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Abstract

In this chapter the optimal design of laminated posite structures is considered. A review of the
literature is proposed. It aims at giving a genenadrview of the problems that a designer must face
when he works with laminated composite structuresthe specific solutions that have been derived.
Based on it and on the industrial needs an optimizamethod specially devoted to composite
structures is developed and presented. The rekikdion procedure is general and reliable. It is
based on fibers orientations and ply thicknessedeagn variables. It is daily used in an (European
industrial context for the design of composite r@fcbox structures located in the wings, the aente
wing box, and the vertical and horizontal tail mahis approach is based on sequential convex
programming and consists in replacing the origiogtimization problem by a sequence of
approximated sub-problems. A very general and asdiptive approximation scheme is used. It can
consider the particular structure of the mechaniesponses of composites, which can be of different
nature when both fibers orientations and plieskiess are design variables. Several numerical
applications illustrate the efficiency of the prepd approach.

1. Introduction

According to their high stiffness and strength tigint ratios, composite materials are well suited f
high-tech aeronautics applications. A large amafnparameters is needed to qualify a composite
construction, e.g. the stacking sequence, the fliekness and the fibers orientations. It restiit

the use of optimization techniques is necessapeaally to tailor the material to specific structh
needs. The chapter will cover this subject andvisled in three main parts.

After recalling the goal of optimization, the diféat laminates parameterizations will be presented
with their limitations (the pros and the cons) hmetframe of the optimal design of composite
structures. The issues linked to the modeling fctires made of such materials and the problems
solved in the literature will be reviewed. The keje of fibers orientations in the resulting lantma
properties will be discussed. Finally the outlirefsa pragmatic solution procedure for industrial
applications will be drawn. Throughout this secti@nprofuse and state-of-the-art review of the
literature will be provided.

Secondly, a general solution procedure daily usethdustrial problems including fibers reinforced
composite materials will be described. The relavgtimization algorithm is based on sequential
convex programming and has proven to be very feliabhis algorithm is presented in details and
validated by comparing its performances to othe¢ingpation methods of the literature.

Finally, it will be shown how this optimization a@gthm can efficiently solve several kinds of
composite structures designs problems: amongstsptiselutions for topology optimization with
orthotropic materials will be presented, importaiunsiderations about the optimal design of
composites including buckling criteria will be dissed, optimization with respect to damage
tolerance will be considered (crack delaminatiorailaminated structure). On top of that, some key
points of the solution procedure based on thismupttion algorithm applied to the pre-sizing of
(European) industrial composite aircraft box swoes will be presented.



2. The optimal design problem and available optimization
methods

The goal of optimization is to reach the best soiutof a problem under some restrictions. Its
mathematical formulation is given in (2.1), whepéyis the objective function to be minimizeg(x)y

are the constraints to be satisfied at the solugmax={x;, i=1,...,r} is the set of design variables.
The value of those design variables change duhegptimization process but are limited by an upper
and a lower bound when they are continuous, whidbeithe case in the sequel.

min go(x)
gj(x)<g™  j=1..m (2.1)
Xi < Xj s;(i i=1...,n

The problem (2.1) is illustrated in Figure 2.1, wh@ design variableg andx, are considered. The
isovalues of the objective function are drawn, &l ws the limiting values of the constraints. The
solution is found via an iterative proces$is the vector of design variables at the currtsrationk,
andx“'! is the estimation of the solution at the iteratier. Typically a local solutiorn e Will be
reached when a gradient based optimization methaddd. The best solutiag,na can only be found
when all the design space is looked over: thisdastbe accessed with specific optimization methods

that include a non deterministic procedure, ag#retic algorithms.

Structural analysis
i
Optimization
v

New design

|

Figure 2.1. lllustration of an optimization problemd its solution

In structural optimization the design functions ¢englobal as the weight, the stiffness, the vibrat
frequencies, the buckling loads, or local as stitewmgnstraints, strains and failure criteria. Whies
design variables are linked to the transverse ptiggeof the structural members (e.g. the crossmsec
area of a bar in a truss), the related optimizagimoblem is called optimal sizing (Figure 2.2a)eTh
value of some geometric items (e.g. a radius oélépse) can also be variable: in this case, we are
talking about shape optimization (Figure 2.2b). dlogy optimization aims at spreading a given
amount of material in the structure for a maximdifireess. Here, holes can be automatically created
during the optimization process (Figure 2.2c). Bnahe optimization of the material can be
addressed, e.g. the local design of laminated ceitgstructure with respect to fibers orientatigig,
thickness and stacking sequence (Figure 2.2d).
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Figure 2.2. The structural optimization problems

The structural optimization problems are non lir@@d non convex, and several local minimum exist.
It is usually accepted that a local solutiqn, gives satisfaction. The global soluti®gy,a can only be
determined with very large computational resourtesome cases when the problem includes a very
large amount of constraints, a feasible soluticacieptable.

A lot of methods exist to solve the problem (2Mrris (1982), Vanderplaats (1984), and Haftka and
Gurdal (1992) present technigues based on the matfeal programming approach used in structural
optimization. Most of them are compared by Barthileand Haftka (1993), and Schittkowski et al.
(1994). Non deterministic methods, such as the tgeaéggorithm (Goldberg, 1989), are studied by
Potgieter and Stander (1998), and Arora et al. §1L9%hose authors also present a review of the
methods used in global optimization. Optimalityteria for the specific solution of fibers optimal
orientations in membrane (Pedersen 1989) and iepléKrog 1996) must be mentioned as well.
Finally the response surfaces methods are also fosexptimizing laminated structures (Harrison et
al. 1995, Liu et al. 2000, Rikards et al. 2006, 2iaand Giavotto 2006).

The approximation concepts approach, also callegi&seial Convex Programming, developed in the
seventies by Fleury (1973), Schmit and Farschi4),98nd Schmit and Fleury (1980) has allowed to
efficiently solve several structural optimizatiomoplems: the optimal sizing of trusses, shape
optimization (Braibant and Fleury, 1985), topolaggtimization (Duysinx, 1996, 1997, and Duysinx
and Bendsge, 1998), composite structures optiroizéBruyneel and Fleury 2002, Bruyneel 2006), as
well as multidisciplinary optimization problems @fg et al., 1995 and Sigmund, 2001). In sizing and
shape optimization the solution is usually reachétthin 10 iterations. For topology optimization,
since a very large number of design variables rmekided in the problem, a larger number of design
cycles is needed for converging with respect tbiktad design variables values over 2 iterations.

Those approximation methods consist in replacirgy gblution of the initial optimization problem
(2.1) by the solution of a sequence of approximaiaimization problems, as illustrated in Figura.2.
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Figure 2.3. Definition of an approximated optimiaatproblem based on the information at the
current design point®. The corresponding feasible domain is definechieyconstraints of (2.2)

Each function entering the problem (2.1) is repilog a convex approximatioﬁj(k) (X) based on a

Taylor series expansion in terms of the directgiesiariablesx; or intermediate ones as for example
the inverse design variable¥x; . For a current design® at iterationk, the approximated
optimization problem writes:

min Ej(()k) x)
g9 00= o™ j=1..m 22)

NP

< i=1..,n

where the symbol ~ is related to an approximatetttian. The explicit and convex optimization

problem (2.2) is itself solved by dedicated methotisnathematical programming (see Section 7).
Building an approximated problem requires to cauy a structural and a sensitivity analyses (vé th

finite elements method). Solving the related explproblem does no longer necessitate a finite
element analysis (expensive in CPU for large sgalblems).

The solution obtained with this approach doesnftespond to the global optimum, but to a local one,
since gradients and deterministic information asedu Nevertheless this local solution is found very
quickly and several initial designs could be usetty to find a better solution, as proposed by righe
(1986). Finally it must be noted that when a veasgé number of constraints is considered in the
optimal design problem (say more thari)Be user is often satisfied with a feasible sohut

3. Parameterizations of laminated composite structures

Before presenting the several possible parametenizaof laminates, with their advantages and their
disadvantages, the classical lamination theoryiéfl recalled in order to introduce the notatitwat

will be used throughout the chapter. See Tsai aakdnH1980), Gay (1991) and Berthelot (1992) for
details.

3.1 Theclassical lamination theory

3.1.1 Constitutiverelations for a ply

Fibers reinforced composite materials are orthatrefong the fibers direction, that is in the local
material axesx,y,? illustrated in Figure 3.1. Homogeneous macroscppoperties are assumed at the
ply and at the laminate levels.
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Figure 3.1. The unidirectional ply with its maté@ad structural axes

For a linear elastic behaviour, the stress-stralations in the material axes are given by the Mook
law 6 =Qe¢ where ¢ and ¢ are the strain and stress tensors, respectiveiile W is the matrix
collecting the stiffness coefficients in the ortlogic axes. For a plane stress assumption, it coinags

Oy mE, mvaEX 0 || &y Qux Qxy 0 || &x 1
Oy = mnyEy mEy 0 K&y r=[Qyx Qyy 0 &y m:m (3.1)
Tyy 0 0 Gy || Vxy 0 0 Qssl|Vxy Yoy

The stresses and strains can be written in thetatal coordinates (1,2,3) as in (3.2) and (3.3gmh
@is the angle between the local and structural alefied in Figure 3.1.

&1 cos? @ sin? @ —cosgsing || &y
Eop = sin? 6 cos 8 cosdsind Ey (3.2)
&6 2cosfsing - 2cosfsind cos’ 6 -sin’ 6 Vxy

o1 cos? @ sin? @ —2cosdsing || oy
Oy = sin 6 cos 6 2cosfsiné ay (3.3)
Og cosfsing -cosdsind cos’ 6-sin’ 6 Oyxy

For a ply with an orientatioAwith respect to the structural axes, the consiiutelations write:

o1 [Qu Qo Qpll&a
02:=|Q2 Qo2 Qg i€ (3.4)
0s) | Qe Q26 Qs6 |6

where the matrix of the stiffness coefficientshe structural axes takes the form:

Qi1 ¢t st 2c?s? 4c%s?
Q22 st 2c2s? 4c%s? Qux
Q _|Qu2 _ c?s? ¢2s?  ct+st -4c?s? | |Qyy (3.5)
423 7 Qge c®s? c?s?  -2c%s?  (c?-s?)? ||Qyy '
Qs c3s -cs® cs®-c3s 2cs -y | (Qss oy.2)
Q6 123 [ c® -3 (cs-cs’) 2(c3s-cs?)

with
c=cosd s=sind



The variation of th&)’'s with respect to the angl@ is plotted in Figure 3.2. It is observed that the
stiffness coefficients are highly non linear imterof the fibers orientation.
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Figure 3.2. Stiffness coefficients in N/mm?2 in gteuctural axes for several values of the fibers
orientation in a carbon/epoxy material T300/5208(al'sai and Hahn, 1980)

Based on the fact that the trigonometric functiengering the matrix in (3.5) can be written in the
following way:

cos40=}(3+400529+cos49) 1

8, cosdsin 6 == (2sin 26 - sin46)

cos® Gsind == (2sin 26 + sin 46) L 8 (3.6)
8 1 sin49=—(3—4c0329+cos49)

cos? Fsin’ @ :5 (L-cos46) 8

Tsai and Pagano (1968) derived an alternative sxyme for theQ's coefficients in the structural axes
givenin (3.7):

Qi Q2 Qe
Qu23 = Q22 Q26| =70 7100826 + 7, COSAG +73SIN26 + y4 Sin46 (3.7)

sym Qs6

where the parameteysare functions of thlEamina invariantsJ;-Us:

U, Uy O U, 0O O
Yo = U 0 1= -U; 0O (3.8)
sym Us sym 0



0 0 ﬁ
Us -Us O U2 0 0 U
Y2 = Us O Y3= 0 72 Y4 = 0 -Usz
sym -Ujg sym 0 sym 0

and
1
U1=§(3Qxx+3ny+2Qxy+4st) 1
1 Uy =§(Qxx+ny+6Qxy_4st)
Uy :E(Qxx_ny) 1
1 Us :g(Qxx +Qyy —2Qxy +4Qss)
Uz= g(QXX +ny - 2Qxy —4Qss)

3.1.2 Constitutiverelations for alaminate

Composite structures are thin membranes, plates or shatle ofn unidirectional orthotropic plies
stacked on the top of each other. Such structures can suppod ioutof plane loadings. In the
following the constitutive relations for a laminate made ofesal individual plies are derived. The
notations are defined in Figure 3.3. In the case of plane stresthe effects of transverse shear is
neglected, in-plane normal and shear lodss well as the flexural and torsional momevitsare
applied to the laminate. Those loadings are computed by congjdbe stress state in each ply with
the relations (3.9):

Ni|  p2 |92 M| h2 |91
N=4Nyr= [ q0,dz M=<Myr= [ J0,zdz (3.9)
N6 -h/2 O MG -h/2 o

For a first order cinematic theory, where the displacertigotigh the laminate’s thickness is linear in
the z coordinate measured with respect to the mid-plane of thegtiatie(Figure 3.3), the vector of

laminate’s straing; is linked to the in-plane strains and the curvatures viaeiagion g =e0+ 2.

With this definition it turns that the constitutive relatidosa laminate are given by (3.10) whéxeB
andD are the in-plane, coupling and bending stiffness matrices tdrtfirate.

Ni] [A1 A2 As B Bz Bgl|e
N> Ao Ay Ayg B By Bygled
{N}{A BHSO} _ Ng A Ao Pss Big Bog Beg ||l (3.10)
M B D Mi| |Bir Bz Big D11 D1 Digllkg

Mo B By Bye D1 Dyo Dogllky
Mg) |Bis Bos Bge Dis D2e Des]|kg

K
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Figure 3.3. A laminate with layers
(a) Structural axes (b) Material axeplgtk
(c) Position of each ply in the stacking sequence

3.2 The possible parameterizations of laminates

There exist several parameterizations for the laminaesndiéng on the way the coefficients of the
stiffness matrices in (3.10) are computed and depending on tin@idefof the design variables. The
advantages and disadvantages of those different parameteiszate compared in the perspective of
the optimal design of the laminated composite structures.

3.2.1 Par ameterization with respect to thickness and orientation

When theply thicknessand the relatedibers orientationare chosen to describe the laminate, the
coefficients of the stiffness matrices can be writtefobews:

A = i[Qij (Gi)1(h = 1) = Aj = ﬁ[Qii (BNt
k=1 k=L

8

10 2 2 n
By == 2[Q (Bil(he —hey) Bij = 2[Qj (Bk)Itk 2 (3.11)
2 k=1 k=1

n 2t o
Djj =k2:l[Qij (Gt Z +1—2) i,j=126

8

Dj =5 él[Q” @IS -h3.)

wherez andh, define the position of th&" ply in the stacking sequencg.and 8, are the ply
thickness and the fibers orientation, respectig€igure 3.3).

With such a parameterization the local values (thg. stresses in each ply of the laminate) are
available via the relations (3.1) and (3.4). On ¢dphat the design problem is written in termgted
physical parameters used for the manufacturindneflaminated structures. Finally several different
materials can be considered in the laminate whep#nameterization (3.11) is used.



However when fibers orientations are allowed tongeaduring the structural design process the
resulting mechanical properties are generally gisonon linear (see Figure 3.2) and non convex, and
local minima appear in the optimization problemisTis also illustrated in Figure 3.4 that draws the
variation of the strain energy density in a laménaver 2 fibers orientations. In Figure 3.5 ith®wn
that the structural responses entirely differ whigher ply thickness or ply orientation is consgtein

the design, resulting in mixed monotonous-non momads structural behaviors. It turns that the
optimal design task is more complicated since thinozation method should be able to efficiently
take into account simultaneously both differentdwebrs.
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Figure 3.4. Variation of the strain energy density Figure 3.5. Variation of the strain energy density
a [8/6)]s laminate with respect to the fibers an unidirectional ply with respect to its thicknéss
orientationsd, and 6, and its fibers orientatiof

Additionally using such a parameterization increabe number of design variables that may appear
in the optimal design problem since the thicknesd fibers orientation of each ply are possible
variables. Finally optimizing with respect to thefrs orientations is known to be very difficultdan
few publications are available on the subject. &sake of completion, the sensitivity analysishef t
structural responses of composites with respetttdse variables can be found in Mateus et al. (1991
Geier and Zimmerman (1994), and Dems (1996).

3.2.2 Parameterization with sub-laminates

The design parameters are no longer defined basesingle unidirectional plies but instead on
predefined sub-laminates. Each sub-laminate iff is@de of several single unidirectional plies. The
design parameters are assigned to the sub-lamiamteso longer to each individual ply. Examples of
sub-laminates may be [0/45/-45/90], [0/60/-60] @©P]. This parameterization allows to decrease the
number of design variables. However the contrathat ply level is lost. The previously presented
parameterization in terms of ply thickness andndéton is a limiting case.

Subdjaminate 1
2 [30/-30]

; /

N
7

Subdaminate 2
[0/45/-45/90]

Figure 3.6. Parameterization with sub-laminates.
Here the symmetric laminate is made of 2 sub-latama



3.2.3 Thelamination parameters

The stiffness matrix in (3.10) can be expresseth Wit lamina invariantsdefined in (3.8) together
with the lamination parametersFor a given base material identical for each gilyhe laminate the
lamination parameters are given by (3.12) in thecstral axes:

h/

2
&7ay) = ) hjlzz 012[c0s26(2), cosad(2),sin26(2), sin48(2)]dz (3.12)

The lamination parameters are the zero, first @edrsd order moments relative to the plate mid-plane
of the trigonometric functions (3.6) entering tregation formulae for the ply stiffness coefficients
(3.5). With this definition the stiffness matricksB andD in (3.10) write:

_ A A A A
A=hyg+v1é{ +7262 +v3é3 +v4é2

— B B B B
B=v1$1 +v2$2 t7v3¢3 t7444 (3.13)
h3
D:EYO’“YlﬂD+7252D+“1353D+Y454'13

Twelve lamination parameters exist in total andrabierize the global stiffness of the laminate.sThi

number is independent of the number of plies tlatains the laminate. In most applications the
lamination parameters are normalized with respec¢hé¢ total thickness of the laminate (Grenestedt,
1992, and Hammer, 1997). In the case of symmetirates the 4 lamination parameters

fB defining the coupling stiffnesB vanish. Moreover when the structure is either stibge to in-
plane loads or to out-of-plane loads only the 4ihation parameters related to the in-plane stifnes

{A or the out-of-plane stiffness’D must be considered, respectively. In the caseoafposite

membrane or plates presenting orthotropic matprigberties 2 lamination parameters are sufficient t
characterize the problem. Lamination parametersaréndependent variables. Feasible regions of the
lamination parameters exist which provide realigdbiminates. Grenestedt and Gudmundson (1993)
demontrated that the set of the 12 lamination patars is convex. It is also observed from (3.13} th
the constitutive matrice&, B andD are linear with respect to the lamination paransef€his means
that the optimization problem is convex if it indes functions related to the global stiffness & th
laminate, as for example the structural stiffnedisration frequencies and buckling loads (Foldager,
1999).

Feasible regions were determined for specific latgirtonfigurations (e.g. Miki, 1982 and Grenestedt,
1992), but the region for the 12 lamination pararsthas not yet been determined. Recently the
relations between the lamination parameters wenigetefor ply angles restricted to 0, 90, 45 anl -4
degrees by Liu et al. (2004) for membrane and mendifects, and by Diaconu and Sekine (2004) for
membrane, coupling and bending effects.

One of the feasible regions of lamination paranseisrillustrated in Figure 3.7 in the case of a
symmetric and orthotropic laminated plate subjetteldending. As the plate is assumed orthotropic in
bending £1D and é'zD are enough to identify the stiffness of such efmm. Those two lamination
parameters take their values on the outline dednily the point#\, B, C, and in the dashed zone.
Any combination of the lamination parameters tlsabutside of this region will produce a laminate
which is not realizable. When this plate is simplypported and subjected to a uniform pressure, the
vertical displacement is a function 6{3 and EE. The iso-values of this structural response age th
parallel lines illustrated in Figure 3.7. AccorditgGrenestedt (1990), the plate stiffness increése
the direction of the arrow. The stiffest platehen characterized by the point D in Figure 3.7,clhi
corresponds to a [@,]s laminate, defined by a single paramefer

10
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Figure 3.7. Feasible domain (outline plus dasheeyof the lamination parameters for a symmetric
and orthotropic laminated plate subjected to aaumifpressure (after Grenestedt, 1990). The pdints
B, C correspond to [0], [(45)s and [90] laminates, respectively. The pdindefines a [(#)]s
laminate. The poinE is a combination of laminates defined on the aetliThe laminate of maximum
stiffness is located on the outline (point D)

This kind of parameterization has allowed to shbat bptimal solutions — in terms of the stiffness —
are often related to simple laminates with few edi#ht ply orientations. For example only one
orientation is necessary for characterizing thénegdtlaminate in a flexural problem (Figure 3.7)da

at most 3 different ply orientations are sufficiGmdefine the optimal stacking sequence in the ods

a membrane of maximum stiffness (Lipton, 1994).|&&h1l summarizes some of those important
results.

When using such a parameterization the number sijdevariables is very small (12 in the most
general case) irrespective to the number of phas ¢tontains the laminate. As seen in Figure 37 th
design space is convex, and only one set of lamimgtarameters characterizes the optimal solution.
However acording to the relations (3.8) and (3.@8ly one kind of material can be used in the
laminate: defining a different material for the e@f a sandwich panel is for example not allowed
(Tsai and Hahn, 1980). Additionally the local sttueal responses (e.g. the stresses in each ply) can
not be expressed in terms of the lamination pararsedince those last are defined at the global
(laminate) level and are linked to the structutdfreess. However the global strains of the laménat
(but not in each ply) can be computed with rela(i®ri0) and used in the optimization, as is done by
Herencia et al. (2006). The feasible regions oflthéamination parameters is not yet determined. As
said before those regions are only known for spef@minate configurations. This strongly limit the
use in the frame of the optimal design of compaosiitectures. Finally when the optimal values of the
lamination parameters are known, coming back toesponding thicknesses and orientations is a
difficult problem and the solution is non uniqueatiimer, 1997). Foldager et al. (1998) proposed a
technique based on a mathematical programming appraevhile Autio (2000) used a genetic
algorithm to find this solution when the numbetafers is limited or for prescribed standardizeg pl
angles.
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Kind of structure  Laminate configuration Criteria  Optimal sequence Reference

Plate Symmetric/orthotropic Stiffness [(£6)n]s Grenestedt (1990),
Vibration [(£6),]s Miki and Sugiyama
Buckling [(ig)n]s (1993)
Symmetric Buckling [6]s Grenestedt (1991)
Membrane Symmetric Stiffness  [(a /90+a),]s ~ Fukunaga and Sekine
(1993)
General stiffness  [6],[a 190+ 4] Hammer (1997)
Cylindrical shell ~ Symmetric/orthotropic Buckling [(6),]s.[0/90]5 , Fukunaga and

quasi-isotropic Vanderplaats (1991b)

Table 3.1. Summary of some important results obthimith the lamination parameters

3.2.4 Combined parameterization

As shown by Foldager et al. (1998) and FoldageP9).9composite structures can be designed by
combining two parameterizations: the laminationapagters on one hand, and the plies thickness and
fibers orientations on the other hand. The berddfithe approach relies on using a convex design
space with respect to the lamination parametergewheping in the problem’s definition the physica
variables in terms of thickness and orientatioris Tierative procedure — between both design spaces
— consists in determining a first (local) solutiarterms of thicknesses and orientations. A newckea
direction towards the global optimum is then coneduby evaluating the first order derivative of the
objective function at the local solution with respt the lamination parameters. The global optimum
is reached when this sensitivity is close to z&@therwise a new design point is calculated in the
space of the fibers orientations, and the processrues, usually by adding new plies in the lart@na

As seen in Figure 3.8, the structural responseniscanvex with respect t@ while it is convex in
terms of the lamination parameig€rWith this technique the knowledge of the feasiglgions of the
lamination parameters is not mandatory.

Although efficient, this solution procedure canyblke used for global structural responses like the
stiffness, the vibration frequencies and the buckload.

A f(@

6, &

Figure 3.8. lllustration of the optimization prosexdter Foldager et al. (1998)
in both spaces of the lamination paramegeasd the fibers orientatiofi
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3.2.5 Alter native par ameterization

In order to decrease the non linearities introdusgdhe fibers orientation variables, Fukunaga and
Vanderplaats (1991a) proposed to parameterize ah@nhted composite membranes with the
following intermediate variables:

X =sin28 or X =co0s26

based on the relation (3.12) and (3.13). This fdatn was tested by Vermaut et al. (1998) for the
optimal design of laminates with respect to streregtd weight restrictions. As in the previous setti
the main difficulty is to compute the orientatioc@responding to the optimal intermediate variables
valuesx;.

4. Specific problemsin the optimal design of composite structures

For designing laminated composite structures a Varge number of data must be considered
(material properties, plies thickness and fibefsrtation, stacking sequence) and complex geonsetrie
must be modelled (aircraft wings, car bodies). €fae the finite element method is used for the
computation of the structural mechanical resporidssally mass, structural stiffness, ply strengtt a
strain, as well as buckling loads are the functiosed in the optimization problem. The design
variables are classically the parameters definlieglaminate: fibers orientations, plies thicknesy]
indirectly the number of plies and the stackingussge. Some specific problems appear in the
formulation of the optimization problem for lamiedtstructures. They are reported hereafter.

* Large number of design variableg€ven for a parameterization in terms of the lation
parameters, the number of design variables cafyeasch a large value when the plies thickness
and fibers orientations are allowed to change dkerstructure, leading to non homogenenous
plies (Figure 4.1) and curvilinear fibers formakéyér and Charette 1991, Hyer and Lee 1991,
Duvaut et al. 2000). In industrial applications ¢iret al. 2007), thicknesses related to specific
orientations (0°, £+45°, 90°) are used and sevemdépendent regions are defined throughout the
composite structure, what increases the numbeesifjd variables.

» Large number of design functiori$ot only global structural responses relatechtodtiffness are
relevant in a composite structure optimization, &lsb the local strength of each ply. Damage
tolerance and local buckling restrictions are inb@air as well. For an aircraft wing, it is usual to
include about 300000 constraints in the optimizapooblem (Krog et al. 2007).

Non homogeneous ply

/Z/;- Homogeneous ply

Figure 4.1. Homogeneous and non homogeneous plyaminate

» Problems related to the topology optimization ofmposite structuresin topology optimization
one is looking for the optimal distribution of avgh amount of material in a predefined design
space that maximizes the structural stiffness {eigu2).
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Domain where tht
material is
distributed

Figure 4.2. lllustration of a topology optimizatiproblem (after Bruyneel, 2002)

For composite structures, and due to the stratificaof the material, it results that 2 topology
optimization problems must be defined and solvedulteneously: the optimal distribution of

plies at a given altitude in the laminate (Figur8)4and the transverse topology optimization
where the optimal local stacking sequence is loofad(Figure 4.4). Continuity conditions

between adjacent laminates should also be imposed.

Figure 4.3 Topology optimization at a given altiélid the non homogeneous laminate

Figure 4.4. Transverse topology optimization iroeposite structure

Specific non linear behaviors of laminated struewirin order to improve the accuracy in the

model, non linear effects, and especially the desigth respect to the limit load, should be

considered in the formulation of the optimizatioh ammposite structures. This dramatically

increases the computational time of the finite eptranalysis, and can only be used for studying
small structural parts such as super-stringers,sbene stiffeners and the panel (Colson et al.,
2007). Although simple fracture mechanics critdiave been considered (Papila et al. 2001),
damage tolerance and propagation of the crackar(deftion) should be taken into account in the
same way.
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Uncertainties on the mechanical properties of cosiigs There is a larger dispersion in the
mechanical properties of the fibers reinforced cosie materials than for metals. Moreover,
some uncertainties concerning the orientationsthadlies thickness exist. Robust optimization
should be used in these cases (Mahadevan and 998, Lhao et al., 1993, Chao, 1996, and
Kristindottir et al., 1996).

Strong link with the manufacturing proce€xontrary to the design with metals, there israngt
link between the material design, the structuraigle and the manufacturing process when
dealing with composite materials. The constraiimied to manufacturing can strongly influence
the design and the structural performances (Heodee$ al., 1999, Fine and Springer, 1997,
Manne and Tsai, 1998) and should be taken intoustdo formulate in a rational way the design
problem (Karandikar and Mistree, 1992).

Singular optima in laminates design probleriighen strength constraints are considered in the
design problem, and if the lower bounds on thespliéckness is set close to 0 (i.e. some plies can
disappear at the solution from the initial stackgggiuence), it can be seen (Schmit and Farschi,
1973, Bruyneel and Fleury, 2001) that the desigtean become degenerated. In this case the
optimal design can not be reached with gradiene¢dbaptimization methods. Such a degenerated
design space is illustrated in Figure 4.5. It igidBd into a feasible and an infeasible region
according to the limiting value of the Tsai-Wu erig. In this example a [0/99Jaminate’s weight

is to be minimized under an in-plane load Whe optimal solution is a [0] laminate. Unforttgls

this optimal laminate configuration can not be hestwith a gradient based method since the 90
degree plies are still present in the problem ei/émreir thickness is close to zero, and the relate
Tsai-Wu criterion penalizes the optimization preaces first solution consists in using tfee
relaxed approach (Cheng and Guo 1997), which #jigimodifies the design space in the
neighborhood of the solution and allows the optatian method to reach the true optimum [0]
Alternatively (Bruyneel and Fleury, 2001, and Bragh and Duysinx, 2006) when fibers
orientations are design variables the shape ofilsggn space changes, the gap between the true
optimal solution and the one constrained by pliés & vanishing thickness [0/xflecreases and
the real optimal solution becomes attainable (Figti5). Optimizing over the fibers orientations
allows to circumvent the singularity of the desggrace.
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Figure 4.5. Design space for [0/9@nd [0/10§ laminates.
* represents the obtained solutions, optimum or not

Importance of the fibers orientations in the lamaadesign Besides their efficiency in avoiding

the singularity in the optimization process as ggplained before fibers orientations play a key
role in the design of composite structures. Modidytheir value allows for great weight savings,
as illustrated in Figure 4.6. Let's consider tha initial laminate design corresponds to fibers
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orientation and ply thickness at point A. A firsayto obtain a feasible design with respect to
strength restrictions is to increase the ply thédsrand go to B, which penalizes the structural
weight. Another solution consists in modifying tfileers orientation, here at constant thickness
(point C). A better solution is to simultaneouslgtimize with respect to both kinds of design

variables (point D). However taking into accounttswariables in the optimization problem is a

real issue, and providing a reliable solution pdage is a challenge.

40
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D : : : ;
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(a) Unidirectional laminate subjected to in-palne (b) Unidirectional laminate subjected to in-plane
shear Ny normal load &;

Figure 4.6. Design space for an unidirectional teate subjected to either; Wr Ns. Iso-values of the Tsai-Wu

criterion. The ply thickness and fibers orientasi@me the design variables

The optimal stacking sequencé large part of the research effort on composiies been
dedicated to the solution of the optimal stackiegjuence problem. As it is a combinatorial
problem including integer variables, genetic altjonis have been used (Haftka and Gurdal, 1992,
Le Riche and Haftka, 1993). The topology optimi@atiormulation of Figure 4.4 was used by
Beckers (1999) and (Stegmann and Lund, 2005) teesthis problem with discrete and
continuous design variables, respectively. Anotiggsroach, still based on the discrete character
of the problem, is proposed by Carpentier et &0@3. It consists in using a lay-up table defined
based on buckling, geometric and industrial ruless@erations. This table, which satisfies the ply
drop-off continuity restrictions is determined nuinally. Once it is obtained a given laminate
total thickness corresponds to a stacking sequesnaea column of the table). The optimization
process then consists in optimizing the local théds of a set of contiguous laminates defining
the structure. Each laminate has equivalent honipgémroperties with 0, +45 and 90° plies.
Based on the lay-up table, the stacking sequentteeisfore known everywhere in the structure
for different local optimal thicknesses and the posite material can be drapped.

Local thickness

28 26 24 22 20 18 16 14 12
90

135 90

0 135 90

45 0 135 90

90 45 0 135 20

135 90 45 0 135 90

135 135 90 15 0 135 90

0 0 135 90 45 0 135 90

45 45 0 135 135 45 0 135 90
0 0 45 0 0 0 45 0 135
45 45 0 15 45 45 0 45 0
45 45 45 15 45 45 45 45 15
90 90 90 90 90 90 90 90 90
135 135 135 135 135 135 135 135 135

Figure 4.7. lllustration of a lay-up table for G}5tand 90° plies
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5. Problems solved in the literature
5.1 Structural responses

When designing laminated composite structuresuhetfons entering the optimization problem (2.1)
are classically the stiffness, the vibration fremgies, the structural stability and the plies’ styi.
(see Abrate, 1994, for a detailed review of therditure). It is interesting to note that for ortbpic
laminates maximizing the stiffness, the frequencythe first buckling load will provide the same
solution (Pedersen, 1987 and Grenestedt, 1990YoPwf that, it should be noted that optimizing a
laminated structure against plies strength orrstgg will result in different designs. It resuhiatt the
local (stress) effects are very important in thémal design of composite structures (Tauchert and
Adibhatla, 1985, Fukunaga and Sekine, 1993, andrikn1997).

5.2 Optimal design with respect to fibersorientations

Determining the optimal fibers orientation is ayeéifficult problem since the structural responses
terms of such variables are highly non linear, nmmotonous and non convex. However it has just
been show in the previous section that the desidanginated composite structures is very sensitive
with respect to those variables. As explained ly éditors of commercial optimization software
(Thomas et al., 2000) there is a need for an efiidreatment of such parameters.

A small amount of work has been dedicated to themgb design of laminated structures with respect
to the fibers orientations. Several kinds of apphes have been investigated and are reported in the
literature:

* Approach by optimality criteria

Optimal orientations of orthotropic materials tihaéximize the stiffness in membrane structures
were obtained by Pedersen (1989, 1990 and 199d)bwiaz and Bendsge (1992) for multiple
load cases. When the unidirectional ply is onlyjectied to in-plane loads, Pedersen (1989)
proposed to place the fibers in the direction & fhincipal stresses. The resulting optimality
criterion was used in topology optimization incloglirank-2 materials (Bendsge, 1995). This
technique was used by Thomsen (1991) in the optieralgn of non homogeneous composite
disks. This criterion was extended by Krog (19@6Mindlin plates and shells.

* Approach based on the mathematical programming

As soon as 1971, Kicher and Chao solved the prolplitin a gradients based method. Hirano
(1979a and 1979b) used the zero order method ofePdquonjugate directions) for buckling
optimization of laminated structures. Tauchert adibhatla (1984 and 1985) used a quasi-
Newton technique (DFP) able to take into accoumedr constraints for minimizing the strain
energy of a laminate for a given weight. Cheng @9inimized the compliance of plates in
bending and determined the optimal orientation$ &it approach based on the steepest descent
method.

Martin (1987) found the minimum weight of a sandwanel subjected to stiffness and strength
restrictions with a method based on the Seque@isivex Programming (Vanderplaats, 1984).
Watkins and Morris (1987) used a similar procedwmitl a robust move-limits strategy (see also
Hammer 1997).

In Foldager (1999), the method used for determitiiegoptimal fibers orientations is not cited but
belongs according to the author to the family oflmmatical programming methods.

SQP, the feasible directions method and the quesitbh BFGS were used by Mahadevan and
Liu (1998), Fukunaga and Vanderplaats (1991a), Moth Soares et al. (1993, 1995 and 1997),
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respectively. Those mathematical programming metfzod reported and explained in Bonnans et
al. (2003).

» Approach with non deter ministic methods

Genetic algorithms have been employed by sevethbesifor determining the optimal stacking
sequence of laminated structures (Le Riche andkblaft993, Kogiso et al., 1994 and Potgieter
and Stander, 1998) or in the treatment of fibersnbations (Upadhyay and Kalyanarama, 2000).

5.3 Formulations of the optimization problem

Thickness and orientation variables were treatedeweral ways in the literature. They have been
considered either simultaneously as in Pederse@iljl@nd Fukunaga and Vanderplaats (1991a), or
separately (Mota Soares et al. 1993, 1995 and E¥fi'Franco Correia et al. 1997).

Weight, stiffness and strength criteria have begrasately introduced in the design problem andrtake
into account in a bi-level approach by (Mota Soateal., 1993, 1995, 1997 and Franco Correia et al.
1997): at the first level the weight is kept constand the stiffness is optimized over fibers
orientations ; at the second level the ply thickessare the only variables in an optimization bl
that aims at minimizing the weight with respecstiength and/or displacements restrictions. A simil
approach can be found in Kam and Lai (1989), arelr8@t al. (1994). Fukunaga and Sekine (1993)
also used a bi-level approach for determining latgis with maximal stiffness and strength in non
homogeneous composite structures (Figure 4.2) sigdofdo in-plane loads. In Hammer (1997), both
problems are separately solved and the initial igordtion for optimizing with respect to strength i
the laminate previously obtained with a maximdfrstiss consideration.

6. Optimal design of compositesfor industrial applications

Based on the several possible laminate parametierizaand on the previous discussion it was
concluded in Bruyneel (2002, 2006) that an indaksolution procedure for the design of laminated
composite structures should preferably be basefibers orientations and ply thicknesses, instead of
intermediate non physical design variables sucthadamination parameters. Using those variables
allows optimizing very general structures (membsarghells, volumes, subjected to in- and out-of-
plane loads, symmetric or not) and provides a miuthat is directly interpretable by the user.

On the other hand, an optimization procedure usedirfdustrial applications should be able to
consider a large number of design variables andtraints, and find the solution (or at least aifdas
design) in a small number of design cycles. Addaity, the optimization formulation should be as
much general as possible, and not only limitedpecHic cases (e.g. not only thicknesses, not only
membrane structures, not only orthotropic confiars,...). For those reasons, a solution procedure
based on the approximation concepts approach seebesinevitable. Interesting local solutions can
be found by resorting to other optimization meth¢elg. response surfaces coupled with a genetic
algorithm) but on structures of limited size. Hoe pre-design of large composite structures likdla
wing or a fuselage, or when non linear responsesiafined in the analysis (post-buckling, non Imea
material behavior), the approximation concepts eagh proved to be a fast method not expensive in
CPU time for solving industrial problems (Krog aaid 2007, Colson et al., 2007).

It results that robust approximation schemes mustabailable to efficiently optimize laminated

structures. The characteristics of such a reliagplproximation are explained in the following, and
tests are carried out to show the efficiency ardajpplicability of the method.
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7. Optimization algorithm for industrial applications
7.1 The Approximation Concepts Approach

In the approximation concepts approach, the salutibthe primary optimization problem (2.1) is
replaced with a sequence of explicit approximatesblems generated through first order Taylor
series expansion of the structural functions imseof specific intermediate variables (e.g. dicear
inversel/x variables). The generated structural approximatiomilt from the information known at
least at the current design point (via a finitaredat analysis), are convex and separable. As will b
explained latter a dual formulation can then bediuisea very efficient way for solving each explicit
approximated problem.

According to section 2, it is apparent that therapimation concepts approach is well adapted to
structural optimization including sizing, shape aogology optimization problems. However, the use
of the existing schemes (section 7.2) can sometile&d to bad approximations of the structural
responses and slow convergence (or no convergétlg @n occur (Figure 7.1).

Figure 7.1. Difficulties appearing in the approxtioa of highly non linear structural responses.
a. A too conservative approximation b. A too fenservative approximation and unfeasible
intermediate solutions c. An approximation naed to the problem, leading to zigzagging

Such difficulties are met for laminates optimizatiotheir structural responses are mixed, i.e.
monotonous with regard to plies thickness and namatonous when fibers orientations are
considered (Figure 3.5). Additionally, the non mmmwus structural behaviors in terms of
orientations are difficult to manage (Figure 3MYesults that the selection of a right approxiomat
scheme is a real challenge. In the next sectigenaralized approximation scheme is presentedshat
able to effectively treat those kinds of probleri$is optimization algorithm will identify the
structural behavior (monotonous or not) accordiaghe involved design variable (orientation or
thickness), and will automatically generate the tmadiable approximation for each structural
function included in the optimization problem. kcton 8 numerical tests will compare the efficienc
of the proposed approximation scheme and the egistnes for laminates optimization including both
thickness and orientation variables.

7.2 Selection of an accur ate approximation scheme

7.2.1 Monotonous appr oximations

Based on the first order derivatives of the stnadtuesponses included in the optimization problem,
linear approximationscan be built at the current design poxft It is a first order Taylor series
expansion in terms of the direct design varial|€s.1).

ag; (x4

0K (7.1)

319 00=g; x®)+x
|

19



As it is very simple this approximation is mostthé time not efficient for structural optimizatiduit

can anyway be used with some specific move-limilss (Watkins and Morris, 1987) that prevent the
intermediate design point to go too far from therent one and to generate large oscillations during
the optimization process (Figures 7.1b and 7.1c).

Since the stresses vary Hs; in isostatic trusses whexgis the cross section area of the bars, a linear
approximation in terms of the inverse design vaeslis more reliable for the optimal sizing of thin
structures. The resultimgciprocal approximations given in (7.2).

- ag; x¥ (1 1
(K) (y)=q . (x K = 5 (y(K)y2 77 _
g; " (¥)=gj(x*") iZ(X. ) ox {Xi Xi(k) (7.2)

The Conlin scheme developed by Fleury and Brailfa886) is a convex approximation based on
(7.1) and (7.2). It is reported in (7.3) and ilhaséd in Figure 7.2.

o (K) (x(K)
gJ(k) (x)=g x®y + Z% (x - x®) =3 (x)2 ag Ja(x ){i _ (1k)] (7.3)
+ Xi - Xi XX

The symbolsy (+) and > (-) in (7.3) denote the summations over terms havositipe and negative
first order derivatives. When the first order dative of the considered structural response istipesi
a linear approximation in terms of the direct vakés is built, while a reciprocal approximation is
used on the contrary.
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Figure 7.2. The Conlin approximation

Conlin can only work with positive design variablsce an asymptote is imposeda0. On top of
that, the curvature of this approximation is immbby the derivative at the current design point and
can not be adapted to better fit the problem.

The Method of Moving Asymptotes or MMA (SvanberdT9 generalizes Conlin by introducing two
sets of new parameters, the lower and upper asyesptlh and U, that can take positive or negative
values, in order to adjust the convexity of theragjmation in accordance with the problem under
consideration. The asymptotes are updated followmge rules provided by Svanberg (1987). The
parameterg; andg; are built with the first order derivatives.

~(K) (oreey - ((K) g 1 1 1 1
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Figure 7.3 The MMA approximation

As it will be seen later those monotonous schemesat efficient for optimizing structural functisn
presenting non monotonous behaviors, as in Figdre 3

7.2.2 Non monotonous appr oximations

Based on MMA, Svanberg (1995) developed the Glgb&bnvergent MMA approximation
(GCMMA). As illustrated in Figure 7.4 it is non motonous and still only based on the information at
the current design point (functions values, firster derivatives, asymptotes values). Here htand

L; are used simultaneously. It was not the case.#).(7

1 1 () 1 1

- + Z s -
TTCCIERTY O (Sl Bl s B Y ORI ORI (3

(7.5)

g} (=g ; (<) + 2 pf¥
|

Using this method can lead to slow convergence rgitleat it can generated too conservative
approximations of the design functions (Figure ¥..1a
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Figure 7.4. The GCMMA approximation

In order to improve the quality of this approxinaatiit was proposed in Bruyneel and Fleury (2002)
and Bruyneel et al. (2002) to use the gradientbafprevious iteration to improve the quality oéth
approximation, leading to the definition of the Giemt Based MMA approximations (GBMMA). In
those methods thg andq; parameters of (7.5) are computed based on théidancalue and gradient
at the current design point and on the gradiettie@previous iteration. The rules defined by Svagbe
(1995) for updating the asymptotes are used.
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7.2.3 Mixed approximation of the MM A family

When dealing with structural optimization problemmeluding design variables of two different
natures, for example in problems mixing ply thickmeand orientation variables, one is faced to a
difficult task because of the simultaneous presesfcenonotonous and non-monotonous behaviors
with respect to the set of design variables. Ins¢heonditions, most of the usual approximation
schemes presented before have poor convergencerfiespor even fail to solve these kinds of
problems. Knowing that the MMA approximation is yeteliable for approximating monotonous
design functions and based on the GBMMA approxiomej a mixed monotonous — non monotonous
scheme is presented in Bruyneel and Fleury (200%2) Bruyneel et al. (2002), which will
automatically adapt itself to the problem to beragpnated (7.6).

(k)_(k) w1+ 1 1 1
(x)=gj(x )+Zp {Ui(k)_xi ul - (k)]+IDZAq'J [Xi_L_(k) X - (0

(k) 1 1 1 1
+ 2 P - + Y qf -
+,i0B ! {U-(k) = X U-( ) - (k)} -,i0B ! [Xi - L-(k) Xi(k) - Li(k)

(7.6)

In (7.6) the symbolsy (+,i)and > (-,i) designate the summations over terms having pes#ivd
negative first order derivatives, respectivelyandB are the sets of design variables leading to a non
monotonous and a monotonous behavior respectivethie considered structural response. At a given
stagek of the iterative optimization process, a monotamon monotonous or linear approximation
is automatically selected, based on the tests,(7778) and (7.9) computed for given structural
responseg; (X) and design variable; .

dg; (x*) ag;(x*™
X

>0=> MMA (monotonous) (7.7)
aXi aXi
ag; (xX) ag; (xk?
9;(x7), 99;(x" 1) <0= GBMMA (non monotonous) (7.8)
aXi aXi
ag; (x) ag; (x*7t
9; (") - 9;( ) =0=> linear expansion (7.9)
aXi aXi

The selection of a right approximation is illusa@itn Figure 7.5: when a monotonous approximation
is used for approximating a non monotonous functioncillations can appear, while a non
monotonous approximation is too conservative whée function is monotnous. The best
approximation is therefore selected based on (&st} to (7.9). This strategy proved to be relisiole
simple laminates design (Bruyneel and Fleury 2G08) for general laminated composite structures
design problems (Bruyneel 2006, Bruyneel et al. 720Qrog et al. 2007), for truss sizing and
configuration (Bruyneel et al. 2002), for topologptimization which includes a large amount of
design variables (Bruyneel and Duysinx 2005). I$ lh@&en made available in the BOSS Quattro
optimization toolbox (Radovcic and Remouchamps,220t the following this solution procedure
based on a mixed approximation scheme is callefl Aihptive Method (SAM). Based on this
approximation scheme, it is possible to resorth® ¢ther ones (GBMMA, MMA, Conlin and the
linear approximation) by setting specific valuegte asymptotes and by limiting the approximations
to the set&\ orBin (7.6).
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Figure 7.5. The mixed SAM approximation

A summary of the approximations that will be congghin the following is presented in Table 7.1.

Approximation Author Behavior
MMA Svanberg (1987) Monotonous
GCMMA Svanberg (1995) Non monotonous
SAM Bruyneel (2006) Mixed monotonous/non monotonous

Table 7.1. Summary of the approximations that bélicompared in the numerical tests

7.3 Solution procedure for mono and multi-objective optimizations

Since the approximations are convex and separablesdlution of each optimization sub-problem
(Figure 2.3) is achieved by using a dual appro&ased on the theory of the duality, solving the
problem (2.2) in the space of the primal variableis equivalent to maximize a function (7.10) that
depends on the Lagrangian multipliets, also called dual variables:

maxminL(x,A)
AX

Aj20 [=0,..m(g=1) (7.10)

Solving the primal problem (2.2) requires the mafagion of one design functiorm structural
restrictions and2x n side constraints (for mono-objective problemshew the dual formulation is
used, the resulting quasi-unconstrained probleriOf7includes one design function and side
constraints, if the side constraints in the pripedblem are treated separately. In relation (7.10),
L(x,L)is the Lagrangian function of the optimization desh, which can be written

pk gk
L(x,%) = 24 (c; +Zuk” +y
j i

7.11
i X i Xi—Lik) ( )

according to the general definition of the involvagproximationsg;(X) of the functions. The
parameter/; is the dual variable associated to each approren&inction g;(X) . Given that the
approximations are separable, the Lagrangian fomesi separable too. It turns that:
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L(X,)v) = ZLi (Xi ,7\,)
|
and the Lagrangian problem of (7.10)

minL(X,A)
X

can be split im one dimensional problems

minL; (%, A) (7.12)
%

The primal-dual relations are obtained by solviig 2) for each primal variabbe

dLi (Xi ,)\,)

=0 = X =X () (7.13)
aXi

Relation (7.13) asserts the stationnarity cond#timi the Lagrangian function over the primal
variablesx.. Once the primal-dual relations (7.13) are kno@¥ti.0) can be replaced by

mxaxl A) = mxaxl_(x(k), A) (7.14)

/]J =0 ] =1...m

Solving problem (2.2) is then equivalent to maxieihe dual functionl (1) with non negativity

constraints on the dual variables (7.14). As éxplained by Fleury (1993), the maximization (7.1s4)
replaced by a sequence of quadratic sub-probleath &ib-problem is itself partially solved by a&tfir
order maximization algorithm in the dual space.

In the case of a multi-objective formulation theiojization problem writes :
min max g,o9(x)
C

X 1=1...n
gj(x)sgj j=L1....m (7.15)

wherencis the number of load cases. Using the bound fatimn (Olhoff, 1989) the problem (7.15)
can be written as:

1
m|n2,6’
gio(x)< B | =1,...,nc (7.16)
9;(x)=9; j=1..m

whereg is the multiobjective factor, that is an additibdasign variable in the optimization problem.
Instead of solving (7.16) problem (7.17) is consédewhere a new variabl&is introduced for the
possible relaxation of the set of constraints.

121 2,C ( k—1)2
mmE,B +§(5+ p) +EZ xi—xi( )

9jo() < Bjdjo j =1....nobj (7.17)
gj(X)Saj(l"‘é_) j=1..m
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gjo are target values on the objective functions. @hal approach described for mono-objective

optimisation problems is then applied to (7.17).

8. Applications of the optimization solution procedure

In the following examples (except the simple larmgnaesigns and the topology optimization
problem), the structural and semi-analytical sérisit analyses are carried out with SAMCEF
(http://www.samcef.coin The Boss Quattro optimisation tool bdxtp://www.samcef.coinis used
for defining and solving the optimisation probleRaflovcic and Remouchamps 2002).

8.1 Laminate subjected to in- and out-of-plane loadings

A symmetric 4 plies laminate made of carbon/epoxycaonsidered. The load case and the initial
configuration are provided in Table 8.1. The fibergentations of each ply are the design variables,
while plies thicknesses are kept constant. Tharopéition consists in minimizing the laminate’s Bira
energy density, i.e. maximizing its stiffness. Téwolution of this objective function with respeot t
the 2 angle# and & is reported in Figure 8.1, with the initial andtiopal design points. A restriction

is imposed on the relative variation of the 2 desigriables. The optimization problem writes :

min ESBASB'F}KTDK
0 2 2
|6, — 6y <45 (8.1)
0.001< 6, <180 i=12

where the stiffness matrices, B and D, and the laminate’s strain and curvature were iptesly
defined in Section 3.

Strain energy : _ ® ini .
density (N/mm - . Initial design

B Optimal desig

Figure 8.1. Variation of the strain energy densitthe symmetric laminate
subjected to the load case of Table 8.1

In-plane load case Out-of-plane load case Initial orientations Initial thicknesses
(N1,N2, Ng) (M1,M2,Mg) 0=(61.6,) t=(ty.t2)
in N/mm in N in degrees in mm
(2000,0,1000) (0,500,0) (45,135) (1,2)

Table 8.1. Problem’s definition: load case andahidesign
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In this application the laminate is subjected nolydo in-plane but also to out-of-plane loadings.
Since the plies thicknesses are not identical @&hl) the objective function is not symmetric with
regards to the axig, = 6, (Figure 8.2).

Strain energy density
(N/mm)
180 ——

160 [
140
120
100

6
80

60

40¢

R

20 Qe

0 20 40 60 80 100 120 140 160 180

6

Figure 8.2. lllustration of the design space. &tapoint, unconstrained and constrained optimum

The iteration histories for the 3 approximation esoles are illustrated in the Figure 8.3. The
convergence of the optimization process is corgdolly the relative variation of the design variable
at 2 successive iterations. The MMA approximatiamwerges in 41 iterations. 29 iterations are
enough for GCMMA. When the SAM approximation is digke solution is reached in a very small
number of iterations.

Objective function (N/mn Objective function (N/mn Objective function (N/mn

zc 15 1 15 g
e \ 10 \ A 10 \
I IA

5 5
0 0 0
0 20 40 60 0 10 20 30 0 5 10 15
Evolution of angles (de¢ Evolution of angles (de¢ Evolution of angles (de¢
15C 15C 15C

o ol A
il il I\
IS Ll =

0
0 20 40 60 0 10 20 30 0 5 10 15

MMA GCMMA SAM
Figure 8.3. Iteration history for the 3 approxinatimethods
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8.2 Non homogeneous laminate

In this application a nhon homogeneous composite Ionene divided in regions of constant thickness
and fibre orientations is studied. Each regionefinéd with an unidirectional laminate made of a
glass/epoxy material. The design over stiffnessnly considered here. The solution with respect to
strength and stiffness is provided in Bruyneel @00

//\ S~ _— NN

d L v 1 e v 1 A
NA ~ / — — e NN
g — ) e ) ~ ~
— /> ~ - NN — N
— ~N ~N S — =/~ ~N)— ) —
1 e v ~1 A

Figure 8.4. Initial configurations with 45 and -d&grees plies orientations

The quasi-unconstrained optimization problem (8@&)sists in finding the optimal values of the plies

thickness and fibers orientations in each regiotheflaminated composite structure that maximiee th

overall stiffness (i.e. that minimize the compliane the potential energy of the applied loads). The
vectors of the design variables are giventboy{@ ,i=1,...n} andt={t,i=1...n} wheren is the

number of regions according to Figure 8.4. Theadhihicknesses are of 1 mm.

min Compliance
0t

0°< g <18CF i=1...n (8.2)
00Imm<t; <5mm

In this problem the optimal values of the thicknes® mm, that is their upper bound. Anyway this

application illustrates the difficulties encountknehen both kinds of design variables appear in the
design problem. The optimal values of the compkarare reported in Figure 8.5 as a function of the
number of regions. As already noticed by Foldad®99) an increase of the number of regions of
different orientations improves the overall optimsiructural stiffness (i.e. it decreases the

compliance).

Relative compliances

;).e \.\

1 4 8 12 20
Number of regionsn

Figure 8.5. Evolution of the compliances in thelgbem (8.2) for the structures illustrated in Figure
8.4. The compliance of the one region structuthesreferencen(= 1)
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The optimal fibers orientations are illustratedrigure 8.6, for the several membrane configurations
of Figure 8.4. The iteration histories are repoite#igure 8.7. When the SAM method is used, about
10 iterations are enough for reaching a statiosatytion with respect to a small relative variatian

the objective at 2 successive iterations. The GCMaphroximation finds this solution in a larger
number of design cycles. It is observed that whenSAM method is used, the structural responses in
terms of both the fibers orientations and the thédses are well approximated, while using GCMMA,
the approximation in terms of the thicknesses s ¢onservative, what slows down the overall
convergence speed of the optimization process.
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Figure 8.6. lllustration of the optimal fibers artations
for the different composite membranes illustrateigure 7.9

In Figure 8.8 the evolution of the vertical disgatent under the load is drawn with respect to the
fibers orientation in the case of the homogeneoesbnane (Figure 8.4=1). The global minimum
displacement is obtained for a value of 170°. Wienstarting point of the optimization processhaf t
problem (8.2) is close to 45°, 0° fibers orientatie found as a local optimum. As -45° is chosem he
for the initial design (i.e. 135°), the global aptim can be reached. This illustrates the fact @hat
gradient based method is not able to reach theabloptimum, unless the starting point is in its
vicinity. In Figure 8.8, the influence of the masfinement on the solution is presented, as well.
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GCMMA
x1¢*  Compliance (Nmm) Mass (kg) and thickness of ply19 (mm) Orientation of ply 5 (deg.)
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4 Total mass 12C

7 Thickness of ply 19 8C
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Figure 8.7. Convergence history for GCMMA and SAd the membrane divided in 20 regions.
Evolution of the thickness and the orientationthefplies number 5 and 19

Vertical displacemerdma, under the load (mr

O 320 finite elements
+ 80 finite elements|
* 20 finite elements|

11f

0 20 40 60 80 100 120 140 160 180
Fibers orientation (deg.)

Figure 8.8. Evolution of the vertical displacemeantder the applied load for several discretizations
of the homogeneous composite membrane (Figuren81,
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8.3 M ulti-objective optimization

A symmetric laminate made of 4 plies and subjetde®iin-plane load cases is considered.

Figure 8.9. Laminate subjected to in-plane loads

The applied loads and the initial configuration egorted in Table 8.2. The load case (2) is végiab
the factork takes the values 0,1,2,...,8. The extreme load @se®n one hand (1000,0,0) and on the
other hand the combination of (1000,0,0) and (QQ2WON/mm.

Load case (1) Load case (2) Initial orientations Initial thickness
(N1, N2, Ng) (N1,N2,Ng) 0=(6,.6,) t=(t1.t)
in N/mm in N/mm in degrés en mm
(1000,0,0) (0,kx250,0) (30,120) (1,2)

Tableau 8.2. Definition of the problem: load casd atarting point

The performance of three approximation scheme<amgpared : GCMMA, MMA and SAM. The
optimization problem writes :

min maxla(Tj)Aa(j)

0t j=1,22
TW(j)(Gi,ti)Sl i,j=12
4
St<4 (8.3)
i=1
0.001< 6, <180 i=12
0.001<t; <10 =12

wherej is the number of the load case. This problem ligesloby resorting the its bound formulation
(Olhoff, 1989) including here 5 design variableso(®ntations, 2 thicknesses and the multi-objectiv
factor §) and 7 constraints:

.1 0
min=
2,3
17 C_
PROIORE =12
TW(j)(gi,ti)Sl i,j=12 (8.4)
4
zti <4
i=1
0.001< 6 <180 i=12
0.001<t; <10 i=12
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The results are reported in Figure 8.10 for the diffevalues ok. The solution is obtained when the
relative variation of the design variables at 2 susigesterations is lower than 0.01. It is seen that a
large number of iterations is needed to reach the optiwlobem MMA is used. GCMMA converges in

a lower number of iterations. As for mono-objectivelpeas, SAM is the most effective optimization
method.

Maximum strain energy density (N/mm) Number of iteratior

4 / 80

3 / 60 \ R

2 A 40 v /
ALY Moo

1 20 e

S\A/zz—é—“£5
0 0
0 2 4 6 8 0 2 4 6 8
Load parametek Load parametek

Figure 8.10. Variation of the strain energy density amalyer of iterations needed to reach the
solution as a function of the parameker
+ MMA o0 GCMMA A SAM

5 Obijective functions (N/mn 100 Maximum constraints violatiol

L1 b
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0 10 20 30 40 50 0 10 20 30 40 50
0 Variations of the obijective functio 0 Maximum variables variatic
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Figure 8.11. Convergence history for MMKis equal to 3

Obijective functions (N/mn 10t Maximum constraints violatiol
25 \
2 —_—
10”
1.5 AN >(
1
\ 3
05 10
0 2 4 6 8 10 12 0 2 4 6 8 10 12
o Variations of the objective functio o Maximum variables variatic
-2
10 /
0
\ 10
-4
10 1
10° 10°
2 4 6 8 10 12 2 4 6 8 10 12

Figure 8.12. Convergence history for SAMs equal to 3
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Figure 8.13 illustrates the optimum stacking sequencthédifferent values of the load parameter
The solution corresponds to a [0/9@]ith a variable proportion of 90° plies (dependingkin

4

Evolution of the strail
35F energy density

25

1.5

Laminate configuratiol |
for the several load
cases

1 2 3 4 5 6 7 8
Load parametek

Figure 8.13. Variation of the strain energy density amdigoration of the corresponding optimal
laminate

Figure 8.14 describes the design spacd ford. The iso-values of both objective functions are drawn
The arrow indicates the direction for an increasthefstiffness. The optimal solution is characterized
here by identical values of both objective functions.

Load case :
AN, Ny Vg = (0, 1000,8) N'mm
(N, N, N = (1006,0,0) Nrmm

L3 Nimm

7PN S| N N I T

(mm) |

Increasing
Ll stiffiess

0.5 1 1.5 2z
Lpge ()
Figure 8.14. Evolution of the strain energy densitiesHer{0/90} laminate
Subjected tqNy, N5, Ng) = (010000)N / mm and (N, N5, Ng) = (L00000)N / mm.
to- and to- are the plies thickness.

The variation of the strain energy density for eachlsif@ad case is illustrated in Figures 8.15 and
8.16. In those particular cases, the optimal solutiongiaen by only 90° or 0° orientations. This

illustrates the need for a multi-objective formulation whe&vesal functions are considered as
objective.
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Figure 8.15. Evolution of the strain energy
density in the [0/9@Q]laminate subjected to
N, =1000N /mm

Figure 8.16. Evolution of the strain energy
density in the [0/9Q]laminate subjected to
N; =1000N / mm

8.4 Optimal design with respect to stiffness and strength restrictions

In this application a stiffened laminated composite pargksted to a uniform pressure is considered.
The geometry, the boundary conditions and the stackogience of the different parts of the panel
are illustrated in Figure 8.17. The plies thickness isakt¢m 0.125 mm and the base material is
carbon/epoxy.

laminate 1 [(0/90/45/-45)]s

laminate 2 :[0/90/45/-45}

NV T T /N T T

\ / \ /
Y A

Figure 8.17. Geometry and initial stacking sequenchestiffened panel

The optimization problem consists in maximizing the strutsititiness for a given maximum weight,
knowing that a safety margin of 0.15 on the Tsai-Hillecion on the top and the bottom of each ply
must be obtained at the solution. 64 strength restricéoasdefined at the plies level. The design
variables are the orientations of the plies initially oteel at 0, -45, +45 and 90 degrees and the related
thicknesses. The problem includes 16 design variables.cbnvergence histories of GCMMA and
SAM are compared in Figure 8.18.
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Figure 8.18. Convergence history for GCMMA and SAM

The SAM approximation succeeds in finding a solution wmesy small number of iterations, with
comparison to GCMMA. The optimal stacking sequencdlustiated in Figure 8.19. As already
observed by Grenestedt (1990) and Foldager (1999pptimal laminates include very few different
orientations.

laminate 1 [90]

laminate 2 :[0/93/96/93}

Figure. 8.19. Optimal design of the stiffened panel
8.5 Optimal design under buckling consider ations

Anyone who has carried out optimal sizing with akbug criterion has experienced an undesirable
effect of very slow convergence speed and possibdyelaariations of the design functions during the
iteration history. The reasons for the bad convergefficéeo buckling optimisation problem are
multiple, and make it difficult to solve: discontinuous r&wder of the problem due to the localized
nature of local buckling, non differentiability of the ergvalues and related problems in the
sensitivity computation, modes crossing, selection of & dgtimisation method, etc.

A curved composite panel including 7 hat stiffeners dastdered. The load case consists of a
compression along the long curved sides, and in shre#reowhole outline. The structure is simply
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supported on its edges. Bushing elements are udedtam the stiffeners to the panel. In each super-
stiffener (made of one stringer and the correspongarg of the whole panel), 3 design variables are
used for defining the thickness of the 0°, 90° ang°##lies in the panel and in the stiffener. 42 design
variables are then defined. The goal is to find the strecdfi minimum weight with a minimum
buckling load larger than 1.2. The results obtaine@8nmyneel et al. (2007) are reported in Figures
8.20 for Conlin (Fleury and Braibant 1986) and SABAuyneel 2006). The 12 first buckling loads are
the design restrictions of the optimisation problem. In E@uR0, the evolutions of the weight and the
first buckling load\; over the iterations are plotted, as well as some chasdittdruckling modes.

freration 49 Teration 11

o - @ @
L L L L
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K weight
E Feration 50

Structural responses
Structural responses
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1V \_ 1

T T T T T T T T T T T T
0 20 40 60 80 100 i} 5 10 15 20 25 a0 35 40 45

o - M o & o
L L L
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Figure 8.20. Convergence history for the buckling ogation with Conlin (left) and SAM (right)
Bruyneel et al. (2007)

It is seen that when Conlin is used (Figure 8.20, &#dlution can not be reached. With SAM (Figure
8.20, right), the solution is obtained after an erratitvergence history. Those oscillations come from
the fact that local buckling modes appear during the omtiois process, and some parts of the
structures are no longer sensitive to this criterion. Alsthickness is therefore assigned to those parts
to decrease the weight, what makes them very sensitibeickling at the next iteration, leading to
oscillations of the design variables and functions valilegas observed in Bruyneel et al. (2007) that
when a large number of buckling loads are usedearofitimization problem (say 100 for the problem
of Figure 8.20), a solution with SAM is reached irteations, while Conlin is still no longer able to
converge.

8.6 Topology optimization of laminated composite structures

The topology optimization problem of Figure 4.3 is heomsidered. In topology optimization of
isotropic material (Bendsoe 1995), the design variabtepgseudo-densify that varies between 0 and
1 in each finite element(Figure 4.2). The so-called SIMP material law (Simplyrigoc Material
with Penalization) takes the following form:

E =4 E° = 14 p° (8.5)

whereE® and & are the Young modulus and the density of the baserialae.g. steel)E andp are
the effective material properties, apds the exponent of the SIMP law, chosen by the (lsgy<4).
In linear elasticity the stresses are linked to the stralasthe relatios =Qg¢. With the SIMP

parameterization, it comes for a plane stress state tha

Quu Q2 Qi Quxx Qxy 0 ,U'p g0 1 v 0
Q=4f|Qz Qo2 Qo6 |=#"|Qu Qpyy 0 |= 1'_ w1k 1 191/
Qs Q26 Qs6 0 0 Qs 00 —
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and the material stiffness mat@xdepends on the density design varigble
6 =Q(ue (8.6)

For orthotropic materials in a plane stress state,stiffness in the material axes is given by the
expression (3.1) where 4 material properkgsE,, Wy, andG,, must be provided. For a material with
orthotropic axes oriented at an an@levith respect to the reference axes the material asiffis given
by (3.5). The SIMP parameterization (8.22 and 8.23) lba extended to a Simply Anisotropic
Material with Penalization (Rion and Bruyneel 2006) , drelmaterial law for topology optimization
iS now written as:

Qu Q2 Qs
Q=4P|Q, Qp Qup
Qs Q6 Qes

c =Q(,u,6')a (8.7)

The material stiffness now depends on both kinds ofjdesiriables, i.e. the material density and the
fibers orientation.

The problem in Figure 8.21 is solved with this paramzaéon. It includes 3750 design variables. The

optimal topology and orientations obtained for an halfhef structure are given in Figure 8.22. A
comparison of the convergence speed for several gipgations is provided in Figure 8.23.

ﬂ

?

Figure 8.21. Definition of topology optimization problefhe initial structure is full of material
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Figure 8.22. Optimal topology with orthotropic materiahlyDone half of the structure is drawn. The
fibers orientation is plotted in the few elements thataorfull material at the solution
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Figure 8.23. Convergence history for several appnation schemes for the topology optimization
problem including orthotropic material

8.7 An industrial solution for the pre-design of composite aircraft boxes

As reported in Krog et al. (2007), the pre-design ofamoraft wing is a large scale optimization
problem including (up to now) about 1000 design varialaled about 300000 constraints. Those
variables are linked to the total thickness of the laminate mi@de+45 and 90° plies in the panel and
to the dimensions of the cross section for the compssitener of each super-stringer defining the
box structure (Figure 8.24). The constraints expressereserve factors (RF) are amongst others
related to buckling and damage tolerance.

[— -
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|——[—
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Figure 8.24. The principle of a composite wing madsugfer-stringers (from Krog et al., 2007)

Taking into account a so large number of design fanstin the optimization problem will
dramatically increase the CPU time spent in the optimizerorder to decrease the size of the
optimization problem, a technique for scanning the camd (Figure 8.25) has been implemented in
Boss Quattro Www.samcef.com It consists in feeding the optimizer with the most citica
constraints, based on their value at a given iterafibis. leads to the definition of 2 sets of active and
inactive constraints. The optimizer can only see the aotiswictions. Those sets are not updated at
each iteration but only when some inactive constraintsteehdcome violated after a given number of
iterations (FREQ in Figure 8.25). When the SAM methodiyBeel 2006) is used, the information at
the previous design point is lost when the sets areteghdand the approximation is therefore only
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built based on the information at the current designtpthiat is with GCMMA (Svanberg 1995), for
that specific iteration.

O = Anon active constraint becomes dangerous
RF = Update of the set of active constraints
(if FREQ iterations have been carried out)

B
-

RF = 1+Prec

RF = 1+CRIT e
O _ _
Active constraints

RF=1 (at an iteration)

Violated
constraints

Figure 8.25. Strategy for scanning the constraintsrgelacale optimization problems
(Krog et al. 2007)

The SAM approximation was found to be reliable in savpre-design optimization problems of
composite aircraft box structures in wings, center winog, bvertical and horizontal tail planes.
Typically 30 iterations were enough to reach a stationatue of the weight and a nearly feasible
design where very few constraints (less than 10) s#teviolated but of an amount of no more than 3
percents (RF larger than 0.97). Details of the resuldsad the implementation can be found in Krog
et al. (2007).

8.8 Optimal design with respect to damage tolerance

A simple DCB beam is considered (Figure 8.26). Therganrelease rates of modes I, Il and Ill are
computed at the straight crack front with a specific virtcrack extension method described by
Bruyneel et al. (2006). The stacking sequence compufsé?i plies is given by:

[6/-6/0/-6/0/6/8/0,/6/0/-6/0/-6/6/d/-6/6/0/6/0/-6/0,/—6/0/8/0/6/-0]
whered is the location of the interface where delamination will {aleee and is a variable. The goal

is to find the optimal value of the orientation that wilcease the maximum value of &ong the
crack front.
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Figure 8.26. DCB beam and variation gfa®ng the crack front for the initial design.
On the left the displacements of the lips are multiplied by 50
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The solution is provided in Figure 8.27. The optimal gdlr the angl® is zero. The convergence is
achieved in 5 iterations with the SAM approximation andSrick MMA (Figure 8.28). Although the
solution of this problem is trivial, the procedure colbddused for more realistic structures subjected to
several complex load cases.
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Figure 8.27. DCB beam and variation gfa®ng the crack front for the optimal design
On the left the displacements of the lips are multiplied by 50
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Figure 8.28. Convergence history for the optimizatidgtn respect to damage tolerance.
SAM converges in 5 iterations while MMA needs 15 iteratito reach the solution

9. Conclusion

In this chapter the optimal design of laminated composgitetsires was considered. After a review of
the literature an optimization method specially devotedotoposite structures was presented. This
review helped us in selecting a formulation of the optimiraproblem that satisfies the industrial
needs. In this context the fibers orientations and thehjdkriesses were selected as design variables.
It was shown on the proposed applications that theeldped solution procedure is general and
reliable. It can be used for solving laminated compgsitdlems including membrane, shells, solids,
single and multiple load cases, in stiffness, bucklimg) strength based designs. It is routinely used in
an (European) industrial context for the design of caitpaaircraft box structures located in the
wings, the center wing box, and the vertical and horizaail plane. This approach is based on
sequential convex programming and consists in regiathe original optimization problem by a
sequence of approximated sub-problems. A very geaedhself adaptive approximation scheme is
used. It can consider the particular structure ofntleehanical responses of composites, which can be
of different nature when both fibers orientations plels thickness are design variables.
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