̄i n+1 = 0 , (38)

and the average stress at tn+1 is directly obtained from the trial stress

σ̄i n+1 = σ̄tr
i n+1 , (39)

computed from Eq. (30) and the uniformly constructed secant operator of the phase
i corresponds to the elastic operator,

ĈSr
i = Cel

i = 3κel
i Ivol + 2µel

i Idev . (40)

On the other hand, if the condition (37) is not verified, a plastic correction step
is required.

3.3.2. Plastic corrections step
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el ˆ̂
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ninii p N
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tr
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III
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 nini pf 

(a) Radial return mapping
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el ˆ̂
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1

tr
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nini pf 

0),ˆ̂(
11

eq 
 nini pf 

(b) Approximation

Figure 2. Plastic corrections illustration in the stress space using the second statistical moment esti-
mation of the normal tensor. Figure adapted from [27]. (a) Radial return mapping; and (b) First-order
approximation (42).

If condition (37) is not satisfied, the plastic flow has to be evaluated in the
mean-field sense to correct the stress tensor. Equation (21) is rewritten in phase i
as

σ̄i n+1 = σ̄tr
i n+1 − Cel

i : ∆ε̄p
i n+1 , with ∆ε̄p

i n+1 ≈ ∆p̄i n+1
ˆ̂
Ni n+1 , (41)

with the plastic flow direction
ˆ̂
Ni constructed to be uniform on the phase i. This

uniform plastic flow direction is constructed so that the yield condition respects
the second statistical moments, see Fig. 2, but also to obtain an isotropic secant
operator in order to perform the MFH without the isotropisation approximation.
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In this work we consider the following direction for the return mapping

ˆ̂
Ni n+1 =

3

2

Idev :
(
σ̄i n+1 − σ̄res

i n

)
̂̂(

σ̄i n+1 − σ̄res
i n

)eq

=
3

2

Idev : ∆σ̄r
i n+1

∆ˆ̂σr
i

eq

n+1

, (42)

with, following Eq. (5),

∆ˆ̂σr
i

eq

n+1 =

√
3

2
Idev :: 〈∆σr

n+1 ⊗∆σr
n+1〉ωi

, (43)

When considering Eq. (42), it appears that the plastic correction is a first order
approximation in ∆ε̄p of the real normal to the yield surface as illustrated in Fig.

2(b). Indeed as the residual stress is not zero, the tensor
ˆ̂
NNN i is normal to the

yield surface only if the stress tensors and the residual stress are aligned. This
approximation was discussed in [27].

3.3.2.1. Return mapping. Now we need to develop the plastic corrections part
of the return mapping algorithm. First the normal direction obtained from the
elastic predictor is introduced:

ˆ̂
N tr
i n+1 =

3

2

Idev :
(
σ̄tr
i n+1 − σ̄

res
i n

)
̂̂(

σ̄tr
i n+1 − σ̄

res
i n

)eq

=
3

2

Idev : ∆σ̄tr
i n+1

∆ˆ̂σtr
i

eq

n+1

, (44)

Since Cel
i is isotropic and ∆ε̄p

i is deviatoric, Eq. (41) can be rewritten using (42)
as

Idev : σ̄i n+1 = Idev : σ̄tr
i n+1 − 2µel

i ∆p̄i n+1
ˆ̂
Ni n+1 . (45)

Subtracting the residual stress σ̄res
i n from both sides of Eq. (45),

Idev : ( σ̄i n+1 − σ̄res
i n) = Idev :

(
σ̄tr
i n+1 − σ̄

res
i n

)
− 2µel

i ∆p̄i n+1
ˆ̂
Ni n+1 (46)

and using both normal definitions (42) and (44), one has(
∆ˆ̂σr

i

eq

n+1 + 3µel
i ∆p̄i n+1

)
ˆ̂
Ni n+1 = ∆ˆ̂σtr

i

eq

n+1
ˆ̂
N tr
i n+1 . (47)

Assuming that both normal tensors (42) and (44) have the same norm, i.e.
ˆ̂
Ni :

ˆ̂
Ni =

ˆ̂
N tr
i :

ˆ̂
N tr
i , this last relation implies

ˆ̂
Ni n+1 =

ˆ̂
N tr
i n+1 , or

Idev : ∆σ̄r
i n+1

∆ˆ̂σr
i

eq

n+1

=
Idev : ∆σ̄tr

i n+1

∆ˆ̂σtr
i

eq

n+1

, (48)

which, using the first statistical moment equivalent stress definition (36), leads to

∆σ̂r
i

eq
n+1

∆ˆ̂σr
i

eq

n+1

=
∆σ̂tr

i
eq
n+1

∆ˆ̂σtr
i

eq

n+1

, (49)
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Eventually substituting (48) into (47) yields

∆ˆ̂σr
i

eq

n+1 = ∆ˆ̂σtr
i

eq

n+1 − 3µel
i ∆p̄i n+1 . (50)

Since a plastic flow occurred during the time interval [tn, tn+1], the stress tensor at
time tn+1 must satisfy the yield condition written in the second statistical moment
sense, i.e.

f = ˆ̂σeq
i n+1 −R( p̄i n+1)− σYi

= 0 . (51)

In order to compute the value of ˆ̂σeq
i n+1, the approximate relation (35) is rewritten

for the final stress σi n+1, and reads(
ˆ̂σi

eq

n+1

)2
'
(

ˆ̂σi
eq

n

)2
−
(

∆ˆ̂σunload
i

eq

n+1

)2
− 3 σ̄res

i n : Idev : ∆σ̄unload
i n +(

∆ˆ̂σr
i

eq

n+1

)2
+ 3 σ̄res

i n : Idev : ∆σ̄r
i n+1 . (52)

Therefore, using equations (45) and (50), the yielding condition (51) becomes

(
R
(
p̄i n+1

)
+ σYi

)2
=
(

ˆ̂σeq
i n+1

)2

=
(

ˆ̂σi
eq

n

)2
−
(

∆ˆ̂σunload
i

eq

n+1

)2
−

3 σ̄res
i n : Idev : ∆σ̄unload

i n +(
∆ˆ̂σtr

i

eq

n+1 − 3µel
i ∆p̄i n+1

)2
+

3 σ̄res
i n : Idev : ∆σ̄tr

i n+1 −

6µel
i ∆p̄i n+1 σ̄

res
i n : Idev :

ˆ̂
N tr
i n+1 . (53)

Note that in this equation we did not use the relation
ˆ̂
N tr
i :

ˆ̂
N tr
i = 3

2 as this is
usually not the case with the second statistical moments

This last equation in the accumulated plastic strain increment, ∆p̄i n+1, is stated
in the mean-field sense with second statistical moment estimations and can be
solved numerically to fully define the plastic correction step.

3.3.2.2. Residual-incremental-secant operator. Once the stress tensor σ̄i at
time tn+1 has been obtained from the return mapping algorithm, the residual-
incremental-secant operator of the linear comparison material can be obtained as
follows. Rewriting (14) and (15) in the mean-field sense in phase i yields

σ̄i n+1 = σ̄res
i n + ∆σ̄r

i n+1 , (54)

with

∆σ̄r
i n+1 = ĈSr

i n+1 : ∆ε̄r
i n+1 , (55)

where ĈSr
i is the residual-incremental-secant operator of the linear comparison ma-

terial, which is constructed to be uniform.



May 8, 2015 Philosophical Magazine manuscript-pm

Philosophical Magazine 13

Using Eqs. (30), (41) and (45), Eq. (55) becomes

∆σ̄r
i n+1 = ĈSr

i n+1 : ∆ε̄r
i n+1 = Cel

i : ∆ε̄r
i n+1 − 2µel

i ∆p̄i n+1
ˆ̂
Ni n+1 , (56)

which becomes after using (44) and (48),

∆σ̄r
i n+1 =

[
Cel
i − 3µel

i ∆p̄i n+1

Idev : Cel
i

∆ˆ̂σtr
i

eq

n+1

]
: ∆ε̄r

i n+1 = ĈSr
i n+1 : ∆ε̄r

i n+1 . (57)

As it can be seen from this equation, for J2-elasto-plastic materials, since Cel
i is

isotropic the residual-incremental-secant operator of phase i of the linear compar-
ison material ĈSr

i is also isotropic. Moreover, as Cel
i = 3κel

i Ivol + 2µel
i Idev, one can

directly deduce

ĈSr
i n+1 = 3 κ̂r

i n+1 I
vol + 2 µ̂r

i n+1 I
dev , (58)

with

κ̂r
i n+1 = κel

i , and (59)

µ̂r
i n+1 = µel

i −
3µel

i
2

∆p̄i n+1

∆ˆ̂σtr
i

eq

n+1

. (60)

According to Eq. (27), this last result can also be rewritten as

µ̂r
i n+1 = µel

i

(
1−

∆p̄i n+1

∆ˆ̂εr
i

eq

n+1

)
. (61)

3.4. Zero-incremental-secant operator with second statistical moment
estimations

With a view to MFH, it was shown in [27] that to accurately capture the elasto-
plastic behaviour of the matrix phase when the matrix residual stress is located on
the other side of the origin than the current stress state, the secant approach has
to be applied in the matrix phase from a fictitious unloaded state corresponding
to a residual strain for a stress state sets to zero, as illustrated in Fig. 1(b). This
assumption consists in neglecting σres

n in the second statistical moment residual-
incremental formalism described in Section 3.3.

Similar results are straightforwardly obtained and can be summarised as follows.
The stress tensor in mean-field sense in phase i reads

σ̄i n+1 = ∆σ̄r
i n+1 , (62)

with

∆σ̄r
i n+1 = ĈS0

i n+1 : ∆ε̄r
i n+1 , (63)

where ĈS0
i is the zero-incremental-secant operator of the linear comparison mate-

rial, which is constructed to be uniform. This operator reads

ĈS0
i n+1 = 3 κ̂0

i n+1 I
vol + 2 µ̂0

i n+1 I
dev , (64)
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with

κ̂0
i n+1 = κel

i , and (65)

µ̂0
i n+1 = µel

i −
3µel

i
2

∆p̄i n+1

∆ˆ̂σtr
i

eq

n+1

= µel
i

(
1−

∆p̄i n+1

∆ˆ̂εr
i

eq

n+1

)
. (66)

A couple of remarks can be drawn at this moment.

• As the residual stress is neglected in this formalism, the second statistical mo-
ment estimations of the von Mises predictor (35) and of the current yield stress
(53), are assumed to read (

ˆ̂σtr
i

eq

n+1

)2
=
(

∆ˆ̂σtr
i

eq

n+1

)2
. (67)

and to

(
R
(
p̄i n+1

)
+ σYi

)2
=
(

ˆ̂σeq
i n+1

)2

=
(

∆ˆ̂σtr
i

eq

n+1 − 3µel
i ∆p̄i n+1

)2
, (68)

without requiring the approximation (31).

• The return mapping direction (44) is rigorously the radial return mapping di-
rection instead of being a first order approximation.

In the following ĈS
i n+1 will be used to either design ĈSr

i n+1 or ĈS0
i n+1 depending

on the considered method. Similarly, the bulk and shear moduli of the LCC phase
i, κ̂i n+1 and µ̂i n+1, either hold for κ̂r

i n+1 and µ̂r
i n+1 or for κ̂0

i n+1 and µ̂0
i n+1.

3.5. “Consistent” algorithmic operators

With a view toward the MFH resolution of the problem the “consistent” algorith-
mic operators of the incremental-secant method with second statistical moment
estimations are required.

From Eqs. (54-55) and (62-63), the stress tensor is rewritten

σ̄i n+1 =

{
σ̄res
i n + ĈSr

i n+1 : ∆ε̄r
i n+1 ;

ĈS0
i n+1 : ∆ε̄r

i n+1 ,
(69)

for respectively the residual- and zero-incremental-secant methods.
The “consistent” algorithm operator can thus be expressed as1

Calgo
i n+1 =

∂ σ̄i n+1

∂ε̄i
= ĈS

i n+1 + ∆ ε̄r
i n+1 :

∂ ĈS
i n+1

∂ε̄r
i

. (70)

Moreover in this proposed second statistical moment MFH method, as ˆ̂εr
i

eq

n+1 is
computed from Eqs. (26-27), it does not depend on the strain increment ε̄r

i only,

1Note that ∂
∂ε̄i

= ∂
∂∆ε̄i

= ∂
∂∆ε̄ri
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but it also depends explicitly on the strain increment of the composite material,
and so for the operator ĈS

i . A complementary algorithmic operator is thus required:

Calgo
ic n+1 =

∂ σ̄i n+1

∂ε̄
= ∆ ε̄r

i n+1 :
∂ ĈS

i n+1

∂ε̄r
. (71)

The expressions of the derivatives of ĈS
i n+1 with respect to ε̄r

i and ε̄r are reported
in Appendix A.1.

4. Incremental-secant MFH with second statistical moment estimations

In this paper we consider a two-phase composite material. Considering a time
interval [tn, tn+1], the strain increment ∆ε̄εεn+1 resulting from the iterations at the
weak form level is different from the strain increment ∆ε̄εεr

n+1 applied to the LCC
used in the MFH procedure. Combining (11) and (12) for the homogenised material
leads to

∆ε̄r
n+1 = ε̄n + ∆ε̄n+1 − ε̄res

n . (72)

The residual variables follow from the application of a virtual elastic unloading
step at time tn canceling the stress in the composite material, i.e.

σ̄res
n = v0 σ̄

res
0 n + vI σ̄

res
I n = 0 . (73)

This virtual elastic unloading step is defined as follows:

• The unloading operator of the composite material is the elastic operator (24).

• The residual strain of the composite material satisfying σ̄res
n = 0 is directly

obtained from

ε̄res
n = ε̄n −∆ε̄unload

n = ε̄n − (C̄el )−1 : σ̄n+1 . (74)

• Applying the MFH equations (1-3) in combination with this last result yields
the residual states, in the mean-field sense, in the different phases

ε̄res
I n = ε̄I n − Bε : [vIBε + v0I]−1 : ∆ε̄unload

n , (75)

σ̄res
I n = σ̄I n − Cel

I : Bε : [vIBε + v0I]−1 : ∆ε̄unload
n , (76)

ε̄res
0 n = ε̄0 n − [vIBε + v0I]−1 : ∆ε̄unload

n , and (77)

σ̄res
0 n = σ̄0 n − Cel

0 : [vIBε + v0I]−1 : ∆ε̄unload
n . (78)

Once the unloaded state is defined, considering a time interval [tn, tn+1], the
new stress state can be computed from the macro-total strain tensor ε̄n, the secant
strain increment ∆ε̄r

n+1, and the phase i internal variables ηi at tn completed by
the residual variables (the residual strains in the composite material, in the fibres
phase, and in the matrix phase). The incremental-secant MFH consists in rewriting
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the Eqs. (1-3) using the secant operators (69) and Eq. (73), which results into

∆ε̄r
n+1 = v0∆ε0

r
n+1 + vI∆εI

r
n+1 , (79)

σ̄n+1 = v0 σ̄0 n+1 + vI σ̄I n+1 = v0 ∆σ̄r
0 n+1 + vI ∆σ̄r

I n+1 , (80)

∆ε̄r
I n+1 = Bε

(
I, ĈS

0 , ĈS
I

)
: ∆ε̄r

0 n+1 . (81)

In this formalism, the stress increments ∆σ̄r
i n+1 and secant operator ĈSr

i in phase
i are evaluated from ∆ε̄r

i n+1 and from ∆ε̄r
n+1 using the second statistical moment-

enhanced elasto-plastic material model described in Section 3.3, with

σ̄i n+1 = Fi
(

∆ε̄r
i n+1 , ∆ε̄r

n+1 ; ηin, ε̄
res
i n , σ̄

res
i n

)
, (82)

and

ĈS
r n+1 = Gi

(
∆ε̄r

i n+1 , ∆ε̄r
n+1 ; ηin, ε̄

res
i n , σ̄

res
i n

)
. (83)

Finally, in order to perform Newton-Raphson iterations at the finite-element level,
the linearisation of the homogenised stress (80) has to be performed. Using Eqs.
(70) and (71), one has

δσ̄ = vI

(
∂ σ̄I n+1

∂∆ε̄r
I

: δ∆ε̄r
I +

∂ σ̄I n+1

∂∆ε̄r
: δ∆ε̄r

)
+

v0

(
∂ σ̄0 n+1

∂∆ε̄r
0

: δ∆ε̄r
0 +

∂ σ̄0 n+1

∂∆ε̄r
: δ∆ε̄r

)
= vI

(
Calgo

I n+1 : δ∆ε̄r
I + Calgo

Ic n+1 : δ∆ε̄r
)

+

v0

(
Calgo

0 n+1 : δ∆ε̄r
0 + Calgo

0c n+1 : δ∆ε̄r
)

=

(
vI Calgo

I n+1 :
∂ε̄I

∂ε̄
+ vI Calgo

Ic n+1 +

v0 Calgo
0 n+1 :

∂ε̄0

∂ε̄
+ v0 Calgo

0c n+1

)
: δε̄ , (84)

which allows defining the composite material “consistent” material operator

Calgo
n+1 =

(
vI Calgo

I n+1 :
∂ε̄I

∂ε̄
+ vI Calgo

Ic n+1 +

v0 Calgo
0 n+1 :

∂ε̄0

∂ε̄
+ v0 Calgo

0c n+1

)
. (85)

The two terms ∂ε̄I

∂ε̄ and ∂ε̄I

∂ε̄ are obtained during the MFH resolution.
Practically, for the Mori-Tanaka (M–T) model extended to the present formu-

lation, the system of equations (79-83) is solved using the M-T process described
here below.

• The strain increment in the inclusions phase is predicted as ∆ε̄r
n+1 → ∆ε̄r

I n+1.

• A Newton-Raphson iterations process is then applied (indices related to the
iteration number at time tn+1 are omitted):
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(1) The average strain in the matrix phase is computed from:

∆ε̄r
0 n+1 =

1

v0

(
∆ε̄r

n+1 − vI ∆ε̄r
I n+1

)
. (86)

(2) For each phase i, call the second statistical moment-enhanced elasto-plastic
constitutive model (82) described in Section 3.3. This constitutive law is
now summarised.
The trial stress tensor is first evaluated from Eq. (30) as

σ̄tr
i n+1 = σ̄res

i n + ∆σ̄tr
i n+1 = σ̄res

n + Cel
i : ∆ε̄r

n+1 , (87)

for the residual-incremental-secant method or as

σ̄tr
i n+1 = ∆σ̄tr

i n+1 = Cel
i : ∆ε̄r

n+1 , (88)

for the zero-incremental-secant method.
Second, the second statistical moment estimation of the stress increment
prediction is evaluated from Eq. (27). Note that in the inclusion phase this
expression also corresponds to the first statistical moment prediction, i.e.

∆ˆ̂σtr
I

eq
= ∆σ̂tr

I
eq

= (∆σ̄tr
I )eq =

√
3
2∆σ̄tr

I : Idev : ∆σ̄tr
I for a M-T scheme

(25). The first statistical moment residual-incremental-secant approach de-
scribed in Section 3.2.1 is thus used in the inclusion phase.
Third, the second statistical moment estimation of von Mises elastic pre-
dictor is obtained from either the approximation (35) or from the approxi-
mation (67) for the residual- and zero-incremental-secant formulations, re-
spectively.
Fourth, in case of plastic flow, after having computed the return mapping,
the updated stress tensor at time tn+1 is computed from Eq. (41). The in-
ternal variable ηi at time tn+1 are also obtained from this return mapping
as well as the isotropic incremental-secant operator is obtained from either
Eq. (58) or Eq. (64), for the residual- and zero-incremental-secant formula-
tions, respectively.
Fifth, the “consistent” operators are obtained from (70) and (71).

(3) In order to solve the MFH iterations, Eq. (81) is rewritten as F = 0,
where F is the stress residual in the inclusion phase. During the time step
[tn, tn+1], the stress residual can be evaluated by considering ∆ε̄r

n+1 con-
stant, leading to [27, 50]

F = ĈS
0 n+1 :

[
∆ε̄r

I n+1 −
1

v0
S−1 : (∆ε̄r

I n+1 −∆ε̄r
n+1)

]
−

ĈS
I n+1 : ∆ε̄r

I n+1 . (89)

(4) As long as the process did not converge, i.e. |F | > Tol, the strain increment
in the inclusions phase is corrected following

∆ε̄r
I n+1 ← ∆ε̄r

I n+1 − J−1 : F , (90)

where the Jacobian matrix J is computed at constant ∆ε̄r
n+1, such that

δF = J : δε̄I. As the Eshelby tensor S(I, ĈS
0 n+1) is not constant during this

M-T process, its derivative with respect to ∆ε̄r
0 n+1 needs to be considered
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too, leading to

J =
∂F

∂ε̄I
+
∂F

∂ε̄0
:
∂ε̄0

∂ε̄I

∣∣∣∣
∆ε̄r

n+1

=
∂F

∂ε̄I
− vI

v0

∂F

∂ε̄0

= ĈS
0 n+1 :

[
I− S−1

]
− ĈS

I n+1 −
∂ ĈS

I n+1

∂εI
: ∆ε̄r

I n+1 −

vI

v0

∂ ĈS
0 n+1

∂ε̄0
:

[
∆ε̄r

I n+1 − S−1 :

(
∆ε̄r

I n+1 −∆ε̄r
n+1

)
v0

]
−

vI

v0
ĈS

0 n+1 : S−1 −

vI

v2
0

ĈS
0 n+1 ⊗

(
∆ε̄r

I n+1 −∆ε̄r
n+1

)
::
(
S−1 ⊗ S−1

)
::
∂S
∂ε̄0

, (91)

where
∂ĈS

i n+1

∂ε̄i
are given in A.1, and where ∂S

∂ε̄0
is given in Appendix A.3.

(5) A new iteration can then be performed.

• After convergence, the time step is finalised by evaluating
(1) The homogenised stress from Eq. (80)

σ̄n+1 = v0 σ̄0 n+1 + vI σ̄I n+1 , (92)

and the updated strain tensors

ε̄n+1 = ε̄res
n + ∆ε̄r

n+1

ε̄I n+1 = ε̄res
I n + ∆ε̄r

I n+1

ε̄0 n+1 = ε̄res
0 n + ∆ε̄r

0 n+1 (93)

(2) The linearisation of the homogenised stress (80), which yields the “consis-
tent” composite material operator (85). This result is completed by recalling
that since F = 0, the effect on the strain increment in each phase of a vari-
ation δ∆ε̄ can directly be obtained by constraining δF = 0, and one thus
has

0 =
∂F

∂ε̄I
: δ∆ε̄r

I +
∂F

∂ε̄0
: δ∆ε̄r

0 +
∂F

∂ε̄
: δ∆ε̄r . (94)

This last equation and Eq. (79) yield directly

∂ε̄I

∂ε̄
= −J−1 :

∂F

∂ε̄
, and (95)

∂ε̄0

∂ε̄
=

1

v0

(
I− vI

∂ε̄I

∂ε̄

)
. (96)

The expression of the missing term ∂F
∂ε̄ is detailed in Appendix A.4.

5. Numerical simulations

In this section the predictions of the developed incremental-secant MFH accounting
for the second statistical moment estimation of the von Mises stress are studied.
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First the two formulations, i.e. the residual- and zero-incremental-secant methods,
are compared for composite materials with short and long elastic fibres. This new
MFH with second statistical moment estimations is then applied on several com-
posite material systems, for different triaxiality and loading conditions, and the
predictions are compared to other MFH schemes with first or second statistical
moment estimations.

For all the simulations, the predictions have converged with the strain increment
size.

5.1. Comparison of the residual- and zero-incremental-secant assumptions

First we compare the results obtained with the second statistical moments estima-
tions with

• the residual-incremental-secant method and with the full second statistical mo-
ment estimation of the von Mises stress (53) –denoted “2nd-mom. res.-incr.-sec.”
in the figures;

• the zero-incremental-secant method and with the second statistical moment es-
timation of the von Mises stress (68) –denoted “2nd-mom. 0-incr.-sec.” in the
figures.

• These predictions are also compared to the ones obtained with the residual- or
zero-incremental-secant with first statistical moment estimation of the von Mises
stress [27] –denoted “1st-mom. res.-incr.-sec.” or “1st-mom. 0-incr.-sec.” in the
figures.

We consider the cases of an elasto-plastic matrix reinforced with short and long
elastic fibres, as these two cases lead to high contrast in the matrix von Mises stress,
usually responsible for poor MFH predictions, but also the case of inclusions having
a lower plastic hardening than the matrix material.

5.1.1. Short glass fibre reinforced polyamide (GFRP)

Aligned short glass fibres, with a volume fraction vI = 15.7% and an aspect ratio
α = 15, reinforce a polyamide matrix. The elasto-plastic material of the matrix
obeys to an exponential-linear hardening law:

R(p) = k1p+ k2(1− e−mp) . (97)

The material properties are

• Inclusions: EI = 72GPa, νI = 0.22;

• Matrix: E0 = 2.1GPa, ν0 = 0.3, σY 0 = 29MPa, k10 = 139.0MPa, k20 = 32.7MPa
and m0 = 319.4.

The finite element (FE) simulations [41] are used as a reference.
Fig. 3 compares the different predictions for a loading in the fibres direction. The

residual-incremental-secant method with the second statistical moment estimation
of the von Mises stress over-estimates the composite homogenised stress as it can
be seen in 3(a). As illustrated in Fig. 3(a), the zero-incremental-secant MFH with
second statistical moment estimations yields better predictions of the homogenised
composite material, although plastic yielding still occurs later than in the FE
results. The evolution of the average stress in the inclusion phase is reported in
Fig. 3(b), where it can be seen that only the zero-incremental-secant method with
second statistical moment estimations is close to the FE results. This is explained
by the higher value reached by the second statistical moment estimation of the yield
stress predicted in the matrix phase, see Fig. 3(c). Note that the second statistical
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Figure 3. Comparison of the approximations predictions for the short glass fibre reinforced polyamide test
loaded in the longitudinal direction: (a) Mean composite material stress along the loading direction; (b)
Mean inclusions phase stress in the loading direction; (c) Von Mises stress in the matrix phase (d) First
(markers) and second (lines) statistical estimations of the von Mises stress in the matrix phase; and (e)
Mean accumulated plastic strain in the matrix phase.

moment estimations of the incremental-secant method are always higher than the
average value as illustrated in Fig. 3(d). However, the zero-incremental-secant MFH
with second statistical moment estimations is accompanied by a over-prediction of
the accumulated plastic strain, see Fig. 3(e).

Overall the zero-incremental-secant MFH with second statistical moment esti-
mation of the von Mises stress predicts results closer to the FE solution than the
predictions obtained with the first statistical moment estimation of the von Mises
stress.

5.1.2. Aluminum alloy matrix reinforced with continuous stiff alumina fibres

Continuous alumina fibres, with a volume fraction of vI = 55%, reinforce an
aluminum alloy matrix. The hardening law of the matrix reads

R(p) = kpm , (98)
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where k andm are the hardening parameters. The Metal Matrix Composite (MMC)
material is characterised by the phase properties: [51]

• Inclusions: EI = 344.5GPa, νI = 0.26;

• Matrix: E0 = 68.9GPa, ν0 = 0.32, σY 0 = 94MPa, k0 = 578.25MPa and m0 =
0.529.

The FE predictions reported in [52] are used as a reference solution.
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Figure 4. Comparison of the approximations predictions for continuous stiff alumina fibres reinforced
aluminum alloy matrix test loaded in the (a & c) longitudinal direction and in the (b & d) transverse
direction. (a & b) Mean composite material stress along the loading direction; (c & d) Von Mises stress in
the matrix phase.

The predictions for the different assumptions are illustrated in Fig. 4 and lead to
the same conclusions as for the GFRP test. The residual-incremental-secant MFH
with the second statistical moment estimation of the von Mises stress over-predicts
the results in the transverse direction, see Fig. 4(b), while the zero-incremental
formulations with first and second statistical moment estimations of the von Mises
stress yield the correct behaviours.

5.1.3. MMC with low inclusions phase hardening

Up to now the examples considered elastic inclusions embedded in an elasto-
plastic matrix, in which case the 0-incremental-secant method should be used in
the matrix phase. However when developing the incremental-secant method [27], it
was shown that if the inclusions phase is characterised by a low-hardening elasto-
plastic response, the residual method should be considered in both phases (in both
cases the inclusions phase should consider the residual-incremental-secant method).
In this subsection we intend to show that this behaviour is still true with the second
statistical moment estimations.

To this end we consider a composite material made of elasto-plastic spherical
austenite inclusions embedded in an elasto-plastic ferrite matrix [51]. In this case,
the inclusions are more compliant than the matrix, see Fig. 5(a). The inclusion and
matrix hardening laws follow Eq. (98), with the parameters
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Figure 5. Results for MMC with low-hardening elasto-plastic inclusions embedded in a higher-hardening
elasto-plastic matrix. (a) Effect of the residual method, (b) Effect of the strain increment ∆ε̄ size.

• Inclusions: EI = 179.35GPa, νI = 0.3, σY I = 202MPa, kI = 688MPa and mI =
0.55;

• Matrix: E0 = 196.85GPa, ν0 = 0.3, σY 0 = 600MPa, k0 = 650MPa and m0 =
0.06.

The inclusions volume fraction is vI = 35%.
The predictions of the incremental-secant MFH scheme with both the first and

second statistical moment estimations are reported in Fig. 5(a). Good estima-
tions are obtained with the residual-incremental-secant MFH, although the com-
posite response is slightly overestimated with the first statistical moment method
and under-estimated with the second statistical moment scheme. Note that the
0-incremental-secant MFH with second statistical moment estimations predicts a
spurious softening. This is explained by the use of the approximation (67) in the
matrix phase, in place of the full expression (35).

The effect of the strain increment ∆ε̄ size on the prediction is reported in Fig.
5(b), where it can be seen that the solution converges when decreasing this incre-
ment size. Practically 50 increments are enough to reach the convergence.

5.1.4. MMC with elasto-perfectly-plastic phases
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Figure 6. Results for composites with elasto-perfectly-plastic inclusions with a low hardening embedded
in an elasto–plastic matrix. (a) Effect of the residual method, (b) Effect of the strain increment ∆ε̄ size.

The effect of the residual is eventually studied on a composite material where
both phases, matrix and inclusions, are elastic-perfectly-plastic (RI(p) = R0(p) =
0). The other material properties are

• Inclusions: EI = 400GPa, νI = 0.2, σY I = 75MPa;

• Matrix: E0 = 75GPa, ν0 = 0.3, σY 0 = 75MPa.
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The volume fraction of the spherical inclusions is vI = 15%. The FE estimations
reported in [45] are used as a reference solution.

As it can be seen in Fig. 6(a) the residual in the matrix phase has to be con-
sidered for the first and second statistical moment estimations in order to capture
the correct behaviour. One more time, the 0-incremental-secant MFH with second
statistical moment estimations predicts a spurious softening due to the approxi-
mation (67). However, in this case, the residual-incremental-secant MFH with the
second statistical moment estimation of the von Mises stress leads also to a soften-
ing of the composite. This can be explained as this estimation is higher than the
first moment estimation as it will be discussed in details in Section 6, although
for an elastic-perfectly-plastic material the two values should eventually converge.
This is a limitation of the second statistical moment estimation. Such a limita-
tion was already seen with the variational method developed in [45], for which the
predictions are too compliant and depend on the strain increment size. With the
residual-incremental-secant method the results are found to be independent of the
strain increment, see Fig. 6(b).

5.2. Comparison of the 0-incremental-secant MFH with second statistical
moment estimations with other MFH schemes

In this section, the predictions obtained with the zero-incremental-secant MFH
with a second statistical moment estimation of the von Mises stress are compared
on various composite materials with the predictions obtained with other MFH
schemes, in particular with

• the incremental-tangent MFH with first statistical moment estimations [16, 18];

• the incremental-tangent MFH with second statistical moment estimations [41];

• the zero-incremental-secant MFH with first statistical moment estimations [27];

• the incremental variational formulations [45–47].

5.2.1. Short glass fibre reinforced polyamide (GFRP)

The material system is the same as in 5.1.1, but this time we compare the results
obtained by various MFH schemes for loading in the longitudinal and transverse
directions.

For this test, the predictions obtained with the first and second statistical mo-
ment estimations for both the incremental-secant and the incremental-tangent
MFH scheme are compared with the FE results [41], which are used as a refer-
ence. It can be seen in Fig. 7 that for a transverse loading, all the methods predict
similar results. However for a longitudinal loading the MFH scheme with first sta-
tistical moment estimations of the von Mises stress over-predicts the composite
material response, see Fig. 7(a). The homogenisation methods accounting for the
second statistical moment estimations of the von Mises stress are more accurate.
In particular the new incremental-secant method predicts a composite material
response closer to the FE results than the incremental-tangent method, see Fig.
7(a). This is due to the evolution of the plastic strain in the matrix phase which is
overestimated with the new incremental-secant method, while it is under-estimated
with the incremental-tangent method, see Fig. 7(e).

We are now considering the same material system but with the matrix phase
having a value of the Young modulus E0 divided by two. As a result it is expected
for the composite material to be softer during the elastic response, but also during
the elasto-plastic response. Both first and second statistical moment estimations
lead to this result for a transverse loading as it can be seen in Fig. 8(b). However
for the longitudinal loading, see Fig. 8(a), it appears that only the incremental-
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Figure 7. Comparison of the different MFH schemes predictions for the short glass fibre reinforced
polyamide test loaded in (left column) the longitudinal direction and in (right column) the transverse
direction: (a & b) Mean composite material stress along the loading direction; (c & d) Von Mises stress in
the matrix phase; and (e & f) Mean accumulated plastic strain in the matrix phase.

secant method with second statistical moment estimations of the von Mises stress
leads to consistent results. With a first statistical moment estimation of the von
Mises stress, the composite material response, see Fig. 8(a), and the fibres phase
response, see Fig. 8(c), reach a higher level in the case of a lower matrix Young
modulus. This is due to the increasing delay in the predicted plastic yield point
resulting from a first statistical moment estimation.

5.2.2. Triaxiality effect

The reliability of the developed zero-incremental-secant MFH scheme with sec-
ond statistical moment estimations is now ascertained under different triaxiality
states defined by T = tr(σ̄)/3σ̄eq: pure shearing, biaxial loading, and a plane strain
tension/compression loading.

• The shear loading is characterised by σ̄12 = σ̄21 = σ with the other components
of the stress tensor σ̄ being zero. This corresponds to a triaxiality ratio of 0.

• The biaxial loading is characterised by σ̄11 = σ̄22 = σ and σ̄33 = 0. The corre-
sponding triaxiality ratio is 2/3.
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Figure 8. Comparison of the different MFH schemes predictions for the short glass fibre reinforced
polyamide test loaded in (left column) the longitudinal direction and in (right column) the transverse
direction. The thin lines are related to the original material system and the thick lines to the material
system with the matrix phase having a lower Young modulus. (a & b) Mean composite material stress
along the loading direction; (c & d) Mean inclusions phase stress along the loading direction.
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Figure 9. Results for SiC-particles reinforced aluminum matrix under different triaxiality states. The first
statistical moment solutions are from [27].

• For the case of plane strain tension/compression, the only non–zero components
of ε̄εε are ε̄11 and ε̄22, where ε̄22 is computed to satisfy σ̄22 = 0. This results in a
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triaxiality ratio of approximately 1 during the plastic flow.

The considered composite material is a SiC-particles reinforced aluminum ma-
trix. The elasto-plastic metal matrix follows the power-law hardening (98) and the
material properties are

• Inclusions: EI = 400GPa, νI = 0.2;

• Matrix: E0 = 75GPa, ν0 = 0.3, σY 0 = 75MPa, k0 = 400MPa and m0 = 0.4 or
m0 = 0.05.

The volume fraction of the spherical inclusions is vI = 15%. The finite element
predictions available in [46] are used as reference solutions.

The predictions of the 0-incremental-secant formulation with a second statis-
tical moment estimation of the von Mises stress are presented in Fig. 9 and are
compared to the results obtained using first statistical moment estimations and
using a variational homogenisation scheme [46]. The new scheme is accurate for
all the triaxiality conditions and is shown to slightly improve the prediction as
compared to the MFH using first statistical moment estimation, in particular for
m0 = 0.05, see Figs. 9(a) and 9(b).

5.2.3. Non-monotonic and non-proportional loading path
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Figure 10. Results for a non–monotonic and non–proportional loading path. (a) Applied strain compo-
nents history, (b) comparisons of the predicted stress components, (c and d) comparison of the predicted
stress components history. The first statistical moment solutions are from [27].

One of the main advantages of the incremental-secant MFH method is its ability
to handle non-monotonic and non-proportional loadings, as it has been shown with
first statistical moment estimations [27]. There is theoretically no reason to loose
this ability when considering the second statistical moment estimations, but this is
actually demonstrated in this section by considering the example proposed in [47],
in which the external boundary conditions correspond to constraining simultane-
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ously all the strain components following

ε̄εε (t) = ε̄33 (t)

[
eee3 ⊗ eee3 −

1

2
(eee1 ⊗ eee1 + eee2 ⊗ eee2)

]
+

ε̄13 (t) (eee1 ⊗ eee3 + eee3 ⊗ eee1 + eee2 ⊗ eee3 + eee3 ⊗ eee2) . (99)

The evolutions of the two strains are illustrated in Fig. 10(a), leading to a the
non–monotonic and non–proportional loading,

The material system consists of elastic spherical inclusions, with a volume frac-
tion of vI = 17%, embedded in an elasto-perfectly-plastic matrix, with the following
material properties

• Inclusions: κel
I = 20GPa, µel

I = 6GPa;

• Matrix: κel
0 = 10GPa, µel

0 = 3GPa, σY 0 = 100MPa.

This reference solution was obtained with a Fast Fourier Transforms (FFT)-based
homogenisation method in [47].

The predictions of the 0-incremental-secant MFH with a second statistical mo-
ment estimation of the von Mises stress are presented in Fig. 10 and are com-
pared to the results obtained using first statistical moment estimations and using
a variational MFH scheme [47]. It can be seen that the 0-incremental-secant MFH
prediction with the first or second statistical moment estimations nearly coincide
with the FE predictions, while the incremental-tangent method is unable to handle
the non-proportional loading.

6. Discussion

In the proposed MFH process, the Mori-Tanaka scheme is applied to homogenise
the linear comparison composite (LCC). Some remarks can be made:

• The method can be easily implemented by using the constitutive material boxes
of an existing material library as the MFH scheme directly calls these material
laws, as shown in Section 4.

• According to the Mori-Tanaka scheme, there is no stress fluctuation in the in-
clusions. Therefore, in the incremental formulation, increments of stress in the
inclusions phase are always uniform, and the second statistical moment esti-
mation of the von Mises stress of the inclusions equals to the von Mises stress
calculated from the first statistical moment average [47].

• During the elasto-plastic stage of the composite material deformation process, a
part of one phase exhibits plastic flow while the other part remains elastic. There
is thus an important difference in the local material operators within one phase,
which reduces the accuracy of a homogenisation method based on the mean-field
values.

• Compared to an incremental-tangent method, the incremental-secant method
exhibits less fluctuation in the local material operators within the composite
material phases as these operators are evaluated from an unloaded virtual state
and not from the previous stress state. The slope of the operator is thus less
decreased during the plastic flow. The incremental-secant MFH method exhibits
more accurate predictions than the incremental-tangent method, as shown in [27]
for first statistical moment estimations [27] and in Section 5 for second statistical
moment estimations predictions.

• The fluctuation in the local material operators is particularly important in the
case of short fibres for which a plastic zone develops in the matrix first at both
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ends of the fibres in the case of a longitudinal loading [41]. Because of this
plastic-flow the inclusion loading is lower than in the elastic case. The composite
behaviour can thus only be predicted if the plastic yield is correctly captured.
The incremental-secant MFH with first statistical moment estimations is not
able to capture this plastic yield with a good accuracy. We have show in Section
5 that the incremental-secant MFH with second statistical moment estimations
leads to better predictions of the composite material and phases responses since
the second statistical estimation of the von Mises stress reach the material yield
stress in the matrix sooner than its first statistical estimation, leading to a more
important plastic flow in the average sense.

• In the matrix phase, the equation for the second statistical moment of the equiv-
alent trial stress increment (5) reads

∆ˆ̂σtr
0

eq
= 3µel

0

√
2

3
Idev :: 〈∆εr ⊗∆εr〉ω0

= 3µel
0

√
2

3v0
Idev :: ∆ε̄r :

∂C̄el

∂Cel
0

: ∆ε̄r . (100)

As a consequence, the evaluation of the second statistical-estimation of the von
Mises stress does not depend only on the average stress tensor, but also on the
material operator. The second statistical moment estimation of the von Mises
stress remains higher than its first statistical moment estimation. Indeed, defin-
ing δ∆σ (x) as the fluctuation around the mean value ∆σ̄, one has in the matrix
phase (

∆ˆ̂σeq
0

)2
=

3

2

〈
(∆σ̄ + δ∆σ (x)) : Idev : (∆σ̄ + δ∆σ (x))

〉
ω0

=
3

2

〈
∆σ̄ : Idev : ∆σ̄

〉
ω0

+ 3
〈

∆σ̄ : Idev : δ∆σ (x)
〉
ω0

+

3

2

〈
δ∆σ (x) : Idev : δ∆σ (x)

〉
ω0

= ∆σ̄eq
0 +

(
δ∆ˆ̂σeq

0

)2
. (101)

The limitation of this method arises for elasto-perfectly-plastic material. Indeed
in such a case at some point the local stress becomes uniform in the phase. Hence
the first and second statistical moment estimations should be similar, which is not
explicitly constrained in the proposed incremental-secant framework, yielding an
apparent softening.

• From the descriptions above, we can say that the proposed second statistical
moment method is more meaningful for the cases of a matrix reinforced with
harder inclusions, as it was confirmed by the numerical simulations.

The development of the incremental-secant MFH with second statistical moment
estimations paves the ways to two future developments.

• On the one hand, as shown in Section 5.2.1, the method allows capturing the
change in the short fibre reinforced composite material response when the Young
modulus of the matrix changes. This was not the case with the first statistical
moment estimations. In the future we will take advantage of this accurate predic-
tion to extend the method to visco-elastic and visco-plastic composite materials,
for which a change in the phase stiffness with the strain rate should be consis-
tently captured.

• On the other hand, as previously stated, the incremental-secant MFH formal-
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ism was shown to be able to account for material softening when extended to
include a non-local damage model in the matrix phase, thus enabling an accu-
rate simulation of the onset and evolution of damage across the scales. Although
the incremental-secant MFH method with second statistical estimations is not
developed yet to account for damage, to illustrate the interest of the incremental-
secant MFH method, we study the problem of continuous elastic isotropic fibres,
with a volume fraction of vI = 50%, embedded in a matrix material that follows
a damage-enhanced elasto–plastic behavior. In order to avoid the loss of solu-
tion uniqueness caused by the matrix material softening, an implicit non-local
formulation [32–35] of the matrix damage evolution is considered during the ho-
mogenization process. Details on this non-local damage-enhanced incremental-
secant MFH formulation with first statistical moment estimations can be found
in [29]. The composite material is loaded transversely under plane-stress state
in the other transverse direction and plane-strain state in the longitudinal di-
rection, before being unloaded until reaching a zero-strain state. The material
parameters read:
• Inclusions: EI = 238GPa, νI = 0.26.
• Matrix: E0 = 2.89GPa, ν0 = 0.3, σY 0 = 35MPa, h0 = 73MPa, m0 = 60,
S0 = 2MPa, s = 0.5 and pC = 0,

which follows the hardening law

R(p) = h
(
1− e−mp

)
, (102)

and the Lemaitre-Chaboche damage law

∆D (x) =

{
0, if p̃ (x) 6 pC ;( 1

2
εel(x):Cel:εel(x)

S

)s
∆p̃ (x) , if p̃ (x) > pC .

(103)

In this expression, pC is a plastic threshold for the damage evolution, S and s are
the material parameters, and 1

2ε
el : Cel : εel is the strain energy release rate. In

the non-local implicit approach [32–35], the non-local accumulated plastic strain
p̃ considered in (103) is computed from the implicit formulation

p̃ (x)−∇ · (cg ·∇p̃ (x)) = p (x) ∀x ∈ ωi , (104)

where cg is the characteristic squared lengths tensor. The non-local equation
(104) is practically solved by introducing a new degree of freedom p̃ in the finite
element resolution. The finite element predictions were obtained in [28].

The predictions obtained by the incremental-secant MFH process, using the
residual-incremental-secant operator for the inclusion phase and the zero-
incremental-secant operator for the matrix phase [29] are compared to the predic-
tion obtained by a incremental-tangent method [28] in Fig. 11. When analysing
the composite material response, see Fig. 11(a), it appears that during the soften-
ing stage the incremental-secant MFH scheme is closer to the reference solution.
This is explained by analysing the behaviour of the fibres, see Fig. 11(b) during
the softening of the matrix phase.
Because of non-local formulation of the matrix phase damage evolution stated
by Eqs. (103-104), the multi-scale numerical model does not lose the solution
uniqueness upon strain-softening of the composite material, and the solution re-
mains mesh-independent as demonstrated in [28, 29]. As a result, macro-scale
composite laminates can be studied using the non-local damage-enhanced MFH
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Figure 11. Comparison of the incremental-secant and incremental-tangent predictions for continuous-
elastic fibres embedded in a matrix following a damage-enhanced elasto-plastic behavior. Figure adapted
from [29]. (a) Average stress in the composite material along the loading direction. (b) Average stress in
the inclusion phase along the loading direction.

and the strain localisation can be captured in the different plies [29, 53]. This is
illustrated by considering a open-hole [−45o2/45o2]S-laminate. Each ply is made
of transverse-isotropic carbon-fibre-reinforced epoxy, with
• Inclusions: ELI = 230GPa, ETI = 40GPa, νTTI = 0.2, νLTI = 0.256, GTTI =

16.7GPa, and GLTI = 24GPa.
• Matrix: E0 = 3.2GPa, ν0 = 0.3, σY 0 = 15MPa, h0 = 300MPa, m0 = 100,
S0 = 0.1MPa, s = 1.73 and pC = 0,

which follows the hardening law (102) and the damage law (103). The volume
fraction of the continuous fibres is vI = 60%.
Combining the non-local damage-enhanced incremental-secant MFH with a de-

 

 

Figure 12. Delaminated parts of the [45o2/− 45o2]S-open hole sample for the (a) numerical model, (b)
experimental sample. Figure adapted from [53].

lamination model as detailed in [53], allows modeling the failure of coupon tests.
The configuration after total failure is illustrated for both the numerical (in
which case damage reaches one) and experimental tests in Fig. 12. It can be
seen on Fig. 12 that the damage bands of the numerical prediction are in good
agreement with the crack initiation location in the different plies observed for
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the experimental results, see Figure 12(b). This figure demonstrates the ability
of the method to capture the failure mode of the test.

7. Conclusions

In this paper we have extended the incremental-secant MFH scheme to account for
a second statistical moment estimation of the von Mises stress.

The method has the same advantages than the previously developed version
with first statistical moment estimations, i.e. (i) the method can handle non-
proportional and non-monotonic loading, (ii) the LCC operators used in the Es-
helby tensor are naturally isotropic, avoiding the isotropisation approximation, (iii)
the method can be easily implemented by using the constitutive material boxes of
a material library as the MFH scheme directly calls these material laws, and (iv) a
large variety of composite materials, at the exception of the elasto-perfectly-plastic
inclusions case, can be modelled with this method in an accurate way.

When comparing the results obtained with the first and second statistical mo-
ment estimations, it appeared that the second statistical moment estimation im-
proves the accuracy in the case of short fibres, while the prediction is of similar
accuracy in the other cases.

Finally, it was shown that both formulations, i.e. with the first and second statis-
tical moment estimations, require to cancel the residual stress in the matrix phase
for composite materials whose inclusion phase remains elastic or has a plastic flow
stiffer than its matrix phase.

In the future, it is intended to extend the incremental-secant MFH scheme with
the second statistical moment estimations to visco-elastic, visco-plastic and to
damage-enhanced elasto-plastic behaviours.
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[39] P. Ponte Castañeda, Journal of the Mechanics and Physics of Solids 50 (2002), pp. 737 – 757.
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Appendix A. Closed-form expression of the derivatives

A.1. Derivatives of the incremental-secant operator

In the following ĈS
i n+1 will be used to either design ĈSr

i n+1 or ĈS0
i n+1 depending

on the considered method.
The derivatives of ĈS

i n+1 with respect to ε̄r
i and ε̄r are obtained from (58-61) as

follows:

∂ ĈS
i n+1

∂ε̄r
i

=
∂

∂ε̄r
i

Cel
i − 3µel

i ∆p̄i n+1

Idev : Cel
i(

∆ˆ̂σtr
0eq

)


= −Idev ⊗ ∂

∂ε̄r
i

(
2µel

i ∆p̄i n+1

∆ˆ̂εr
i

eq

n+1

)

= − 2µel
i

∆ˆ̂εr
i

eq

n+1

Idev ⊗
∂ ∆p̄i n+1

∂ε̄r
i

, (A1)

as ˆ̂εr
i

eq

n+1 is being computed from Eqs. (26-27) and does not depend on the strain
increment ε̄r

i .
Using Eqs. (26-27) one has

∆ˆ̂εr
i

eq

n+1 =

√
2

3vi
Idev ::

(
∆ε̄r

n+1 :
∂C̄el

∂Cel
i

: ∆ε̄r
n+1

)

=

√
2

3vi
∆ε̄r

n+1 :
∂C̄el

∂2µel
i

: ∆ε̄r
n+1 , (A2)

yielding

∂ ∆ˆ̂εr
i

eq

n+1

∂ε̄r
=

1

3vi ∆ˆ̂εr
i

eq

n+1

∂C̄el

∂µel
i

: ∆ε̄r
n+1 . (A3)

From this relation a straightforward result can be obtained:

∂ ∆ˆ̂σtr
i

eq

∂ε̄r
=

µel
i

vi ∆ˆ̂εr
i

eq

n+1

∂C̄el

∂µel
i

: ∆ε̄r
n+1 . (A4)
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Using (A3), the missing derivative in Eq. (71) reads

∂ ĈS
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= −2µel
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(A5)

A.2. Derivatives of the equivalent plastic strain increment

To complete the Eqs. (A1) and (A5), one has to evaluate the derivatives of ∆p̄i n+1.
To this end, the yielding condition (53) is first rewritten as

FY =
(

ˆ̂σi
eq

n

)2
−
(

∆ˆ̂σunload
i

eq

n+1

)2
− 3 σ̄res

i n : Idev : ∆σ̄unload
i n +(

∆ˆ̂σtr
i

eq

n+1 − 3µel
i ∆p̄i n+1

)2
+ 3 σ̄res

i n : Idev : ∆σ̄tr
i n+1

−6µel
i ∆p̄i n+1 σ̄

res
i n : Idev :

ˆ̂
N tr
i n+1 −

(
R
(
p̄i n+1

)
+ σYi

)2
= 0 . (A6)

This equation in ∆p̄i n+1 is solved using a Newton-Raphson scheme at constant
values of ∆ε̄r

i and ∆ε̄r, yielding

∂FY

∂∆p̄i
= −6µel

i

(
∆ˆ̂σtr

i

eq

n+1 − 3µel
i ∆p̄i n+1

)
− 6µel

i σ̄
res
i n : Idev :

ˆ̂
N tr
i n+1 −

2
(
R
(
p̄i n+1

)
+ σYi

) ∂R( p̄i n+1)

∂p̄i
, (A7)

In case the relation (68) is used instead of (53), the second term of the right-hand-
side vanishes.

To obtain the derivatives of ∆p̄i n+1 with respect to ∆ε̄r
i and ∆ε̄r, we assume

perturbations of FY with these last two fields, which leads to

δFY =
∂FY

∂∆ε̄r
i

: δ∆ε̄r
i +

∂FY

∂∆p̄i
δ∆p̄i = 0 , (A8)

δFY =
∂FY

∂∆ε̄r
: δ∆ε̄r +

∂FY

∂∆p̄i
δ∆pi = 0 , (A9)

or again

∂∆p̄i
∂∆ε̄ir

= −
(
∂FY

∂∆p̄i

)−1 ∂FY

∂∆ε̄ir
, (A10)

∂∆pi
∂∆ε̄r

= −
(
∂FY

∂∆p̄i

)−1 ∂FY

∂∆ε̄r
, (A11)
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where ∂FY

∂∆p̄i
is obtained from (A7), and where, using (44) and (A4),

∂FY

∂∆ε̄ir
= 3

(
1−

3µel
i ∆p̄i n+1

∆ˆ̂σtr
i

eq

n+1

)
σ̄res
i n : Idev :

∂ ∆σ̄tr
i n+1

∂∆ε̄r
i

= 6µel
i

(
1−

3µel
i ∆p̄i n+1

∆ˆ̂σtr
i

eq

n+1

)
Idev : σ̄res

i n , (A12)

∂FY

∂∆ε̄r
= 2

(
∆ˆ̂σtr

i

eq

n+1 − 3µel
i ∆p̄i n+1

) ∂ ∆ˆ̂σtr
i

eq

n+1

∂ε̄r
+

9µel
i ∆p̄i n+1(

∆ˆ̂σtr
i

eq

n+1

)2 σ̄
res
i n : Idev : ∆σ̄tr

i n+1

∂ ∆ˆ̂σtr
i

eq

n+1

∂ε̄r

=
[
2
(

∆ˆ̂σtr
i

eq

n+1 − 3µel
i ∆p̄i n+1

)
+

9µel
i ∆p̄i n+1(

∆ˆ̂σtr
i

eq

n+1

)2 σ̄
res
i n : Idev : ∆σ̄tr

i n+1

 µel
i

vi ∆ˆ̂εr
i

eq

n+1

∂C̄el

∂µel
i

: ∆ε̄r
n+1 .

(A13)

In case the relation (68) is used instead of (53), the term (A12) and the second
term of the right-hand-side of (A13) both vanish.

A.3. Derivatives of the Eshelby tensor

In the following the bulk and shear moduli of the LCC phase i, κ̂i n+1 and µ̂i n+1,
either hold for κ̂r

i n+1 and µ̂r
i n+1 or for κ̂0

i n+1 and µ̂0
i n+1.

The Eshelby tensor depends on the shape of the inclusions and on the Poisson
ratio of the matrix material. Thus the derivative of Eshelby tensor can be written
as

∂S
∂∆ε̄r

0

=
∂S
∂ν
⊗
(
∂ν

∂κ

∂κ̂0

∂∆ε̄r
0

+
∂ν

∂µ

∂µ̂0

∂∆ε̄r
0

)
, (A14)

with from (59)

∂κ̂0

∂∆ε̄r
0

= 0 , (A15)

and therefore

∂S
∂∆ε̄r

0

=
∂S
∂ν
⊗ ∂ν

∂µ

∂µ̂0

∂∆ε̄r
0

. (A16)

Similarly, the derivatives with the composite strain increment reads

∂S
∂∆ε̄r

=
∂S
∂ν
⊗ ∂ν

∂µ

∂µ̂0

∂∆ε̄r
. (A17)

The remaining two terms ∂µ̂0

∂∆ε̄r
0

and ∂µ̂0

∂∆ε̄r are obtained from Eq. (61) using Eqs.
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(A3), (A10) and (A11).

A.4. Derivative of the MFH residual

In the following ĈS
i n+1 will be used to either design ĈSr

i n+1 or ĈS0
i n+1 depending

on the considered method. Similarly,
Starting from (89)

F = ĈS
0 n+1 :

[
∆ε̄r

I n+1 −
1

v0
S−1 : (∆ε̄r

I n+1 −∆ε̄r
n+1)

]
−

ĈS
I n+1 : ∆ε̄r

I n+1 , (A18)

we have

∂F

∂ε̄
=

[
∆ε̄r

I n+1 −
1

v0
S−1 : (∆ε̄r

I n+1 −∆ε̄r
n+1)

]
:
∂ ĈS

0 n+1

∂ε̄
+

1

v0
ĈS

0 n+1 ⊗
(

∆ε̄r
I n+1 −∆ε̄r

n+1

)
::
(
S−1 ⊗ S−1

)
::
∂S
∂ε̄

+

1

v0
ĈS

0 n+1 : S−1 − ∆ε̄r
I n+1 :

∂ ĈS
I n+1

∂ε̄
. (A19)

where
∂ ĈS

i n+1

∂ε̄ result from (A5), and where ∂S
∂ε̄ results from (A17).


