Evaluation of phosphorus bioavailability according to the soil organic matter content

Sophie BARBIEUX, Gilles COLINET

Soil interfaces for sustainable development (ISMOM 2015) 5-10 July 2015, McGill University, Montreal

University of Liege - Gembloux Agro-Bio Tech – BIOSE – Water-Soil-Plant Exchanges. Passage des Déportés, 2. B-5030 Gembloux - sophie.barbieux@ulg.ac.be

Context and objectives

Incubation (without plant)

100 g of dry soil (pre-incubated at 80% of FC during 21 days at 28°C) Maintain at 80% of FC

3 sampling for analyses: 15, 30 & 45 days (at each harvest)

Bioavailability test (Stanford & Dement procedure)

1. Development of ryegrass in sand without addition of P

2 g of ryegrass seeds in 500 g of sand

Addition of nutrient P-free solution (Hoagland) Maintain at 80% of FC

2. Development of ryegrass on soil

200 g of dry soil (pre-incubated at 80% of FC during 21 days at 28°C) 3 harvests: every 15 days (15, 30 & 45 days)

Material & Methods

Soil analyses

Total organic carbon (TOC): Walkley & Black method pH: KCl 1N (w:v 2:5) Total P (Ptot): HClO₄ 70% conc. extraction (w:v 1:10) Mineral P & Organic P (Porga): H₂SO₄ 6N extraction (w:v 1:40) Available P (Pav): Lakanen-Erviö method $(CH_3 - COO - NH_4 + EDTA, pH 4.65, w:v 1:5)$ Soluble P (Pw): water extraction (w:v 2:10) Acid phosphatases: Tabatabai & Bremmer method (p-NPP) hydrolysis)

Agriculture Is Life.be

Gembloux Agro-Bio Tech

Université de Liège

Hot Water-extractable carbon (HWC): (w:v 1:10)

Phosphorus (P) is an essential nutrient for plants. The organic matter contains significant amounts of P which can be mineralized and supply soil solution during plant development.

Hypothesis: increasing P organic pools in soils is a way to improve its gradual release for plants and alleviate risks of immobilization under mineral forms.

Objective: evaluate the P bioavailability and its uptake by plants according to differences of soil organic matter (SOM) content.

Soil	Land Use	TOC [mg/100g]	pH KCl	Ptot [mg/100g]	Porga [mg/100g]	Pav [mg/100g]	
Garden 1	Veg. Garden	3.25	6.24	138.8	28.7	8.0	
Garden 2	Veg. Garden	4.6	6.09	156.0	30.3	10.9	
Garden 3	Veg. Garden	2.95	6.35	163.4	36.9	25.0	
Garden 4	Veg. Garden	3.05	7.08	128.6	23.2	28.0	
Garden 5	Veg. Garden	4.3	7.1	261.8	54.7	54.4	
Crop 0P	Crop	1.05	5.61	86.8	18.2	4.8	
Crop 1P	Crop	1.03	5.42	103.4	16.3	6.4	
Crop 2P	Crop	1.11	5.63	110.2	14.9	9.9	

Nitrate (NO3): KCl 0.1N extraction (w:v 1:5) **Plant analyses** (each harvest) Yield (dry biomass – MS) Total P (Ptot)

Discussions

Studied soils present marked differences in soil organic and acido-basic status. Gardens present higher SOM and P (organic and available fractions) than crop soils. It should be noticed that the proportion of organic P to total is higher in gardens (20-25% under garden and 15-20% under cropland).

Biomass

Cut 1

Cut 2

Cut 3

Σ Total

The biomass yield was the most important for the 1st harvest and the least for the 2nd one. Significant differences were observed between soils. Two groups can be identified : the first group includes gardens 2 to 5 and the second one consists of crops soils; garden 1 is at intermediate level between the two groups.

Thus, globally, difference were detected between land uses with gardens presenting higher biomass of ryegrass. No significant variability was observed between crop soils.

P content of plants

As for biomass, the highest P content (in mg) was measured for the 1st harvest.

With and without plant : Acid phosphatases

Table 2. Pearson's correlation coefficients for soils without plant (incubation)

		Initial parameters					Incubation			
		TOC	pH_KCl	Ptot	Porga	Pav	Pw	acPAtase	HWC	
Initial parameters	pH_KCl	0.732								
	Ptot	0.768	0.728							
	Porga	0.780	0.726	0.971						
	Pav	0.576	0.847	0.892	0.853					
Incubation	Pw	-0.080	0.209	0.342	0.280	<u>0.471</u>				
	acPAtase	0.317	0.331	0.602	0.595	0.641	0.156			
	HWC	0.957	0.681	0.832	0.842	0.644	0.041	0.466		
	NO3	0.674	0.656	<u>0.427</u>	0.379	<u>0.460</u>	-0.153	0.261	0.608	

Vegetable garden and crop soils are significantly different. Among gardens, garden 2 presents the highest P content while gardens 4 and 5 present the lowest \rightarrow No direct relation with biomass was observed. However, the lower P amounts in plants for garden 5 despite the large reserves in soil can be linked with higher pH.

Within crop soils, a clear effect of fertilization was observed.

Soil soluble P

Marked differences were found between soils with and without plants \rightarrow uptake by plant of a fraction of Pw (same observations for NO3 – not shown).

Garden soils were not different than crop soils. In the latter, differences were observed according to the fertilization gradient.

Within gardens, the Pw for soils with plants was correlated to available P. Without plants, the soils with the lowest content presented the lowest pH and Pav content (gardens 1 and 2), while the soils with the highest content have more important Pav reserves.

Phosphatases activity

Overall, the activity of acid phosphatase was higher in soils with plants than without, although statistically proven in only 3 cases (gardens 1, 2 and crop 2P) \rightarrow additional effect from plants \rightarrow production of acid phosphatases by plants. Gardens 1 and 2 present the lowest pH within gardens; crop 2P is the richest in P of crop soils.

In soils without plants, the response of the enzymatic activity in garden soils appeared to be linked to Pav while in soils under cultivation it seemed inversely proportional to Pav.

Correlations analyses

All initial parameters (TOC, pH KCl, Ptot, Porga, Pav) were correlated and the analysis of individual effect of organic matter requires specific statistical methods.

Concerning incubation results, HWC and NO3 are global indicators of biological activity. They responded to the soil organic status. The phosphatase activity which is a more specific indicator of biological activity was positively correlated to soil P status.

Regarding bioavailability test, an effect of soil pH was observed on NO3 and the yield of ryegrass. Pw was correlated with P reserves and a significant correlation (p<0,05) was observed between Pw and phosphatase activity.

		Initial parameters					Bioavailability test			
		ТОС	pH_KCl	Ptot	Porga	Pav	Pw	acPAtase	NO3	MS_tot
Bioavailability test	Pw	0.328	0.547	0.717	0.620	0.786				
	acPAtase	0.132	-0.166	0.152	0.087	-0.003	<u>0.427</u>			
	NO3	0.573	0.653	0.603	0.603	0.639	<u>0.461</u>	0.028		
	MS_tot	0.590	0.660	0.353	0.338	<u>0.430</u>	0.258	-0.009	0.386	
	Ptot_MS	0.573	0.139	0.305	0.303	0.048	0.141	0.415	0.102	0.529

The two land uses present different behaviors in terms of P availability but globally, more P is available for plants in garden than in crop soils. Biological activity, indicated by HWC and NO3, is strongly positively correlated with the

parameters of soil organic status while enzymatic activity originated from soil microorganisms (acid phosphatases in incubation) is highly linked to P reserves \rightarrow improved biological activity in soil with higher OM content.

P < 0.001 ***

P < 0.010 **

<u>P < 0.050</u>*