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Abstract. Advanced nonlinear analyses developed for estimating structural responses for recent
applications for the aerospace industry lead to expensive computational times. However optimization
procedures are necessary to quickly provide optimal designs.  Several possible optimization methods
are available in the literature, based on either local or global approximations, which may or may not
include sensitivities (gradient computations), and which may or may not be able to resort to
parallelism facilities. In this paper Sequential Convex Programming (SCP), Derivative Free
Optimization techniques (DFO), Surrogate Based Optimization (SBO) and Genetic Algorithm (GA)
approaches are compared in the design of stiffened aircraft panels with respect to local and global
instabilities (buckling and collapse).  The computations are carried out with software developed for the
European aeronautical industry.  The specificities of each optimization method, the results obtained,
computational time considerations and their adequacy to the studied problems are discussed.

1. Introduction
Since the pioneering work of Schmit [1,2] in the early seventies, in which the linear behavior of truss
structures made of isotropic material under static loading were considered, the complexity of structural
optimization problems has  increased significantly in two aspects.
The first concerns the selection of the design variables and, as a consequence, the possibility to
investigate not only the optimal size [3] and shape [4,5] but also the optimal topology [6] and material
properties [7, 8], as depicted in Figure 1.
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Figure 1. Structural optimization problems.

Secondly, nonlinearities have been taken into account in the formulation of the optimization problem.
Those nonlinear effects can appear at the material [9] and/or at the geometrical levels [10] where so-
called post-buckling and collapse scenarios are studied.  Including such nonlinearities makes the
problem much more intricate since both the optimization task and the structural analysis are nonlinear.
Computing the sensitivities for the gradient-based optimization methods is more complex. For an
overview of the developments carried out in the field, see [11,12].
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In this paper we consider the optimization of stiffened panels used in aircraft constructions.  Linear
and nonlinear analyses based on the finite element method are carried out with SAMCEF [13], in order
to estimate the buckling loads and the collapse (ultimate) load.  These structural analyses are described
briefly since they produce the functions appearing in the formulation of the optimization problem.
The BOSS quattro task manager and optimization tool box is then briefly presented, together with the
available optimization methods.  These methods are then applied to two industrial test cases on
stiffened panels and their efficiency in solving the problems is compared.

2. Functions entering the optimization problem
The aircraft panels considered in this paper include a flat skin and one stiffener.  Two functions
associated with their structural instability (buckling) and collapse (ultimate failure) are defined; both
essential in the design of aircraft thin walled panels subjected to compression [14].  These two
functions are implicit in the design variables.  It is the case that they can not be expressed analytically
and can only be evaluated with the finite element approach [15].

2.1 Buckling load factors j

In the finite element formulation, the buckling loads are the eigenvalues  of the following problem

0)(  jj ΦSK  ,...2,1j (1)

where K is the stiffness matrix, S is the geometric stiffness matrix, and  are the eigen-modes (nodal
displacements).  The jth buckling load j is the factor by which the applied load must be multiplied for
the structure to become unstable with respect to the corresponding eigen-mode j.  In an optimal
design, the buckling loads should be larger than or equal to a prescribed value (say 0.8 or 1.2),
meaning that the structure will buckle for a controlled (even desired) proportion of the applied load.
Buckling is illustrated in Figure 2. This type of function is difficult to deal with, since buckling can be
local and mode crossing can occur depending on the design variable values.

Figure 2. A stiffened panel buckling under a compressive load.
First four modes (j, j=1,…,4) are shown together with the associated buckling load factors.

2.2 Collapse load factor collapse

Even when a stiffened panel buckles, it still can sustain a higher proportion of the applied load.  This
is observed experimentally [16] and can be modeled by means of the finite element approach (Figure
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3).  To compute the collapse load, which is the ultimate load that the structure can support, the
analysis method must deal with geometric non-linearities. In this case, one is looking for successive
equilibrium states for increasing values of the applied load. As can be seen in Figure 3, a maximum
load can be estimated, corresponding to the collapse of the structure where large transversal
displacements take place. After this peak, equilibrium is attained only if the load decreases, which
results in an unstable configuration. To follow this unstable equilibrium path, Riks’ so-called
continuation method is used [17]. In an optimal design, the load factor collapse at collapse should be
larger than or equal to unity, meaning that the structure can sustain its in-service loading.

Figure 3. Collapse analysis in a stiffened panel and equilibrium path

The “linearized” buckling analysis based on the eigen-problem (1) is only an approximation of reality.
Nonlinear analysis is more accurate since all nonlinear effects are taken into account, so allowing less
conservative, lighter optimal designs. The main drawback of a non-linear analysis is that it is more
expensive in terms of CPU.

2.3 Sensitivity analysis issues
To use gradient-based optimization methods, the first-order derivatives of the structural responses
must be available. The sensitivity analyses for buckling and collapse are presented and discussed in
[18,19] but for sake of brevity and clarity the details are not reported here. It is however important to
note that the sensitivity of non-linear structural functions, such as the collapse load, is difficult to
determine theoretically and to implement in a finite element code.

3. Optimization methods compared on aircraft panel optimization
3.1 The BOSS quattro optimization toolbox
The computational framework chosen for defining then running the optimization process is BOSS
quattro, an open application manager for parametric design and optimization [20]. BOSS quattro
allows a complete integration of the finite element software (e.g. SAMCEF) mentioned above for
linear and nonlinear finite element analyses.  As an application manager, it deals with the iterative
design loop, alternating the structural analyses (including the sensitivity analysis, when needed) and
the call to the optimizers.  Several optimization methods are available in BOSS quattro: SQP,
Augmented Lagrangian Method, specific approximation methods dedicated to structural optimization,
derivative-free algorithms such as Genetic Algorithms, Surrogate-Based methods, and the more
classical response surface capabilities.  Since BOSS quattro is an open architecture, external
optimizers can also be linked to it.

Three specific classes of optimization methods available in BOSS quattro are described in this section:
Sequential Convex Programming (SCP), Surrogate-Based Optimization (SBO) and Derivative-Free
Optimization (DFO). These methods are used to solve problem (2) below, where x is the set of design
variables, w denotes the objective function to be minimized, and j (j=1,…,m) are the constraints of
the problem:

) w( xmin
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In these three methods, a solution of the problem (2) is obtained by solving approximated problems (3)
successively, where the ~ symbol denotes an approximation of the corresponding function, and k is the
iteration index.
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SCP and SBO methods are original implementations [21,22], DFO is an external solver that has been
especially linked to BOSS quattro for the purpose of a comparison of optimization methods.  A
standard genetic algorithm (GA) is also used, but not described here.  For more details, see [23].

3.2 Sequential Convex Programming (SCP)
The solution of the initial implicit optimization problem (2) is replaced with the solution of a sequence
of approximated sub-problems (3) which are explicit in terms of the design variables.  The explicit and
convex optimization problem (3) is solved by dedicated methods of mathematical programming, as
described in [24], based on quadratic approximations solved by a dual approach.  Building an
approximated problem requires structural and sensitivity analyses (obtained from the finite element
method).  Solving the related explicit problem no longer necessitates a finite element analysis since the
problem is now explicit in terms of the design variables. Each approximation is based on a particular
first-order Taylor series expansion.  The SCP method used in this paper generates mixed
monotonous/non monotonous approximations, depending on the change of sign of the derivatives of
the structural responses at two successive iterations [25].  The solution procedure for an unconstrained
problem is illustrated in Figure 4.  This method generates successive local approximations, and is
therefore more likely to become trapped in a (possible) local optimum.  It has proven to be reliable in
many structural optimization problems [18,21,22] and usually provides a solution in few iterations (i.e.
few structural and sensitivity analyses), irrespective of the size of the problem.

Figure 4. Solution procedure for the Sequential Convex Programming approach.

3.3 Derivative-Free Optimization (DFO)
Derivative-free optimization (see [26] for a recent monograph) aims at solving non linear optimization
problems based on the function values only.  The reason for not using derivatives is that the
derivatives of some functions are impossible or very difficult to compute. Moreover their analytical
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expression may be unknown, which can occur when the values of such a function correspond to the
output of some “black box” software, measurements or experiments for instance.

DFO methods are based on the following principle: rather than approximating the missing derivatives
of a function, which often proves to be expensive (through e.g. finite difference schemes), the function
itself is approximated on the basis of its known values.  An improvement in the objective function is
then derived from this model.

This concept can be advantageously combined with a trust-region approach (see [27]), as shown in a
series of papers (e.g. [28,29,30]): available function values are used to build a polynomial model
interpolating the function at those points where it is known, and the model is then minimized within a
trust region, yielding a new – potentially good – point.  To check this possible improvement and
compute trust-region ratios, the function is evaluated at the new point – thus possibly enlarging the
interpolation set – and the whole process may be repeated until convergence is achieved (as
represented in Figure 5).

Figure 5. Solution procedure for the Derivative-Free Optimization approach.

Other components of the method include multivariate interpolation polynomials, namely (quadratic)
Newton fundamental polynomials (see e.g. [31]), and a suitable strategy for adequately managing the
geometry of the interpolation sets.  Note also that the procedure may be generalized for handling
constrained problems.
The results presented in Section 5 below include those obtained with DFO, an open source Fortran 77
package written by Scheinberg at IBM and available from COIN-OR [32].  The open nature of BOSS
quattro as a task manager made it possible to build the necessary procedures for calling DFO as
optimizer.

3.4 Surrogate-Based Optimization (SBO)
The third method tested is also the most recent one in BOSS quattro.  A surrogate model – also known
as response surface or metamodel – is essentially a low-definition function that approximates another
function.  It is expected to be a simpler representation of the original function, less accurate but much
cheaper to evaluate.  Classical and popular surrogate models are polynomial response surfaces,
Kriging, support vector machines and artificial neural networks.
A simple surrogate-based method (called Basic SBO in the sequel) involves firstly the construction of
the surrogate – based on available function values – then its direct optimization using a suitable
algorithm.  A genetic algorithm is often chosen given the variable nature of possible surrogates and the
lack of direct derivatives.
The main drawback of such an approach is obviously the fact that the model remains unchanged in the
course of the optimization process, hence the idea of an adaptive scheme, where an initial set of
function values is first evaluated then used to compute a first surrogate model.  This provides
responses for an optimizer which in turn produces an optimal solution, at least from the point of view
of the surrogate.  The difference with the basic approach is that the original function is then evaluated
at the corresponding point to check the accuracy of the surrogate model at the optimum.  The output
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from this validation step and some possible convergence criteria thereby provide the information
necessary to determine whether to stop the whole process or to compute further function values to
improve the surrogate.  In the latter case, a further loop including the surrogate optimization and the
optimum validation is performed.  The SBO method we use for the comparisons of Section 4 below
(see [21] for more details) features an additional “trust-region mechanism to ensure that the inner
optimizer does not generate points outside the region where the surrogate is valid.
This is summarized on Figure 7 below.

Figure 7. Solution procedure for the SBO approach.

An additional comment may be required at this point. While from a pure lexical point of view the
SBO method may be considered as a derivative-free method, it remains a slightly different approach
from the methods of the DFO family discussed above.  The major difference between those two
classes of algorithms is the fact that in practice SBO may use any type of surrogate, without specific
requirements on possible properties (like differentiability), since a genetic algorithm will solve the
subproblem.

4 Industrial application: optimal design of stiffened panels
Two applications are considered.  The optimization problem to be solved is given in (2), while the
structural functions entering the problem are explained in Section 2.  For both applications, the
objective function is related to the weight, which is to be minimized.  Both problems include sizing
and shape design variables.

The following five approaches are tested and compared:
- Sequential Convex Programming, SCP (see section 3.1);
- Derivative Free Optimization, DFO (see section 3.2);
- Surrogate-Based Optimization, SBO (section 3.3);
- the basic implementation of SBO (Basic SBO), which amounts to a single iteration involving

just one construction of the surrogate then its use within a genetic algorithm.
- a standard Genetic Algorithm (GA), with direct calls to simulation tools, without surrogate.

Some details about the parameters and setup may help understanding the results below:
- For the sole gradient-based method of the panel, namely SCP, results are provided for

derivatives computed with a semi-analytical approach (SCP-sa) and through a finite
difference scheme (SCP-fd).  Of course this last solution does not take advantage of the fact
that sensitivities may be available directly from the finite-element simulation modules but this
manner of proceeding allows a fair comparison with the other approaches, which do not
require gradients of the original functions.

- DFO is run with the default values for parameters.  No initial point is provided, so the first
task performed by DFO is to generate two points, being the minimum required for computing
a model.  Since the Hessian matrix of the quadratic polynomial model is symmetric, a
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complete model will be obtained after at least (n+1)(n+2)/2 evaluations (where n is the
number of design variables), that is 28 and 55 evaluations respectively in the test cases studied
below.

- The Basic SBO involves firstly the construction of an initial database with a central composite
design of experiments (77 points for n=6 and 531 points for n=9).  The buckling and collapse
load factors are then approximated by neural networks (1000 iterations for training) while the
other functions (section and aspect ratios) are used “as is” by a genetic algorithm (population
of n x 10 individuals).

- SBO uses a Latin hypercube method to generate an initial set of points.  Surrogates are neural
networks (with 5000 iterations for training) and each iteration allows an enrichment of the
database with up to 5 points evaluated in parallel.

- GA is used with a population including n x 10 individuals.

4.1 Z stiffened metallic panel
In this first problem, we want to find the best design of the metallic stiffened panel represented in
Figure 8.  Design variables are the lengths and thicknesses of the stiffener profile (aft, wt, fft and ffw,
sh) and the thickness of the skin panel (st).

Figure 8. Stiffened metallic panel and associated design variables.

The objective function is the area of the profile of Figure 8 (skin panel and stiffener). The panel is
subjected to axial and compression forces.  The buckling and collapse loads must be larger than 1.
The first 40 buckling loads are considered in the problem. Besides constraints on buckling and on
collapse, some aspect ratios are also considered; the related constraints are expressed as follows:

a. Attached flange (AFR) : 20
8.26

3 



aft

wt

b. Web (WR) : 203 



wt

fftaftsh

c. Free flange (FFR) : 103 
fft

ffw

d. Attached flange and skin thicknesses (AFSR) :
st

aft
3.1

As described earlier in Section 2, the buckling and collapse loads functions are naturally the most
difficult functions to handle here since they are the output of finite-element analyses. The complete set
of results is displayed in Table 1. The solution is presumed to be obtained when, for a feasible design,
the relative variation of the design variables or the objective function is first lower than 1%.



Optimisation & Engineering, 11(4), pp. 583-596, 2010

8

SCP-sa SCP-fd DFO GA Basic SBO SBO
Iterations 20 29 132 33 - 39
Function evaluations 20 197 216 1955 77+1 255
Variables at optimum

sh 47.754 46.299869 39.57937 45.8235 43.8235 46.7532
aft 3.009 3.097095 3.66015 3.63294 2.80471 3.80582
fft 2 2.096575 3.6894 2.32157 3.95294 3.51732
ffw 16.182 19.15786 11.44599 17.3882 14.7765 10.8911
wt 2.137 2.056794 3.91017 2.01412 1.90118 2.04861
st 2.07 2.059153 2.274 2.02667 1.6 1.98933

Functions at optimum
Section (weight) 550.89 552.063541 655.1053 556.791 471.09729 553.761
j 1 1 1.000192 1.53838 1.03851 1.52798 1.015
collapse 1 0.999 1.013024 0.99999 1.02629 0.51826 1.00039
AFR 8.951 9.317372 8.39039 7.93135 10.2332 3.09642
WR 19.999 19.985567 8.24255 19.7947 19.49623 19.21312
FFR 8.091 9.13769 3.10239 7.48985 3.7381 3.12393
AFSR 1.453 1.504062 1.60956 1.79257 1.75294 1.91312

Table 1: Numerical results for the metallic stiffened panel optimization.

A first comment concerns the quality of the solutions: the basic SBO method leads unsurprisingly to
the worst solution (the collapse reserve factor is violated by 50%), which simply confirms the need for
an adaptive scheme as previously discussed.  While SCP, the genetic algorithm and SBO provide very
similar solutions, DFO cannot decrease the section below 655.10537, which remains high in
comparison with other results.  This might suggest that it stalled at a local solution, as indicated by the
values of the variables at optimum, which are significantly different to those produced by the other
approaches. The convergence history for SCP-sa and SCP-fd is different and can be explained by
some approximations made in the semi-analytical sensitivity of the buckling loads [18]. Using SCP-sa
is of course more advantageous in a CPU point of view, but requires the computation of the semi-
analytical derivatives. When finite differences are used, parallel computations are performed to
decrease the computational time.
Let us now compare the computational costs of each method.  SCP is the cheapest method, followed
by SBO, while a standard genetic algorithm is about ten times more expensive. (Note that for the latter
method, the optimal solution was actually found after 1800 function evaluations).  In terms of pure
performance, SCP may launch all runs with perturbed values of variables for finite differences in
parallel (which means 6 runs in this case) while the chosen parameters for SBO allow at most 5 runs in
parallel (for database enrichment).

4.2 Z-stiffened composite panel
The stiffened panel considered in this problem is illustrated in Figure 9. It includes a metallic stiffener
and a composite skin, linked with specific rivets elements.  The structure is subjected to axial and
shear forces.  The design variables are the lengths and thicknesses of the stiffener profile (aft, wt, fft,
ffw and sh).  The skin is made of a [90/45/-45/0] laminate.  The ply thicknesses thick1, thick2, thick3
and thick4, related to plies oriented at 0, 45, 90 and –45° respectively, are also variable.  The problem
therefore includes 9 design variables.
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Figure 9. Stiffened composite panel and associated design variables.

Problem (2) is solved, where w is the structural weight. The buckling and collapse loads must be larger
than 1 and 1.2, respectively. The first 12 buckling loads are considered in the problem. The solution
can be assumed when, for a feasible design, the relative variation of the design variables or the
objective function first becomes lower than 0.1%.

SCP-sa SCP-fd DFO GA Basic SBO SBO
Iterations 22 14 225 30 - 28
Function evaluations 22 131 406 2611 531+1 254
Variables at optimum

sh 35.6450 40.8036 36.1301 36.3292 35.2473 38.8058
aft 1.6000 1.6000 1.6006 1.7296 2.1365 1.6197
fft 4.0000 2.0000 2.0000 3.0201 3.1173 2.1725
ffw 9.1998 14.5648 20.1031 11.2978 12.0844 13.3344
wt 1.6000 1.6000 1.7047 1.8156 1.6018 1.6015
thick1 (0 deg.) 0.3895 0.2086 0.4443 0.3413 0.4754 0.4060
thick2 (45 deg.) 0.3634 0.2000 0.1999 0.2346 0.2524 0.2000
thick3 (90 deg.) 0.2042 0.2000 0.2000 0.2329 0.3540 0.2018
thick4 (-45 deg.) 0.2013 0.5934 0.9790 0.6975 1.0000 0.6120

Functions at optimum
Mass 0.3613 0.3334 0.3627 0.3652 0.4042 0.3413
j 1 0.9999 1.0130 1.7712 1.6242 1.7018 1.5182
collapse 1.2 1.1999 1.1949 1.1999 1.2524 1.3469 1.1992

Table 2: Numerical results for the composite stiffened panel optimization.

As for the first test case, the basic SBO produces the worst solution overall.  However it is important
to notice a much better behavior of the method (no constraint violation at solution).  This is probably
due to the fact that the central composite design required 531 function evaluations (since there are 9
variables) and thereby produced more accurate response surfaces.  Both runs of SCP yield the best
solutions, with both reserve factors active at optimal solution.  The other methods (DFO, GA and
SBO) found local solutions and they did not manage to secure the activation of the buckling reserve
factor.  Note that DFO performs better than in the previous test case and yields a mass close to that
obtained by SCP-sa.
In terms of CPU costs, the trend observed in the previous section is confirmed, with SCP and SBO
requiring fewer function evaluations than the other methods.  DFO confirms its better performance in
the second test case by reducing the gap with SBO, while the standard GA remains much more
expensive.  The major difference between SCP-sa and the other methods (SCP-fd, DFO, GA and
SBO) is that the latter require more than one function evaluation per iteration, which can be
parallelized.
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5 Conclusions
This paper focuses on the application of various recent optimization algorithms to solve two industrial
optimization problems in the framework of airplane design. These problems may be considered
challenging for they involve the output of both linear and nonlinear structural analysis simulation
codes in the constraints.  The numerical experiments demonstrate initially that classical gradient-based
methods remain competitive, even when finite differences are used.  However, with the increase of the
finite element model size and resulting simulation times, surrogate-based optimization methods appear
promising.  The challenges in that research field lies both in the use of adequate models and in the
development of methods able to exploit the maximum amount of information from a limited number
of simulations.
Our test cases also suggest that mixed approaches combining approximation or surrogate models (for
complex functions) and the original functions (for simple analytical expressions like aspect ratios)
should perform well.  A further advantage of surrogate-based methods is that their exploratory nature
makes them particularly well-suited to parallel implementations.
To conclude, for problems where complex non-linear analyses are considered in the design problem,
SCP should be used when the derivatives are available.  If the sensitivities are not computed, SBO
appears to be an interesting alternative.
Finally, since the size of industrial optimization problems is tending to increase (both in terms of
number of variables and number of functions), future work will also be dedicated to comparisons
involving such larger problems.
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