
In: Composite Materials Research Progess, NOVA Science Publishers, 2008 
(www.novapublishers.com)  

Optimization of laminated composite structures:  
problems, solution procedures and applications 

 
Dr Michaël Bruyneel 

SAMTECH s.a., Liège Science Park 
Rue des Chasseurs-ardennais 8, 4031 Angleur, Belgium 

 

Abstract 
In this chapter the optimal design of laminated composite structures is considered. A review of the 
literature is proposed. It aims at giving a general overview of the problems that a designer must face 
when he works with laminated composite structures and the specific solutions that have been derived. 
Based on it and on the industrial needs an optimization method specially devoted to composite 
structures is developed and presented. The related solution procedure is general and reliable. It is 
based on fibers orientations and ply thicknesses as design variables. It is daily used in an (European) 
industrial context for the design of composite aircraft box structures located in the wings, the center 
wing box, and the vertical and horizontal tail plane. This approach is based on sequential convex 
programming and consists in replacing the original optimization problem by a sequence of 
approximated sub-problems. A very general and self adaptive approximation scheme is used.  It can 
consider the particular structure of the mechanical responses of composites, which can be of different 
nature when both fibers orientations and plies thickness are design variables. Several numerical 
applications illustrate the efficiency of the proposed approach.  

1. Introduction 
According to their high stiffness and strength to weight ratios, composite materials are well suited for 
high-tech aeronautics applications. A large amount of parameters is needed to qualify a composite 
construction, e.g. the stacking sequence, the plies thickness and the fibers orientations. It results that 
the use of optimization techniques is necessary, especially to tailor the material to specific structural 
needs. The chapter will cover this subject and is divided in three main parts.  
 
After recalling the goal of optimization, the different laminates parameterizations will be presented 
with their limitations (the pros and the cons) in the frame of the optimal design of composite 
structures. The issues linked to the modeling of structures made of such materials and the problems 
solved in the literature will be reviewed. The key role of fibers orientations in the resulting laminate 
properties will be discussed. Finally the outlines of a pragmatic solution procedure for industrial 
applications will be drawn. Throughout this section, a profuse and state-of-the-art review of the 
literature will be provided.  
 
Secondly, a general solution procedure daily used in industrial problems including fibers reinforced 
composite materials will be described. The related optimization algorithm is based on sequential 
convex programming and has proven to be very reliable. This algorithm is presented in details and 
validated by comparing its performances to other optimization methods of the literature.  
 
Finally, it will be shown how this optimization algorithm can efficiently solve several kinds of 
composite structures designs problems: amongst others, solutions for topology optimization with 
orthotropic materials will be presented, important considerations about the optimal design of 
composites including buckling criteria will be discussed, optimization with respect to damage 
tolerance will be considered (crack delamination in a laminated structure). On top of that, some key 
points of the solution procedure based on this optimization algorithm applied to the pre-sizing of 
(European) industrial composite aircraft box structures will be presented.  
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2. The optimal design problem and available optimization 
methods 
The goal of optimization is to reach the best solution of a problem under some restrictions. Its 
mathematical formulation is given in (2.1), where g0(x) is the objective function to be minimized, gj(x) 
are the constraints to be satisfied at the solution, and x={xi, i=1,…,n} is the set of design variables. 
The value of those design variables change during the optimization process but are limited by an upper 
and a lower bound when they are continuous, what will be the case in the sequel.  
 

)(g x0min  

 mj       g)(g jj ,...,1max =≤x  (2.1) 

ni          xxx iii ,...,1=≤≤  

 
The problem (2.1) is illustrated in Figure 2.1, where 2 design variables x1 and x2 are considered. The 
isovalues of the objective function are drawn, as well as the limiting values of the constraints. The 
solution is found via an iterative process. xk is the vector of design variables at the current iteration k, 
and xk+1 is the estimation of the solution at the iteration k+1. Typically a local solution xlocal will be 
reached when a gradient based optimization method is used. The best solution xglobal can only be found 
when all the design space is looked over: this last can be accessed with specific optimization methods 
that include a non deterministic procedure, as the genetic algorithms.  
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Figure 2.1. Illustration of an optimization problem and its solution 

 
In structural optimization the design functions can be global as the weight, the stiffness, the vibration 
frequencies, the buckling loads, or local as strength constraints, strains and failure criteria. When the 
design variables are linked to the transverse properties of the structural members (e.g. the cross section 
area of a bar in a truss), the related optimization problem is called optimal sizing (Figure 2.2a). The 
value of some geometric items (e.g. a radius of an ellipse) can also be variable: in this case, we are 
talking about shape optimization (Figure 2.2b). Topology optimization aims at spreading a given 
amount of material in the structure for a maximum stiffness. Here, holes can be automatically created 
during the optimization process (Figure 2.2c). Finally the optimization of the material can be 
addressed, e.g. the local design of laminated composite structure with respect to fibers orientations, ply 
thickness and stacking sequence (Figure 2.2d). 
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a) Optimal sizing  b) Shape 
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optimization 

d) Material 
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Initial 
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Figure 2.2. The structural optimization problems 
 
The structural optimization problems are non linear and non convex, and several local minimum exist. 
It is usually accepted that a local solution xlocal gives satisfaction. The global solution xglobal can only be 
determined with very large computational resources. In some cases when the problem includes a very 
large amount of constraints, a feasible solution is acceptable.  
 
A lot of methods exist to solve the problem (2.1). Morris (1982), Vanderplaats (1984), and Haftka and 
Gurdal (1992) present techniques based on the mathematical programming approach used in structural 
optimization. Most of them are compared by Barthelemy and Haftka (1993), and Schittkowski et al. 
(1994). Non deterministic methods, such as the genetic algorithm (Goldberg, 1989), are studied by 
Potgieter and Stander (1998), and Arora et al. (1995). Those authors also present a review of the 
methods used in global optimization. Optimality criteria for the specific solution of fibers optimal 
orientations in membrane (Pedersen 1989) and in plates (Krog 1996) must be mentioned as well. 
Finally the response surfaces methods are also used for optimizing laminated structures (Harrison et 
al. 1995, Liu et al. 2000, Rikards et al. 2006, Lanzi and Giavotto 2006). 
 
The approximation concepts approach, also called Sequential Convex Programming, developed in the 
seventies by Fleury (1973), Schmit and Farschi (1974), and Schmit and Fleury (1980) has allowed to 
efficiently solve several structural optimization problems: the optimal sizing of trusses, shape 
optimization (Braibant and Fleury, 1985), topology optimization (Duysinx, 1996, 1997, and Duysinx 
and Bendsøe, 1998), composite structures optimization (Bruyneel and Fleury 2002, Bruyneel 2006), as 
well as multidisciplinary optimization problems (Zhang et al., 1995 and Sigmund, 2001). In sizing and 
shape optimization the solution is usually reached within 10 iterations. For topology optimization, 
since a very large number of design variables are included in the problem, a larger number of design 
cycles is needed for converging with respect to stabilized design variables values over 2 iterations.  
 
Those approximation methods consist in replacing the solution of the initial optimization problem 
(2.1) by the solution of a sequence of approximated optimization problems, as illustrated in Figure 2.3. 
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Figure 2.3. Definition of an approximated optimization problem based on the information at the 
current design point x(k). The corresponding feasible domain is defined by the constraints of (2.2) 

 

Each function entering the problem (2.1) is replaced by a convex approximation )(~ )( Xk
jg  based on a 

Taylor series expansion in terms of the direct design variables ix  or intermediate ones as for example 

the inverse design variables ix1 . For a current design x(k) at iteration k, the approximated 
optimization problem writes: 

)(~min )(
0 xkg  

 max)(~
j

k
j g)(g ≤x  mj ,...,1=  (2.2) 
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where the symbol ~ is related to an approximated function. The explicit and convex optimization 
problem (2.2) is itself solved by dedicated methods of mathematical programming (see Section 7). 
Building an approximated problem requires to carry out a structural and a sensitivity analyses (via the 
finite elements method).  Solving the related explicit problem does no longer necessitate a finite 
element analysis (expensive in CPU for large scale problems).  
 
The solution obtained with this approach doesn’t correspond to the global optimum, but to a local one, 
since gradients and deterministic information are used. Nevertheless this local solution is found very 
quickly and several initial designs could be used to try to find a better solution, as proposed by Cheng 
(1986). Finally it must be noted that when a very large number of constraints is considered in the 
optimal design problem (say more than 105) the user is often satisfied with a feasible solution.  

3. Parameterizations of laminated composite structures 
Before presenting the several possible parameterizations of laminates, with their advantages and their 
disadvantages, the classical lamination theory is briefly recalled in order to introduce the notation that 
will be used throughout the chapter. See Tsai and Hahn (1980), Gay (1991) and Berthelot (1992) for 
details.  

3.1 The classical lamination theory 
3.1.1 Constitutive relations for a ply 
Fibers reinforced composite materials are orthotropic along the fibers direction, that is in the local 
material axes (x,y,z) illustrated in Figure 3.1. Homogeneous macroscopic properties are assumed at the 
ply and at the laminate levels.  
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Figure 3.1. The unidirectional ply with its material and structural axes 

 
For a linear elastic behaviour, the stress-strain relations in the material axes are given by the Hook’s 
law Qεσ =  where ε  and σ  are the strain and stress tensors, respectively, while Q is the matrix 
collecting the stiffness coefficients in the orthotropic axes. For a plane stress assumption, it comes that 
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The stresses and strains can be written in the structural coordinates (1,2,3) as in (3.2) and (3.3) where 
θ is the angle between the local and structural axes, defined in Figure 3.1.  
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For a ply with an orientation θ with respect to the structural axes, the constitutive relations write: 
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where the matrix of the stiffness coefficients in the structural axes takes the form: 
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The variation of the Q’s with respect to the angle θ  is plotted in Figure 3.2. It is observed that the 
stiffness coefficients are highly non linear in terms of the fibers orientation.  

 

 
Figure 3.2. Stiffness coefficients in N/mm² in the structural axes for several values of the fibers  

orientation in a carbon/epoxy material T300/5208 (after Tsai and Hahn, 1980) 
 
Based on the fact that the trigonometric functions entering the matrix in (3.5) can be written in the 
following way: 
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Tsai and Pagano (1968) derived an alternative expression for the Q’s coefficients in the structural axes 
given in (3.7): 
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where the parameters γ are functions of the lamina invariants U1-U5: 
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3.1.2 Constitutive relations for a laminate 
Composite structures are thin membranes, plates or shells made of n unidirectional orthotropic plies 
stacked on the top of each other. Such structures can support in and out-of plane loadings. In the 
following the constitutive relations for a laminate made of several individual plies are derived. The 
notations are defined in Figure 3.3. In the case of plane stress, i.e. the effects of transverse shear is 
neglected, in-plane normal and shear loads N, as well as the flexural and torsional moments M are 
applied to the laminate. Those loadings are computed by considering the stress state in each ply with 
the relations (3.9): 
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For a first order cinematic theory, where the displacement through the laminate’s thickness is linear in 
the z coordinate measured with respect to the mid-plane of the plate/shell (Figure 3.3), the vector of 

laminate’s strains εεεεl is linked to the in-plane strains and the curvatures via the relation κεε zl += 0 . 
With this definition it turns that the constitutive relations for a laminate are given by (3.10) where A, B 
and D are the in-plane, coupling and bending stiffness matrices of the laminate.  
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(a) A laminate with its structural axes. h is the 

total thickness 

 
 (b) Several unidirectional plies stacked on  top of 

each other. Material axes related to the kth ply . 

2
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(c). Definition of the plies location through the laminate’s thickness. 

hk and hk-1 are used to locate the kth ply of the stacking sequence 
 

Figure 3.3. A laminate with n layers  
(a) Structural axes              (b) Material axes of ply k 

(c) Position of each ply in the stacking sequence 
 

3.2 The possible parameterizations of laminates 
There exist several parameterizations for the laminates depending on the way the coefficients of the 
stiffness matrices in (3.10) are computed and depending on the definition of the design variables. The 
advantages and disadvantages of those different parameterizations are compared in the perspective of 
the optimal design of the laminated composite structures. 

3.2.1 Parameterization with respect to thickness and orientation 
When the ply thickness and the related fibers orientation are chosen to describe the laminate, the 
coefficients of the stiffness matrices can be written as follows: 
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where zk and hk  define the position of the kth ply in the stacking sequence. tk and kθ  are the ply 
thickness and the fibers orientation, respectively (Figure 3.3).  
 
With such a parameterization the local values (e.g. the stresses in each ply of the laminate) are 
available via the relations (3.1) and (3.4). On top of that the design problem is written in terms of the 
physical parameters used for the manufacturing of the laminated structures. Finally several different 
materials can be considered in the laminate when the parameterization (3.11) is used.  
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However when fibers orientations are allowed to change during the structural design process the 
resulting mechanical properties are generally strongly non linear (see Figure 3.2) and non convex, and 
local minima appear in the optimization problem. This is also illustrated in Figure 3.4 that draws the 
variation of the strain energy density in a laminate over 2 fibers orientations. In Figure 3.5 it is shown 
that the structural responses entirely differ when either ply thickness or ply orientation is considered in 
the design, resulting in mixed monotonous-non monotonous structural behaviors. It turns that the 
optimal design task is more complicated since the optimization method should be able to efficiently 
take into account simultaneously both different behaviors. 

 
Strain energy density 
(N/mm) 

θ2 θ1 

 
Figure 3.4. Variation of the strain energy density in 

a [θ1/θ2]S laminate with respect to the fibers 
orientations θ1 and θ2 
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Figure 3.5. Variation of the strain energy density in 
an unidirectional ply with respect to its thickness t 

and its fibers orientation θ 

Additionally using such a parameterization increases the number of design variables that may appear 
in the optimal design problem since the thickness and fibers orientation of each ply are possible 
variables. Finally optimizing with respect to the fibers orientations is known to be very difficult and 
few publications are available on the subject. For a sake of completion, the sensitivity analysis of the 
structural responses of composites with respect to those variables can be found in Mateus et al. (1991), 
Geier and Zimmerman (1994), and Dems (1996). 

3.2.2 Parameterization with sub-laminates 
The design parameters are no longer defined based on single unidirectional plies but instead on 
predefined sub-laminates. Each sub-laminate is itself made of several single unidirectional plies. The 
design parameters are assigned to the sub-laminates and no longer to each individual ply. Examples of 
sub-laminates may be [0/45/-45/90], [0/60/-60] or [0/90]. This parameterization allows to decrease the 
number of design variables. However the control at the ply level is lost. The previously presented 
parameterization in terms of ply thickness and orientation is a limiting case. 
 

 

1  

2  
3  

S u b -la m in a te  1  
[ 3 0 / - 3 0 ]  

S u b -la m in a te  2  
[ 0 /4 5 / -4 5 /9 0 ] 

 
Figure 3.6. Parameterization with sub-laminates.  

Here the symmetric laminate is made of 2 sub-laminates 
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3.2.3 The lamination parameters 
The stiffness matrix in (3.10) can be expressed with the lamina invariants defined in (3.8) together 
with the lamination parameters. For a given base material identical for each ply of the laminate the 
lamination parameters are given by (3.12) in the structural axes: 
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The lamination parameters are the zero, first and second order moments relative to the plate mid-plane 
of the trigonometric functions (3.6) entering the rotation formulae for the ply stiffness coefficients 
(3.5). With this definition the stiffness matrices A, B and D in (3.10) write: 
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Twelve lamination parameters exist in total and characterize the global stiffness of the laminate. This 
number is independent of the number of plies that contains the laminate. In most applications the 
lamination parameters are normalized with respect to the total thickness of the laminate (Grenestedt, 
1992, and Hammer, 1997). In the case of symmetric laminates the 4 lamination parameters 

Bξ defining the coupling stiffness B vanish. Moreover when the structure is either subjected to in-
plane loads or to out-of-plane loads only the 4 lamination parameters related to the in-plane stiffness 

Aξ  or the out-of-plane stiffness Dξ  must be considered, respectively. In the case of composite 
membrane or plates presenting orthotropic material properties 2 lamination parameters are sufficient to 
characterize the problem. Lamination parameters are not independent variables. Feasible regions of the 
lamination parameters exist which provide realizable laminates. Grenestedt and Gudmundson (1993) 
demontrated that the set of the 12 lamination parameters is convex. It is also observed from (3.13) that 
the constitutive matrices A, B and D are linear with respect to the lamination parameters. This means 
that the optimization problem is convex if it includes functions related to the global stiffness of the 
laminate, as for example the structural stiffness, vibration frequencies and buckling loads (Foldager, 
1999). 
 
Feasible regions were determined for specific laminate configurations (e.g. Miki, 1982 and Grenestedt, 
1992), but the region for the 12 lamination parameters has not yet been determined. Recently the 
relations between the lamination parameters were derived for ply angles restricted to 0, 90, 45 and -45 
degrees by Liu et al. (2004) for membrane and bending effects, and by Diaconu and Sekine (2004) for 
membrane, coupling and bending effects.  
 
One of the feasible regions of lamination parameters is illustrated in Figure 3.7 in the case of a 
symmetric and orthotropic laminated plate subjected to bending. As the plate is assumed orthotropic in 

bending D
1ξ  and D

2ξ  are enough to identify the stiffness of such a problem. Those two lamination 
parameters take their values on the outline delimited by the points A, B, C, and in the dashed zone. 
Any combination of the lamination parameters that is outside of this region will produce a laminate 
which is not realizable. When this plate is simply supported and subjected to a uniform pressure, the 

vertical displacement is a function of D1ξ  and D
2ξ . The iso-values of this structural response are the 

parallel lines illustrated in Figure 3.7. According to Grenestedt (1990), the plate stiffness increases in 
the direction of the arrow. The stiffest plate is then characterized by the point D in Figure 3.7, which 
corresponds to a [(±θ)n]S laminate, defined by a single parameter θ.  
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Figure 3.7. Feasible domain (outline plus dashed zone) of the lamination parameters for a symmetric 
and orthotropic laminated plate subjected to a uniform pressure (after Grenestedt, 1990). The points A, 

B, C correspond to [0], [(±45)n]S and [90] laminates, respectively. The point D defines a [(±θ)n]S 
laminate. The point E is a combination of laminates defined on the outline. The laminate of maximum 

stiffness is located on the outline (point D) 
 

 
This kind of parameterization has allowed to show that optimal solutions – in terms of the stiffness – 
are often related to simple laminates with few different ply orientations. For example only one 
orientation is necessary for characterizing the optimal laminate in a flexural problem (Figure 3.7), and 
at most 3 different ply orientations are sufficient to define the optimal stacking sequence in the case of 
a membrane of maximum stiffness (Lipton, 1994). Table 3.1 summarizes some of those important 
results. 
 
When using such a parameterization the number of design variables is very small (12 in the most 
general case) irrespective to the number of plies that contains the laminate. As seen in Figure 3.7 the 
design space is convex, and only one set of lamination parameters characterizes the optimal solution. 
However acording to the relations (3.8) and (3.13) only one kind of material can be used in the 
laminate: defining a different material for the core of a sandwich panel is for example not allowed 
(Tsai and Hahn, 1980). Additionally the local structural responses (e.g. the stresses in each ply) can 
not be expressed in terms of the lamination parameters since those last are defined at the global 
(laminate) level and are linked to the structural stiffness. However the global strains of the laminate 
(but not in each ply) can be computed with relation (3.10) and used in the optimization, as is done by 
Herencia et al. (2006). The feasible regions of the 12 lamination parameters is not yet determined. As 
said before those regions are only known for specific laminate configurations. This strongly limit their 
use in the frame of the optimal design of composite structures. Finally when the optimal values of the 
lamination parameters are known, coming back to corresponding thicknesses and orientations is a 
difficult problem and the solution is non unique (Hammer, 1997). Foldager et al. (1998) proposed a 
technique based on a mathematical programming approach while Autio (2000) used a genetic 
algorithm to find this solution when the number of layers is limited or for prescribed standardized ply 
angles.  
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Kind of structure Laminate configuration  Criteria   Optimal sequence Reference 

Plate Symmetric/orthotropic Stiffness [ ]Sn)( θ±  

  Vibration [ ]Sn)( θ±  

  Buckling [ ]Sn)( θ±  

Grenestedt (1990), 

Miki and Sugiyama 
(1993) 

 Symmetric  Buckling  [ ]Sθ  Grenestedt (1991) 

Membrane  Symmetric Stiffness [ ]Sn)90/( αα +  Fukunaga and Sekine 
(1993) 

 General  Stiffness  [ ]θ , [ ]αα +90/  Hammer (1997) 

Cylindrical shell Symmetric/orthotropic Buckling  [ ]Sn)( θ± , [ ]S90/0 , 

quasi-isotropic 

Fukunaga and 
Vanderplaats (1991b) 

 
Table 3.1. Summary of some important results obtained with the lamination parameters 

 

3.2.4 Combined parameterization 
As shown by Foldager et al. (1998) and Foldager (1999), composite structures can be designed by 
combining two parameterizations: the lamination parameters on one hand, and the plies thickness and 
fibers orientations on the other hand. The benefit of the approach relies on using a convex design 
space with respect to the lamination parameters, while keeping in the problem’s definition the physical 
variables in terms of thickness and orientation. This iterative procedure – between both design spaces 
– consists in determining a first (local) solution in terms of thicknesses and orientations. A new search 
direction towards the global optimum is then computed by evaluating the first order derivative of the 
objective function at the local solution with respect to the lamination parameters. The global optimum 
is reached when this sensitivity is close to zero. Otherwise a new design point is calculated in the 
space of the fibers orientations, and the process continues, usually by adding new plies in the laminate. 
As seen in Figure 3.8, the structural response is not convex with respect to θ while it is convex in 
terms of the lamination parameter ξ. With this technique the knowledge of the feasible regions of the 
lamination parameters is not mandatory.  
 
Although efficient, this solution procedure can only be used for global structural responses like the 
stiffness, the vibration frequencies and the buckling load.  
 

 
θ, ξ 

f 
f(θ) 

f(ξ) 

1 

2 

3 

4 

 
Figure 3.8. Illustration of the optimization process after Foldager et al. (1998) 

in both spaces of the lamination parameters ξ and the fibers orientation θ 
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3.2.5 Alternative parameterization 
In order to decrease the non linearities introduced by the fibers orientation variables, Fukunaga and 
Vanderplaats (1991a) proposed to parameterize the laminated composite membranes with the 
following intermediate variables: 
 

iix θ2sin=    or   iix θ2cos=  
 
based on the relation (3.12) and (3.13). This formulation was tested by Vermaut et al. (1998) for the 
optimal design of laminates with respect to strength and weight restrictions. As in the previous section, 
the main difficulty is to compute the orientations corresponding to the optimal intermediate variables 
values xi.  

4. Specific problems in the optimal design of composite structures 
For designing laminated composite structures a very large number of data must be considered 
(material properties, plies thickness and fibers orientation, stacking sequence) and complex geometries 
must be modelled (aircraft wings, car bodies). Therefore the finite element method is used for the 
computation of the structural mechanical responses. Usually mass, structural stiffness, ply strength and 
strain, as well as buckling loads are the functions used in the optimization problem. The design 
variables are classically the parameters defining the laminate: fibers orientations, plies thickness, and 
indirectly the number of plies and the stacking sequence. Some specific problems appear in the 
formulation of the optimization problem for laminated structures. They are reported hereafter. 
 
• Large number of design variables. Even for a parameterization in terms of the lamination 

parameters, the number of design variables can easily reach a large value when the plies thickness 
and fibers orientations are allowed to change over the structure, leading to non homogenenous 
plies (Figure 4.1) and curvilinear fibers formats (Hyer and Charette 1991, Hyer and Lee 1991, 
Duvaut et al. 2000). In industrial applications (Krog et al. 2007), thicknesses related to specific 
orientations (0°, ±45°, 90°) are used and several independent regions are defined throughout the 
composite structure, what increases the number of design variables. 

 
• Large number of design functions. Not only global structural responses related to the stiffness are 

relevant in a composite structure optimization, but also the local strength of each ply. Damage 
tolerance and local buckling restrictions are important as well. For an aircraft wing, it is usual to 
include about 300000 constraints in the optimization problem (Krog et al. 2007). 

 
 

 

H o m o g e n e o u s  p ly  
 N o n  h o m o g e n e o u s  p ly  

 
 

Figure 4.1. Homogeneous and non homogeneous ply in a laminate 
 
 
• Problems related to the topology optimization of composite structures. In topology optimization 

one is looking for the optimal distribution of a given amount of material in a predefined design 
space that maximizes the structural stiffness (Figure 4.2).  
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Domain where the 
material is 
distributed 

Solid 

Void  

 
Figure 4.2. Illustration of a topology optimization problem (after Bruyneel, 2002) 

 
For composite structures, and due to the stratification of the material, it results that 2 topology 
optimization problems must be defined and solved simultaneously: the optimal distribution of 
plies at a given altitude in the laminate (Figure 4.3) and the transverse topology optimization 
where the optimal local stacking sequence is looked for (Figure 4.4). Continuity conditions 
between adjacent laminates should also be imposed.  
 

 
Figure 4.3 Topology optimization at a given altitude in the non homogeneous laminate 

 

 
Figure 4.4. Transverse topology optimization in a composite structure 

 
• Specific non linear behaviors of laminated structures. In order to improve the accuracy in the 

model, non linear effects, and especially the design with respect to the limit load, should be 
considered in the formulation of the optimization of composite structures. This dramatically 
increases the computational time of the finite element analysis, and can only be used for studying 
small structural parts such as super-stringers, i.e. some stiffeners and the panel (Colson et al., 
2007). Although simple fracture mechanics criteria have been considered (Papila et al. 2001), 
damage tolerance and propagation of the cracks (delamination) should be taken into account in the 
same way.  
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• Uncertainties on the mechanical properties of composites. There is a larger dispersion in the 
mechanical properties of the fibers reinforced composite materials than for metals. Moreover, 
some uncertainties concerning the orientations and the plies thickness exist. Robust optimization 
should be used in these cases (Mahadevan and Liu, 1998, Chao et al., 1993, Chao, 1996, and 
Kristindottir et al., 1996).  

 
• Strong link with the manufacturing process. Contrary to the design with metals, there is a strong 

link between the material design, the structural design and the manufacturing process when 
dealing with composite materials. The constraints linked to manufacturing can strongly influence 
the design and the structural performances (Henderson et al., 1999, Fine and Springer, 1997, 
Manne and Tsai, 1998) and should be taken into account to formulate in a rational way the design 
problem (Karandikar and Mistree, 1992).  

 
• Singular optima in laminates design problems. When strength constraints are considered in the 

design problem, and if the lower bounds on the plies thickness is set close to 0 (i.e. some plies can 
disappear at the solution from the initial stacking sequence), it can be seen (Schmit and Farschi, 
1973, Bruyneel and Fleury, 2001) that the design space can become degenerated. In this case the 
optimal design can not be reached with gradient based optimization methods. Such a degenerated 
design space is illustrated in Figure 4.5. It is divided into a feasible and an infeasible region 
according to the limiting value of the Tsai-Wu criteria. In this example a [0/90]S laminate’s weight 
is to be minimized under an in-plane load N1. The optimal solution is a [0] laminate. Unfortunately 
this optimal laminate configuration can not be reached with a gradient based method since the 90 
degree plies are still present in the problem even if their thickness is close to zero, and the related 
Tsai-Wu criterion penalizes the optimization process. A first solution consists in using the ε-
relaxed approach (Cheng and Guo 1997), which slightly modifies the design space in the 
neighborhood of the solution and allows the optimization method to reach the true optimum [0]*. 
Alternatively (Bruyneel and Fleury, 2001, and Bruyneel and Duysinx, 2006) when fibers 
orientations are design variables the shape of the design space changes, the gap between the true 
optimal solution and the one constrained by plies with a vanishing thickness [0/x]* decreases and 
the real optimal solution becomes attainable (Figure 4.5). Optimizing over the fibers orientations 
allows to circumvent the singularity of the design space.  

 

 
Figure 4.5. Design space for [0/90]S and [0/10]S laminates. 

* represents the obtained solutions, optimum or not 
 
 

• Importance of the fibers orientations in the laminate design. Besides their efficiency in avoiding 
the singularity in the optimization process as just explained before fibers orientations play a key 
role in the design of composite structures. Modifying their value allows for great weight savings, 
as illustrated in Figure 4.6. Let’s consider that the initial laminate design corresponds to fibers 
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orientation and ply thickness at point A. A first way to obtain a feasible design with respect to 
strength restrictions is to increase the ply thickness and go to B, which penalizes the structural 
weight. Another solution consists in modifying the fibers orientation, here at constant thickness 
(point C). A better solution is to simultaneously optimize with respect to both kinds of design 
variables (point D). However taking into account such variables in the optimization problem is a 
real issue, and providing a reliable solution procedure is a challenge.  

 

 
Figure 4.6. Design space for an unidirectional laminate subjected to either N1 or N6. Iso-values of the Tsai-Wu 

criterion. The ply thickness and fibers orientations are the design variables 
 
• The optimal stacking sequence. A large part of the research effort on composites has been 

dedicated to the solution of the optimal stacking sequence problem. As it is a combinatorial 
problem including integer variables, genetic algorithms have been used (Haftka and Gurdal, 1992, 
Le Riche and Haftka, 1993). The topology optimization formulation of Figure 4.4 was used by 
Beckers (1999) and (Stegmann and Lund, 2005) to solve this problem with discrete and 
continuous design variables, respectively. Another approach, still based on the discrete character 
of the problem, is proposed by Carpentier et al. (2006). It consists in using a lay-up table defined 
based on buckling, geometric and industrial rules considerations. This table, which satisfies the ply 
drop-off continuity restrictions is determined numerically. Once it is obtained a given laminate 
total thickness corresponds to a stacking sequence (via a column of the table). The optimization 
process then consists in optimizing the local thickness of a set of contiguous laminates defining 
the structure. Each laminate has equivalent homogenized properties with 0, ±45 and 90° plies. 
Based on the lay-up table, the stacking sequence is therefore known everywhere in the structure 
for different local optimal thicknesses and the composite material can be drapped.  

 

 
Figure 4.7. Illustration of a lay-up table for 0, ±45 and 90° plies 



17 

5. Problems solved in the literature 
5.1 Structural responses 
When designing laminated composite structures the functions entering the optimization problem (2.1) 
are classically the stiffness, the vibration frequencies, the structural stability and the plies’ strength. 
(see Abrate, 1994, for a detailed review of the literature). It is interesting to note that for orthotropic 
laminates maximizing the stiffness, the frequency or the first buckling load will provide the same 
solution (Pedersen, 1987 and Grenestedt, 1990). On top of that, it should be noted that optimizing a 
laminated structure against plies strength or stiffness will result in different designs. It results that the 
local (stress) effects are very important in the optimal design of composite structures (Tauchert and 
Adibhatla, 1985, Fukunaga and Sekine, 1993, and Hammer, 1997). 

5.2 Optimal design with respect to fibers orientations 
Determining the optimal fibers orientation is a very difficult problem since the structural responses in 
terms of such variables are highly non linear, non monotonous and non convex. However it has just 
been show in the previous section that the design of laminated composite structures is very sensitive 
with respect to those variables. As explained by the editors of commercial optimization software 
(Thomas et al., 2000) there is a need for an efficient treatment of such parameters.   
 
A small amount of work has been dedicated to the optimal design of laminated structures with respect 
to the fibers orientations. Several kinds of approaches have been investigated and are reported in the 
literature: 
 
• Approach by optimality criteria 
 

Optimal orientations of orthotropic materials that maximize the stiffness in membrane structures  
were obtained by Pedersen (1989, 1990 and 1991), and by Diaz and Bendsøe (1992) for multiple 
load cases. When the unidirectional ply is only subjected to in-plane loads, Pedersen (1989) 
proposed to place the fibers in the direction of the principal stresses. The resulting optimality 
criterion was used in topology optimization including rank-2 materials (Bendsøe, 1995). This 
technique was used by Thomsen (1991) in the optimal design of non homogeneous composite 
disks. This criterion was extended by Krog (1996) to Mindlin plates and shells.  

 
• Approach based on the mathematical programming 
 

As soon as 1971, Kicher and Chao solved the problem with a gradients based method. Hirano 
(1979a and 1979b) used the zero order method of Powell (conjugate directions) for buckling 
optimization of laminated structures. Tauchert and Adibhatla (1984 and 1985) used a quasi-
Newton technique (DFP) able to take into account linear constraints for minimizing the strain 
energy of a laminate for a given weight. Cheng (1986) minimized the compliance of plates in 
bending and determined the optimal orientations with an approach based on the steepest descent 
method.  
 
Martin (1987) found the minimum weight of a sandwich panel subjected to stiffness and strength 
restrictions with a method based on the Sequential Convex Programming (Vanderplaats, 1984). 
Watkins and Morris (1987) used a similar procedure with a robust move-limits strategy (see also 
Hammer 1997).  
 
In Foldager (1999), the method used for determining the optimal fibers orientations is not cited but 
belongs according to the author to the family of mathematical programming methods.  
 
SQP, the feasible directions method and the quasi-Newton BFGS were used by Mahadevan and 
Liu (1998), Fukunaga and Vanderplaats (1991a), and Mota Soares et al. (1993, 1995 and 1997), 
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respectively. Those mathematical programming methods are reported and explained in Bonnans et 
al. (2003).  

 
• Approach with non deterministic methods 
 

Genetic algorithms have been employed by several authors for determining the optimal stacking 
sequence of laminated structures (Le Riche and Haftka, 1993, Kogiso et al., 1994 and Potgieter 
and Stander, 1998) or in the treatment of fibers orientations (Upadhyay and Kalyanarama, 2000). 

 

5.3 Formulations of the optimization problem 
Thickness and orientation variables were treated in several ways in the literature. They have been 
considered either simultaneously as in Pedersen (1991), and Fukunaga and Vanderplaats (1991a), or 
separately (Mota Soares et al. 1993, 1995 and 1997, and Franco Correia et al. 1997). 
 
Weight, stiffness and strength criteria have been separately introduced in the design problem and taken 
into account in a bi-level approach by (Mota Soares et al., 1993, 1995, 1997 and Franco Correia et al., 
1997): at the first level the weight is kept constant and the stiffness is optimized over fibers 
orientations ; at the second level the ply thicknesses are the only variables in an optimization problem 
that aims at minimizing the weight with respect to strength and/or displacements restrictions. A similar 
approach can be found in Kam and Lai (1989), and Soeiro et al. (1994). Fukunaga and Sekine (1993) 
also used a bi-level approach for determining laminates with maximal stiffness and strength in non 
homogeneous composite structures (Figure 4.2) subjected to in-plane loads. In Hammer (1997), both 
problems are separately solved and the initial configuration for optimizing with respect to strength is 
the laminate previously obtained with a maximal stiffness consideration.  

6. Optimal design of composites for industrial applications 
Based on the several possible laminate parameterizations and on the previous discussion it was 
concluded in Bruyneel (2002, 2006) that an industrial solution procedure for the design of laminated 
composite structures should preferably be based on fibers orientations and ply thicknesses, instead of 
intermediate non physical design variables such as the lamination parameters. Using those variables 
allows optimizing very general structures (membranes, shells, volumes, subjected to in- and out-of-
plane loads, symmetric or not) and provides a solution that is directly interpretable by the user.  
 
On the other hand, an optimization procedure used for industrial applications should be able to 
consider a large number of design variables and constraints, and find the solution (or at least a feasible 
design) in a small number of design cycles. Additionally, the optimization formulation should be as 
much general as possible, and not only limited to specific cases (e.g. not only thicknesses, not only 
membrane structures, not only orthotropic configurations,…). For those reasons, a solution procedure 
based on the approximation concepts approach seems to be inevitable. Interesting local solutions can 
be found by resorting to other optimization methods (e.g. response surfaces coupled with a genetic 
algorithm) but on structures of limited size. For the pre-design of large composite structures like a full 
wing or a fuselage, or when non linear responses are defined in the analysis (post-buckling, non linear 
material behavior), the approximation concepts approach proved to be a fast method not expensive in 
CPU time for solving industrial problems (Krog and al, 2007, Colson et al., 2007).  
 
It results that robust approximation schemes must be available to efficiently optimize laminated 
structures. The characteristics of such a reliable approximation are explained in the following, and 
tests are carried out to show the efficiency and the applicability of the method.  
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7. Optimization algorithm for industrial applications 
7.1 The Approximation Concepts Approach 
In the approximation concepts approach, the solution of the primary optimization problem (2.1) is 
replaced with a sequence of explicit approximated problems generated through first order Taylor 
series expansion of the structural functions in terms of specific intermediate variables (e.g. direct xi or 
inverse 1/xi variables). The generated structural approximations built from the information known at 
least at the current design point (via a finite element analysis), are convex and separable. As will be 
explained latter a dual formulation can then be used in a very efficient way for solving each explicit 
approximated problem. 
 
According to section 2, it is apparent that the approximation concepts approach is well adapted to 
structural optimization including sizing, shape and topology optimization problems. However, the use 
of the existing schemes (section 7.2) can sometimes lead to bad approximations of the structural 
responses and slow convergence (or no convergence at all) can occur (Figure 7.1). 
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Figure 7.1. Difficulties appearing in the approximation of highly non linear structural responses.  
a. A too conservative approximation   b. A too few conservative approximation and unfeasible 
intermediate solutions   c. An approximation not adapted to the problem, leading to zigzagging 

 
Such difficulties are met for laminates optimization: their structural responses are mixed, i.e. 
monotonous with regard to plies thickness and non monotonous when fibers orientations are 
considered (Figure 3.5). Additionally, the non monotonous structural behaviors in terms of 
orientations are difficult to manage (Figure 3.4). It results that the selection of a right approximation 
scheme is a real challenge.  In the next section a generalized approximation scheme is presented that is 
able to effectively treat those kinds of problems. This optimization algorithm will identify the 
structural behavior (monotonous or not) according to the involved design variable (orientation or 
thickness), and will automatically generate the most reliable approximation for each structural 
function included in the optimization problem. In section 8 numerical tests will compare the efficiency 
of the proposed approximation scheme and the existing ones for laminates optimization including both 
thickness and orientation variables. 

7.2 Selection of an accurate approximation scheme 
7.2.1 Monotonous approximations 
Based on the first order derivatives of the structural responses included in the optimization problem, 
linear approximations can be built at the current design point xk. It is a first order Taylor series 
expansion in terms of the direct design variables xi (7.1).  
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As it is very simple this approximation is most of the time not efficient for structural optimization but 
can anyway be used with some specific move-limits rules (Watkins and Morris, 1987) that prevent the 
intermediate design point to go too far from the current one and to generate large oscillations during 
the optimization process (Figures 7.1b and 7.1c). 
 
Since the stresses vary as 1/xi in isostatic trusses where xi is the cross section area of the bars, a linear 
approximation in terms of the inverse design variables is more reliable for the optimal sizing of thin 
structures. The resulting reciprocal approximation is given in (7.2). 
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The Conlin scheme developed by Fleury and Braibant (1986) is a convex approximation based on 
(7.1) and (7.2). It is reported in (7.3) and illustrated in Figure 7.2.  
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The symbols ∑ +)(  and ∑ −)(  in (7.3) denote the summations over terms having positive and negative 
first order derivatives. When the first order derivative of the considered structural response is positive 
a linear approximation in terms of the direct variables is built, while a reciprocal approximation is 
used on the contrary.  
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Figure 7.2. The Conlin approximation 

 
Conlin can only work with positive design variables since an asymptote is imposed at xi=0. On top of 
that, the curvature of this approximation is imposed by the derivative at the current design point and 
can not be adapted to better fit the problem.  
 
The Method of Moving Asymptotes or MMA (Svanberg 1987) generalizes Conlin by introducing two 
sets of new parameters, the lower and upper asymptotes, Li and Ui, that can take positive or negative 
values, in order to adjust the convexity of the approximation in accordance with the problem under 
consideration. The asymptotes are updated following some rules provided by Svanberg (1987). The 
parameters pij and qij are built with the first order derivatives.  
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Figure 7.3 The MMA approximation 
 
As it will be seen later those monotonous schemes are not efficient for optimizing structural functions 
presenting non monotonous behaviors, as in Figure 3.4. 

7.2.2 Non monotonous approximations 
Based on MMA, Svanberg (1995) developed the Globally Convergent MMA approximation 
(GCMMA). As illustrated in Figure 7.4 it is non monotonous and still only based on the information at 
the current design point (functions values, first order derivatives, asymptotes values). Here both Ui and 
Li are used simultaneously. It was not the case in (7.4).  
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Using this method can lead to slow convergence given that it can generated too conservative 
approximations of the design functions (Figure 7.1a).  
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Figure 7.4. The GCMMA approximation 

 
In order to improve the quality of this approximation it was proposed in Bruyneel and Fleury (2002) 
and Bruyneel et al. (2002) to use the gradients at the previous iteration to improve the quality of the 
approximation, leading to the definition of the Gradient Based MMA approximations (GBMMA). In 
those methods the pij and qij parameters of (7.5) are computed based on the function value and gradient 
at the current design point and on the gradient at the previous iteration. The rules defined by Svanberg 
(1995) for updating the asymptotes are used.  
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7.2.3 Mixed approximation of the MMA family 
When dealing with structural optimization problems including design variables of two different 
natures, for example in problems mixing ply thickness and orientation variables, one is faced to a 
difficult task because of the simultaneous presence of monotonous and non-monotonous behaviors 
with respect to the set of design variables. In these conditions, most of the usual approximation 
schemes presented before have poor convergence properties or even fail to solve these kinds of 
problems. Knowing that the MMA approximation is very reliable for approximating monotonous 
design functions and based on the GBMMA approximations, a mixed monotonous – non monotonous 
scheme is presented in Bruyneel and Fleury (2002) and Bruyneel et al. (2002), which will 
automatically adapt itself to the problem to be approximated (7.6).  
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 (7.6) 

 
 
In (7.6) the symbols ∑ + ),( i and ∑ − ),( i  designate the summations over terms having positive and 
negative first order derivatives, respectively. A and B are the sets of design variables leading to a non 
monotonous and a monotonous behavior respectively, in the considered structural response. At a given 
stage k of the iterative optimization process, a monotonous, non monotonous or linear approximation 
is automatically selected, based on the tests (7.7), (7.8) and (7.9) computed for given structural 
response )(Xjg  and design variable ix . 
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The selection of a right approximation is illustrated in Figure 7.5: when a monotonous approximation 
is used for approximating a non monotonous function, oscillations can appear, while a non 
monotonous approximation is too conservative when the function is monotnous. The best 
approximation is therefore selected based on tests (7.7) to (7.9). This strategy proved to be reliable for 
simple laminates design (Bruyneel and Fleury 2002) and for general laminated composite structures 
design problems (Bruyneel 2006, Bruyneel et al. 2007, Krog et al. 2007), for truss sizing and 
configuration (Bruyneel et al. 2002), for topology optimization which includes a large amount of 
design variables (Bruyneel and Duysinx 2005). It has been made available in the BOSS Quattro 
optimization toolbox (Radovcic and Remouchamps, 2002). In the following this solution procedure 
based on a mixed approximation scheme is called Self Adaptive Method (SAM). Based on this 
approximation scheme, it is possible to resort to the other ones (GBMMA, MMA, Conlin and the 
linear approximation) by setting specific values to the asymptotes and by limiting the approximations 
to the sets A or B in (7.6).  
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Figure 7.5. The mixed SAM approximation 

 
A summary of the approximations that will be compared in the following is presented in Table 7.1. 
 
 

Approximation Author Behavior 

MMA Svanberg (1987) Monotonous 
GCMMA Svanberg (1995) Non monotonous 

SAM Bruyneel (2006) Mixed monotonous/non monotonous 
 

Table 7.1. Summary of the approximations that will be compared in the numerical tests 
 

7.3 Solution procedure for mono and multi-objective optimizations 
Since the approximations are convex and separable the solution of each optimization sub-problem 
(Figure 2.3) is achieved by using a dual approach. Based on the theory of the duality, solving the 
problem (2.2) in the space of the primal variables xi is equivalent to maximize a function (7.10) that 
depends on the Lagrangian multipliers jλ , also called dual variables: 

 
)(minmax λx,

xλ
L  

 )1(,...,00 0 ==≥ λλ  mj     j  (7.10) 

 
Solving the primal problem (2.2) requires the manipulation of one design function, m structural 
restrictions and n×2  side constraints (for mono-objective problems). When the dual formulation is 
used, the resulting quasi-unconstrained problem (7.10) includes one design function and m side 
constraints, if the side constraints in the primal problem are treated separately. In relation (7.10), 

),( λxL is the Lagrangian function of the optimization problem, which can be written  
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according to the general definition of the involved approximations )(~ Xg j  of the functions. The 

parameter λj is the dual variable associated to each approximated function )(~ Xg j . Given that the 

approximations are separable, the Lagrangian function is separable too. It turns that: 
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and the Lagrangian problem of (7.10) 
 

)(min λx,
x

L  

 
can be split in n one dimensional problems  
 
 ),(min λii

x
x

i

L  (7.12) 

 
The primal-dual relations are obtained by solving (7.12) for each primal variable xi: 
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Relation (7.13) asserts the stationnarity conditions of the Lagrangian function over the primal 
variables xi. Once the primal-dual relations (7.13) are known, (7.10) can be replaced by 
 
 ),()(max λλxλ

λλ
)(max    l L⇔  (7.14) 

mj     j ,...,10 =≥λ  

 
Solving problem (2.2) is then equivalent to maximize the dual function )(λl  with non negativity 
constraints on the dual variables (7.14). As it is explained by Fleury (1993), the maximization (7.14) is 
replaced by a sequence of quadratic sub-problems. Each sub-problem is itself partially solved by a first 
order maximization algorithm in the dual space. 
 
In the case of a multi-objective formulation the optimization problem writes : 
 

)(maxmin 0
,...,1

x
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l
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g
=

 

 jj gg ≤)(x  mj ,...,1=  (7.15) 

 
where nc is the number of load cases. Using the bound formulation (Olhoff, 1989) the problem (7.15) 
can be written as: 

2

2

1
min β  

 β≤)(0 xlg  ncl ,...,1=  (7.16) 

 jj gg ≤)(x  mj ,...,1=  

 
where β is the multiobjective factor, that is an additional design variable in the optimization problem. 
Instead of solving (7.16) problem (7.17) is considered where a new variable δ is introduced for the 
possible relaxation of the set of constraints.  
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0jg  are target values on the objective functions. The dual approach described for mono-objective 

optimisation problems is then applied to (7.17).  

8. Applications of the optimization solution procedure 
In the following examples (except the simple laminate designs and the topology optimization 
problem), the structural and semi-analytical sensitivity analyses are carried out with SAMCEF 
(http://www.samcef.com). The Boss Quattro optimisation tool box (http://www.samcef.com) is used 
for defining and solving the optimisation problem (Radovcic and Remouchamps 2002). 

8.1 Laminate subjected to in- and out-of-plane loadings 
A symmetric 4 plies laminate made of carbon/epoxy is considered. The load case and the initial 
configuration are provided in Table 8.1. The fibers orientations of each ply are the design variables, 
while plies thicknesses are kept constant. The optimization consists in minimizing the laminate’s strain 
energy density, i.e. maximizing its stiffness. The evolution of this objective function with respect to 
the 2 angles θ1 and θ2 is reported in Figure 8.1, with the initial and optimal design points. A restriction 
is imposed on the relative variation of the 2 design variables. The optimization problem writes : 
 

DκκAεε
T

θ 2

1

2

1
min 00 +TT  

 4512 ≤− θθ  (8.1) 

 180001.0 ≤≤ iθ  2,1=i  
 
where the stiffness matrices A, B and D, and the laminate’s strain and curvature were previously 
defined in Section 3.  
 

Strain energy 
density (N/mm) 

θ1 

θ2 

 23.3° 

 22.3° 

Solution 

Optimal design 

Initial design 

 
Figure 8.1. Variation of the strain energy density in the symmetric laminate  

subjected to the load case of Table 8.1 
 
 

 

In-plane load case 
),,( 621 NNN  

in N/mm 

Out-of-plane load case 
),,( 621 MMM  

in N 

Initial orientations  
),( 21 θθ=θ  

in degrees 

Initial thicknesses 
),( 21 tt=t  

in mm 

(2000,0,1000) (0,500,0) (45,135) (1,2) 

 
Table 8.1. Problem’s definition: load case and initial design 
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In this application the laminate is subjected not only to in-plane but also to out-of-plane loadings. 
Since the plies thicknesses are not identical (Table 8.1) the objective function is not symmetric with 
regards to the axis 21 θθ =  (Figure 8.2).  
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Figure 8.2. Illustration of the design space. Staring point, unconstrained and constrained optimum 

 
The iteration histories for the 3 approximation schemes are illustrated in the Figure 8.3. The 
convergence of the optimization process is controlled by the relative variation of the design variables 
at 2 successive iterations. The MMA approximation converges in 41 iterations. 29 iterations are 
enough for GCMMA. When the SAM approximation is used the solution is reached in a very small 
number of iterations.  
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Figure 8.3. Iteration history for the 3 approximation methods 
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8.2 Non homogeneous laminate 
In this application a non homogeneous composite membrane divided in regions of constant thickness 
and fibre orientations is studied. Each region is defined with an unidirectional laminate made of a 
glass/epoxy material. The design over stiffness is only considered here. The solution with respect to  
strength and stiffness is provided in Bruyneel (2006).  
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Figure 8.4. Initial configurations with 45 and -45 degrees plies orientations 
 
The quasi-unconstrained optimization problem (8.2) consists in finding the optimal values of the plies 
thickness and fibers orientations in each region of the laminated composite structure that maximize the 
overall stiffness (i.e. that minimize the compliance – the potential energy of the applied loads). The 
vectors of the design variables are given by { }nii ,...,1, == θθ  and { } ,...,1, niti ==t  where n is the 
number of regions according to Figure 8.4. The initial thicknesses are of 1 mm.  
 

Compliance
,tθ

min  

 °≤≤° 1800 iθ  ni ,...,1=  (8.2) 

mmtmm i 501.0 ≤≤  
 
In this problem the optimal values of the thickness is 5 mm, that is their upper bound. Anyway this 
application illustrates the difficulties encountered when both kinds of design variables appear in the 
design problem. The optimal values of the compliances are reported in Figure 8.5 as a function of the 
number of regions. As already noticed by Foldager (1999) an increase of the number of regions of 
different orientations improves the overall optimal structural stiffness (i.e. it decreases the 
compliance). 
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Figure 8.5. Evolution of the compliances in the problem (8.2) for the structures illustrated in Figure 
8.4. The compliance of the one region structure is the reference (n = 1) 
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The optimal fibers orientations are illustrated in Figure 8.6, for the several membrane configurations 
of Figure 8.4. The iteration histories are reported in Figure 8.7. When the SAM method is used, about 
10 iterations are enough for reaching a stationary solution with respect to a small relative variation of 
the objective at 2 successive iterations. The GCMMA approximation finds this solution in a larger 
number of design cycles. It is observed that when the SAM method is used, the structural responses in 
terms of both the fibers orientations and the thicknesses are well approximated, while using GCMMA, 
the approximation in terms of the thicknesses is too conservative, what slows down the overall 
convergence speed of the optimization process.   
  
 

 
1 region 

 
4 regions 

 
8 regions 

 

 
12 regions 

 

 
20 regions 

Figure 8.6. Illustration of the optimal fibers orientations  
for the different composite membranes illustrated in Figure 7.9 

 
 
In Figure 8.8 the evolution of the vertical displacement under the load is drawn with respect to the 
fibers orientation in the case of the homogeneous membrane (Figure 8.4, n=1). The global minimum 
displacement is obtained for a value of 170°. When the starting point of the optimization process of the 
problem (8.2) is close to 45°, 0° fibers orientation is found as a local optimum. As -45° is chosen here 
for the initial design (i.e. 135°), the global optimum can be reached. This illustrates the fact that a 
gradient based method is not able to reach the global optimum, unless the starting point is in its 
vicinity. In Figure 8.8, the influence of the mesh refinement on the solution is presented, as well. 
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Figure 8.7. Convergence history for GCMMA and SAM for the membrane divided in 20 regions.  
Evolution of the thickness and the orientations of the plies number 5 and 19 
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Figure 8.8. Evolution of the vertical displacement  under the applied load for several discretizations  

of the homogeneous composite membrane (Figure 8.4, n=1) 
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8.3 Multi-objective optimization  
A symmetric laminate made of 4 plies and subjected to 2 in-plane load cases is considered.  
 

2

1

3

N 1

N 2

x
θ

N 1

N 2

N 6

 
Figure 8.9. Laminate subjected to in-plane loads 

 
The applied loads and the initial configuration are reported in Table 8.2. The load case (2) is variable : 
the factor k takes the values 0,1,2,…,8. The extreme load cases are, on one hand (1000,0,0) and on the 
other hand the combination of (1000,0,0) and (0,2000,0) N/mm. 
 

Load case (1) 
),,( 621 NNN  

in N/mm 

Load case (2) 
),,( 621 NNN  

in N/mm 

Initial orientations  
),( 21 θθ=θ  

in degrés 

Initial thickness 
),( 21 tt=t  

en mm 

(1000,0,0) (0, 250×k ,0) (30,120) (1,2) 

 
Tableau 8.2. Definition of the problem: load case and starting point 

 
The performance of three approximation schemes are compared : GCMMA, MMA and SAM. The 
optimization problem writes : 

)()(2

1
min jj1,2j

 max Aεε
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 1),(TW )( ≤iij tθ  2,1, =ji  
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1
≤∑

=i
it  (8.3) 

 180001.0 ≤≤ iθ  2,1=i  

 10001.0 ≤≤ it  2,1=i  
 
where j is the number of the load case. This problem is solved by resorting the its bound formulation 
(Olhoff, 1989) including here 5 design variables (2 orientations, 2 thicknesses and the multi-objective 
factor β) and 7 constraints: 
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The results are reported in Figure 8.10 for the different values of k. The solution is obtained when the 
relative variation of the design variables at 2 successive iterations is lower than 0.01. It is seen that a 
large number of iterations is needed to reach the optimum when MMA is used. GCMMA converges in 
a lower number of iterations. As for mono-objective problems, SAM is the most effective optimization 
method. 
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Figure 8.10. Variation of the strain energy density and number of iterations needed to reach the 
solution as a function of the parameter k. 
+ MMA          o GCMMA          ∆ SAM 
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Figure 8.11. Convergence history for MMA. k is equal to 3 
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Figure 8.12. Convergence history for SAM. k is equal to 3 
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Figure 8.13 illustrates the optimum stacking sequence for the different values of the load parameter k. 
The solution corresponds to a [0/90]S with a variable proportion of 90° plies (depending on k). 
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Figure 8.13. Variation of the strain energy density and configuration of the corresponding optimal 
laminate 

 
 
Figure 8.14 describes the design space for k = 4. The iso-values of both objective functions are drawn. 
The arrow indicates the direction for an increase of the stiffness. The optimal solution is characterized 
here by identical values of both objective functions.  
 
 

 
Figure 8.14. Evolution of the strain energy densities for the [0/90]S laminate 

Subjected to mmNNNN /)0,1000,0(),,( 621 =  and mmNNNN /)0,0,1000(),,( 621 = .  
t0° and t90° are the plies thickness.  

 
 
The variation of the strain energy density for each single load case is illustrated in Figures 8.15 and 
8.16. In those particular cases, the optimal solutions are given by only 90° or 0° orientations. This 
illustrates the need for a multi-objective formulation when several functions are considered as 
objective.  
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Figure 8.15. Evolution of the strain energy 
density in the [0/90]S laminate subjected to 

mmNN /10002 =  
 

 
Figure 8.16. Evolution of the strain energy 
density in the [0/90]S laminate subjected to 

mmNN /10001 =  

 

8.4 Optimal design with respect to stiffness and strength restrictions 
In this application a stiffened laminated composite panel subjected to a uniform pressure is considered. 
The geometry, the boundary conditions and the stacking sequence of the different parts of the panel 
are illustrated in Figure 8.17. The plies thickness is equal to 0.125 mm and the base material is 
carbon/epoxy. 
 

 laminate 1 :[(0/90/45/-45)2]S 

laminate 2 : [0/90/45/-45]4 

 
Figure 8.17. Geometry and initial stacking sequence of the stiffened panel 

 
The optimization problem consists in maximizing the structural stiffness for a given maximum weight, 
knowing that a safety margin of 0.15 on the Tsai-Hill criterion on the top and the bottom of each ply 
must be obtained at the solution. 64 strength restrictions are defined at the plies level. The design 
variables are the orientations of the plies initially oriented at 0, -45, +45 and 90 degrees and the related 
thicknesses. The problem includes 16 design variables. The convergence histories of GCMMA and 
SAM are compared in Figure 8.18. 
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Figure 8.18. Convergence history for GCMMA and SAM 
 
The SAM approximation succeeds in finding a solution in a very small number of iterations, with 
comparison to GCMMA. The optimal stacking sequence is illustrated in Figure 8.19. As already 
observed by Grenestedt (1990) and Foldager (1999), the optimal laminates include very few different 
orientations.  
 

 laminate 1 :[90] 

laminate 2 : [0/93/96/93]4 

2.48 mm

 
Figure. 8.19. Optimal design of the stiffened panel 

8.5 Optimal design under buckling considerations 
Anyone who has carried out optimal sizing with a buckling criterion has experienced an undesirable 
effect of very slow convergence speed and possibly large variations of the design functions during the 
iteration history. The reasons for the bad convergence of the buckling optimisation problem are 
multiple, and make it difficult to solve: discontinuous character of the problem due to the localized 
nature of local buckling, non differentiability of the eigen-values and related problems in the 
sensitivity computation, modes crossing, selection of a right optimisation method, etc.  
 
A curved composite panel including 7 hat stiffeners is considered. The load case consists of a 
compression along the long curved sides, and in shear on the whole outline. The structure is simply 
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supported on its edges. Bushing elements are used to fasten the stiffeners to the panel. In each super-
stiffener (made of one stringer and the corresponding part of the whole panel), 3 design variables are 
used for defining the thickness of the 0°, 90° and ±45° plies in the panel and in the stiffener. 42 design 
variables are then defined. The goal is to find the structure of minimum weight with a minimum 
buckling load larger than 1.2. The results obtained in Bruyneel et al. (2007) are reported in Figures 
8.20 for Conlin (Fleury and Braibant 1986) and SAM (Bruyneel 2006). The 12 first buckling loads are 
the design restrictions of the optimisation problem. In Figure 8.20, the evolutions of the weight and the 
first buckling load λ1 over the iterations are plotted, as well as some characteristic buckling modes.  

 

 
Figure 8.20. Convergence history for the buckling optimisation with Conlin (left) and SAM (right) 

Bruyneel et al. (2007) 
 
It is seen that when Conlin is used (Figure 8.20, left) a solution can not be reached. With SAM (Figure 
8.20, right), the solution is obtained after an erratic convergence history. Those oscillations come from 
the fact that local buckling modes appear during the optimisation process, and some parts of the 
structures are no longer sensitive to this criterion. A small thickness is therefore assigned to those parts 
to decrease the weight, what makes them very sensitive to buckling at the next iteration, leading to 
oscillations of the design variables and functions values. It was observed in Bruyneel et al. (2007) that 
when a large number of buckling loads are used in the optimization problem (say 100 for the problem 
of Figure 8.20), a solution with SAM is reached in 6 iterations, while Conlin is still no longer able to 
converge.  

8.6 Topology optimization of laminated composite structures 
The topology optimization problem of Figure 4.3 is here considered. In topology optimization of 
isotropic material (Bendsoe 1995), the design variable is a pseudo-density µi that varies between 0 and 
1 in each finite element i (Figure 4.2). The so-called SIMP material law (Simply isotropic Material 
with Penalization) takes the following form: 
 

 0EE p
ii µ=  0ρµρ ii =  (8.5) 

 
where E0 and ρ0 are the Young modulus and the density of the base material (e.g. steel), E and ρ are 
the effective material properties, and p is the exponent of the SIMP law, chosen by the user (1<p<4). 
In linear elasticity the stresses are linked to the strains via the relation Qεσ = . With the SIMP 
parameterization, it comes for a plane stress state that: 
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and the material stiffness matrix Q depends on the density design variable µ : 
 
 ( )εQσ µ=  (8.6) 
 
For orthotropic materials in a plane stress state, the stiffness in the material axes is given by the 
expression (3.1) where 4 material properties Ex, Ey, νxy and Gxy must be provided. For a material with 
orthotropic axes oriented at an angle θ  with respect to the reference axes the material stiffness is given 
by (3.5). The SIMP parameterization (8.22 and 8.23) can be extended to a Simply Anisotropic 
Material with Penalization (Rion and Bruyneel 2006) , and the material law for topology optimization 
is now written as: 
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 ( )εQσ θµ,=  (8.7) 
 
The material stiffness now depends on both kinds of design variables, i.e. the material density and the 
fibers orientation. 
 
The problem in Figure 8.21 is solved with this parameterization. It includes 3750 design variables. The 
optimal topology and orientations obtained for an half of the structure are given in Figure 8.22. A 
comparison of the convergence speed for several approximations is provided in Figure 8.23. 
 

 

? 
 

Figure 8.21. Definition of topology optimization problem. The initial structure is full of material 

 

 

Figure 8.22. Optimal topology with orthotropic material. Only one half of the structure is drawn. The 
fibers orientation is plotted in the few elements that contain full material at the solution  
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Figure 8.23. Convergence history for several approximation schemes for the topology optimization 

problem including orthotropic material 
 

8.7 An industrial solution for the pre-design of composite aircraft boxes 
As reported in Krog et al. (2007), the pre-design of an aircraft  wing is a large scale optimization 
problem including (up to now) about 1000 design variables and about 300000 constraints. Those 
variables are linked to the total thickness of the laminate made of 0, ±45 and 90° plies in the panel and 
to the dimensions of the cross section for the composite stiffener of each super-stringer defining the 
box structure (Figure 8.24). The constraints expressed as reserve factors (RF) are amongst others 
related to buckling and damage tolerance.  
 

 
Figure 8.24. The principle of a composite wing made of super-stringers (from Krog et al., 2007) 

 
 

Taking into account a so large number of design functions in the optimization problem will 
dramatically increase the CPU time spent in the optimizer. In order to decrease the size of the 
optimization problem, a technique for scanning the constraints (Figure 8.25) has been implemented in 
Boss Quattro (www.samcef.com). It consists in feeding the optimizer with the most critical 
constraints, based on their value at a given iteration. This leads to the definition of 2 sets of active and 
inactive constraints. The optimizer can only see the active restrictions. Those sets are not updated at 
each iteration but only when some inactive constraints tend to become violated after a given number of 
iterations (FREQ in Figure 8.25). When the SAM method (Bruyneel 2006) is used, the information at 
the previous design point is lost when the sets are updated, and the approximation is therefore only 
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built based on the information at the current design point, that is with GCMMA (Svanberg 1995), for 
that specific iteration.  

 
 

Figure 8.25. Strategy for scanning the constraints in large scale optimization problems  
(Krog et al. 2007) 

 
The SAM approximation was found to be reliable in solving pre-design optimization problems of 
composite aircraft box structures in wings, center wing box, vertical and horizontal tail planes. 
Typically 30 iterations were enough to reach a stationary value of the weight and a nearly feasible 
design where very few constraints (less than 10) were still violated but of an amount of no more than 3 
percents (RF larger than 0.97). Details of the results and of the implementation can be found in Krog 
et al. (2007).  
 

8.8 Optimal design with respect to damage tolerance  
A simple DCB beam is considered (Figure 8.26). The energy release rates of modes I, II and III are 
computed at the straight crack front with a specific virtual crack extension method described by 
Bruyneel et al. (2006). The stacking sequence composed of 32 plies is given by: 
 

[θ/−θ/0/−θ/0/θ/θ/04/θ/0/−θ/0/−θ/θ/d/−θ/θ/0/θ/0/−θ/04/−θ/0/θ/0/θ/-θ] 
 
where d is the location of the interface where delamination will take place and θ is a variable. The goal 
is to find the optimal value of the orientation that will decrease the maximum value of GI along the 
crack front.  
 

           
 

Figure 8.26. DCB beam and variation of GI along the crack front for the initial design.  
On the left the displacements of the lips are multiplied by 50 
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The solution is provided in Figure 8.27. The optimal value for the angle θ is zero. The convergence is 
achieved in 5 iterations with the SAM approximation and in 15 for MMA (Figure 8.28). Although the 
solution of this problem is trivial, the procedure could be used for more realistic structures subjected to 
several complex load cases.  
 

           
 

Figure 8.27. DCB beam and variation of GI along the crack front for the optimal design 
On the left the displacements of the lips are multiplied by 50 

 

  
Figure 8.28. Convergence history for the optimization with respect to damage tolerance.  

SAM converges in 5 iterations while MMA needs 15 iterations to reach the solution 

9. Conclusion 
In this chapter the optimal design of laminated composite structures was considered. After a review of 
the literature an optimization method specially devoted to composite structures was presented. This 
review helped us in selecting a formulation of the optimization problem that satisfies the industrial 
needs. In this context the fibers orientations and the ply thicknesses were selected as design variables. 
It was shown on the proposed applications that the developed solution procedure is general and 
reliable. It can be used for solving laminated composite problems including membrane, shells, solids, 
single and multiple load cases, in stiffness, buckling and strength based designs. It is routinely used in 
an (European) industrial context for the design of composite aircraft box structures located in the 
wings, the center wing box, and the vertical and horizontal tail plane. This approach is based on 
sequential convex programming and consists in replacing the original optimization problem by a 
sequence of approximated sub-problems. A very general and self adaptive approximation scheme is 
used. It can consider the particular structure of the mechanical responses of composites, which can be 
of different nature when both fibers orientations and plies thickness are design variables.  
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