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This paper presents a solution procedure developed in the SAMCEF ¯nite element code for the

advanced optimal design of sti®ened composite panels of an aircraft fuselage. The BOSS

Quattro, a task manager and optimization toolbox, is used for de¯ning and running the
optimization problem. The objective function to be minimized is the weight, and the restrictions

depend on structural stability requirements, such as buckling and collapse. The design variables

are the panel and stringer thicknesses of the conventional proportions (i.e. 0�; 90� and �45�) in
a homogenized laminate. Since a collapse analysis introduces geometric nonlinearities into the

design process, the function evaluation can take a long time. In order to obtain a rapid optimal

solution, a gradient-based method is used, and the ¯rst order derivatives need to be computed,

in this case with an original semianalytical approach. The sensitivity analysis of buckling and
collapse is reviewed. Numerical tests on an industrial case study demonstrate the possibility and

the reliability of the approach. Solving such problems is clearly di±cult and remains a challenge.

Through the applications, this paper provides the opportunity to discuss convergence issues and

the use of such advanced optimization techniques in the overall aircraft design process.

Keywords: Composite panels; buckling, collapse; sensitivity analysis; optimization.

1. Introduction

Modern aeronautical structures are increasinglymade of compositematerials. In order

to take advantage of their anisotropy, their high sti®ness and strength-to-weight
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ratios, to bene¯t from further weight reductions and to propose safe designs, complex

structural analysis is needed. Numerical optimization techniques may further support

experienced users in ¯nding mass e±cient design solutions.

The goal of structural optimization is to automatically determine optimal designs

satisfying structural requirements by modifying the values of selected design vari-

ables. Optimization has reached a certain maturity and is now well established in

niche applications at an industrial level.1�3 Several methods can be used to solve a

structural optimization problem, including genetic algorithms,4�6 response surface

methods, coupling surrogate models and genetic algorithms (surrogate-based

optimization with neural networks, for instance),7�11 or gradient-based methods, as

is the case in this paper. A comparison of such methods for solving buckling and

collapse optimization in industrial test cases is conducted in Ref. 12.

The ¯nite element approach is essential for simulating the behavior of mechanical

systems and components of complex geometry and material properties. As long as

compression and shear are present in a structure, it must be designed to withstand

buckling.13 Classically the buckling load factors are obtained by solving an eigen-

value problem around a linearized con¯guration. Despite a great deal of e®ort

devoted to this topic,14�16 handling buckling optimization for industrial applications

is still an issue. Oscillations usually appear during the iterative process of minimizing

the mass for buckling loads larger than a prescribed value, leading to a slow

convergence process or, even worse, no convergence at all.17 Mode switching,18,19

multiple eigenvalues,20 and local or global in°uence of certain modes make the

problem more complicated. On top of that, the reliability of a linear buckling analysis

is questionable for structures capable of withstanding large displacements observed

in the postbuckling range, or assuming a limit point in the equilibrium path. To

simulate such behaviors and approach reality, a nonlinear analysis is needed, which

requires a speci¯c continuation method,21 for identifying the collapse (limit) load of

the structure. Lighter and safer composite structures may be obtained by simulating

buckling, postbuckling and collapse. Solving such problems remains challenging.

Proposals for an e±cient solution to this problem are relatively new, since buckling,

postbuckling and collapse optimizations have only been of interest to researchers

quite recently.11,22�25

In this paper, we describe the solution procedure made available around the BOSS

Quattro,26 an optimization toolbox for optimizing composite fuselage panels with

complex structural analyses. Buckling and collapse are simulated with the SAMCEF

¯nite element code.27 The e±ciency of the methodology is demonstrated on an

industrial test case.

The paper is organized as follows. First, the gradient-based optimization method

used in this paper is brie°y presented. The optimization problem, which consists in

minimizing the weight of a section of a composite fuselage with respect to restrictions

on buckling and collapse, is then formulated in Sec. 3. Buckling and collapse analyses

are reviewed in Sec. 4, and sensitivity analyses are reported in Sec. 5. Finally, the

2 M. Bruyneel et al.

June 12, 2010 4:32:19pm WSPC/165-IJSSD 00379 ISSN: 0219-4554
1stReading

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



methodology is applied to the optimal design of the curved sti®ened composite panel

in Sec. 6.

2. The Optimization Algorithm

The gradient-based methods used in the paper are part of the sequential convex

programming methods.28,29 These are not purely mathematical programming

methods,30 which would require too many iterations to obtain the solution (and

therefore structural analyses), but rather an approach where the solution of the

initial nonlinear optimization problem is replaced by the solution of successive

convex approximated problems, based on speci¯c Taylor series expansions.

The initial optimization problem is de¯ned as follows:

min
x

g0ðxÞ
gjðxÞ � gj; j ¼ 1; . . . ;m;

xi � xi � x i; i ¼ 1; . . . ;n:

ð1Þ

It is illustrated in Fig. 1, where the isovalues of the objective function g0(x) and the

constraints gj(x), j ¼ 1; . . . ;m, limiting the feasible design space are drawn, x ¼
fxi; i ¼ 1; . . . ;ng being the vector of the design variables. Besides the general restric-

tions on gj(x), side constraints on the design variables are also taken into account, to

re°ect manufacturing issues or physical limitations (e.g. positive thickness).

Typically, the problem (1) is nonlinear, nonconvex and implicit in the design

variables. Indeed, in our problem, the functions gj(x) (buckling and collapse) cannot

be expressed analytically and can be evaluated only with the ¯nite element approach.

Using a mathematical programming method to solve this problem would result in a

prohibitively long computational time, since a large number of iterations (typically

linked to the number of design variables) would be required to ¯nd a solution. At the

current design point xk (k is the iteration index for the optimization cycles), all the

Fig. 1. Illustration of the sequential convex programming approach: the initial optimization problem (on
the left) and its successive approximations with the intermediate optimal solutions x�k. k is the iteration

index for the optimization cycles.
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functions involved in the problem are rather approximated by convex functions

denoted as ~gjðxÞ. These approximations are based on zero and ¯rst order infor-

mation, i.e. the functions' values and their ¯rst order derivatives. These values are

obtained from structural and sensitivity analyses, respectively. Each approximated

optimization problem (2) is now convex and explicit in terms of the design variables:

min
x

~g k
0ðxÞ

~g k
j ðxÞ � gj; j ¼ 1; . . . ;m;

x k
i � xi � x

k

i
; i ¼ 1; . . . ;n:

ð2Þ

E±cient mathematical programming methods30 can now be used on the explicit

subproblem, without any further ¯nite element analysis, to ¯nd the related inter-

mediate optimal solution x�
k. Successive approximations are built until convergence

to a desired accuracy is achieved (Fig. 1).

The number of iterations needed to reach the optimal solution clearly depends on

the quality of the approximations. A generalization of the method of moving

asymptotes,31 presented in Ref. 32 and called GBMMA (gradient-based MMA), is

used here. This approximation was specially developed for composite structure

optimization and has proven to be reliable in solving complex industrial appli-

cations.3,33 In Ref. 3, this optimization algorithm is used for the preliminary design of

a complete composite wing box in an optimization problem including around 1000

design variables and 300,000 constraints, such as buckling, damage tolerance,

reparability and various geometric design rules. This method is available in the

BOSS Quattro,26 a task manager and optimization toolbox. Without going into the

details of Refs. 32 and 33, this approximation scheme adapts itself to the problem

features by checking the variation of the signs of the ¯rst order derivatives over

successive iterations. As a result monotonous, nonmonotonous and nearly linear

approximations can be developed at a given iteration k, for each function with

respect to each design variable, based on the following tests [(3)�(5)]:

@gjðxðkÞÞ
@xi

� @gjðxðk�1ÞÞ
@xi

> 0 ) monotonous approximation; ð3Þ

@gjðxðkÞÞ
@xi

� @gjðxðk�1ÞÞ
@xi

< 0 ) nonmonotonous approximation; ð4Þ

@gjðxðkÞÞ
@xi

� @gjðxðk�1ÞÞ
@xi

¼ 0 ) locally linear approximation: ð5Þ

This strategy was found to e±ciently optimize composite structures with respect

to both ply thickness and ¯bers orientation.32,33 In this case monotonous structural

responses are typically observed with respect to ply thickness, while nonmonotonous

behaviors appear when orientations are considered. Generally speaking, this method

is e±cient for problems including high nonlinearities, which is the case for buckling

4 M. Bruyneel et al.
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and collapse optimization. For comparison, the Conlin34 approximation is also

tested, in which only monotonous approximations are built. Conlin is a ¯rst order

Taylor series expansion, using linear approximation over xi when the ¯rst order

derivative is positive, and linear approximations otherwise with respect to the

reciprocal (inverse) variables, 1=xi. As reported in Ref. 29, the sequential convex

programming approach can be e±ciently applied to large scale optimization

problems. Moreover, the optimal solution is typically obtained in few iterations (i.e.

few structural analyses), irrespective of the number of design variables. However, and

contrary to genetic algorithms, a gradient-based method is more likely to be trapped

in local optima, and will probably follow the path denoted as a in Fig. 1, instead of

the path b toward the global optimum. This is the price to pay for a fast optimization

strategy.

3. Test Case and Formulation of the Optimization Problem

In this paper, the optimization problem consists of minimizing the weight of a thin-

walled composite-sti®ened panel subjected to compression and shear, while satisfying

some stability requirements — for example, buckling and collapse loads must be

larger than a prescribed value. Local (stress) constraints are not taken into account.

The section of an aircraft fuselage made of a curved composite-sti®ened panel is

studied (see Fig. 2).

Fig. 2. The ¯nite element model of the composite fuselage section madeup of six supersti®eners: location of

the design variables.
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Shell elements are used to model the skin and the longitudinal omega (hat) stif-

feners, which are assembled with the skin using speci¯c rivet ¯nite elements. The

frames are not modeled. The model includes 11,424 composite Mindlin shell elements

and 92,639 degrees of freedom. Since numerical models are involved, the sensitivity of

the solution to the mesh should be studied, but this point is not covered in this paper.

The structure is simply supported on the edges with additional locked rotations, in

order to simulate an embedded component. It is loaded in shear along the four edges,

and subjected to longitudinal compressive forces along the curved boundaries and

the sti®eners. The sti®ened panel is divided into n single elements, called super-

sti®eners, consisting of one sti®ener and the related piece of skin. In this paper, n is

equal to 6. In order to limit the number of design variables, a homogenized material,

called blackmetal, is used. The laminates of the skin and the sti®eners are madeup of

plies oriented only at 0�, 90� and �45�, and the resulting laminates are balanced (i.e.

A16 ¼ A26 ¼ 0). The coe±cients of the out-of-plane sti®ness matrix are given by

Dij ¼
Aijt2

12
;

where t is the total thickness of the laminate. Each laminate is assumed to be sym-

metric and the coe±cients Bij are equal to zero. This way of modeling the material

avoids the notion of stacking sequence and decreases the number of design variables,

which now simply represent the thickness of the 0�, 90� and �45� plies, i.e. t0
�
, t90

�

and t45
�
. The bending�twisting coupling is, however, lost in the model. This is clearly

a limitation that should be removed in future work. For each supersti®ener, three

design variables are associated with the skin, and three with the sti®ener. The

optimization problem therefore includes 6� n design variables, i.e. 36 in our case.

With these de¯nitions, the problem (1) can now be written as

min
t

wðtÞ
�jðtÞ � �; j ¼ 1; . . . ;m;

�collapseðtÞ � �collapse;

ti � ti � t i; i ¼ 1; . . . ; 6n;

t ¼ t �i skin; t
�
i stiff ; i ¼ 1; . . . ;n; � ¼ 0�; 90�; 45�� �

;

ð6Þ

where w is the structural weight to be minimized, �j is the jth buckling load, �collapse

is the collapse load, and t is the set of ply thicknesses, which must satisfy the side

constraints. At the optimum, the buckling and collapse loads must be larger than the

prescribed values � and �collapse, respectively. Here, the buckling modes are not

tracked during the optimization and are therefore not included as constraints in the

problem (6).

Finally, as explained in Ref. 17, a large number of buckling load factors are taken

into account in the optimization problem (and not only the ¯rst few) in order to

avoid or at least to limit oscillations in the convergence history. Indeed, at a given
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iteration, the ¯rst buckling modes may in°uence only a small part of the structure.

Since weight is to be minimized, the thickness in the insensitive part will certainly

reach its minimum allowable value. At the next iteration, the low-thickness part

becomes sensitive to buckling and its thickness is then increased by the optimizer. If

repeated, this scenario leads to oscillations, and possibly a lack of convergence.

Including enough buckling modes allows one to keep the whole structure sensitive to

buckling. In the application, the ¯rst 100 buckling loads are computed and included

in the optimization problem, i.e. m is equal to 100 in (6).

4. Stability Analysis of Sti®ened Composite Panels

As underlined in Ref. 13, stability is clearly an important issue in the design of

composite aircraft structures as far as compressive and shear loads are concerned. In

this section, buckling and collapse analyses are reviewed. The ¯nite element method

is used to model the problem, and the solution procedure is developed in the

SAMCEF program,27 an implicit ¯nite element code.

4.1. Linear buckling analysis

In the ¯nite element formulation, the buckling loads �j (j ¼ 1; . . . ;m) are the ¯rst m

eigenvalues of the problem (7). The Lanczos method is used to solve this problem.

The buckling loads are ordered by magnitude as �1 � �2 � � � � � �m. K is the global

sti®ness matrix. S is the initial stress sti®ness matrix (also called the geometric

sti®ness matrix) obtained from an initial static stress analysis, and representing the

initial stress sti®ening e®ects due to the loads applied on the structure. �j in (7) is

the eigenmode representing the displacement ¯eld under the load factor �j (Fig. 3).

ðK� �jSÞ�j ¼ 0; j ¼ 1; . . . ;m: ð7Þ

The jth buckling load factor, �j, is the factor by which the applied load must be

multiplied for the structure to become unstable with respect to the corresponding

eigenmode,�j. In this approximate analysis it is assumed that the sti®ness matrixK

is constant, and therefore the structural behavior is linear up to the bifurcation point,

where the structure fails suddenly. It is possible, to some extent, to take into account

in the analysis the second order e®ects due to the initial rotations. However, the

analysis remains limited in its applications and may lead, as demonstrated in the

application of Sec. 6, to nonconservative results.

4.2. Collapse analysis

Although a buckling analysis allows one to estimate the bifurcation points, it is based

on a linearized approach and is therefore only an approximation. Moreover, a stif-

fened structure can usually sustain a higher load level after possible bifurcation and

can work in the postbuckling range. In this case, large displacements appear and a
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nonlinear analysis is required to follow the equilibrium path during the loading, up to

collapse.

Classical Newton methods can present problems when passing a limit point.

Indeed, the generalized load�displacement curve might have a decreasing load factor

along the curve, and the method will not be able to ¯nd a solution. To solve this

problem and to identify the collapse (limit) load, a continuation method, also called

the arclength or Riks method,21 must be used. In this method, the load factor � is an

additional unknown, and the arclength, denoted as s, is controlled over the iterative

process instead of the load factor. A complementary equation is therefore added

to the system to be solved [Eq. (8)]. This additional equation, (9), connects the

generalized displacements q, the load factor � and the arclength s.

Fðq; �Þ ¼ Fextð�Þ � F intðqÞ ¼ 0; ð8Þ
�ðq; �Þ ¼ 0: ð9Þ

This additional constraint equation takes the general form (10). In the Riks method,

a ¼ n, and this additional equation represents a hyperplane perpendicular to the

predictor.

� ¼ aT�qþ g����s: ð10Þ
During the iterative solution procedure, the unknowns are updated according

to (11):

q iþ1 ¼ q i þ�q i; and � iþ1 ¼ � i þ�� i: ð11Þ

Fig. 3. Illustration of the buckling modes of a fuselage section: global and local buckling modes (for the

initial values of the design variables, given in Table 1).
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The increments in (11) are obtained by solving (12), where the right-hand side

member is the residue vector (to be minimized) at the iteration i:

� @F int

@q

@Fext

@�

@�

@q

@�

@�

2
66664

3
77775

i

�q

��

� �i

¼ � F

�

� �i

)
KT � ~f

a
T

g

2
4

3
5i �q

��

� �i

¼ F

��

� �i

: ð12Þ

In practice, the set of equations (12) is solved in two steps. The ¯rst line of (12) is ¯rst

considered, omitting the index i:

KT�q� ~f�� ¼ F ) �q ¼ K�1
T FþK�1

T
~f�� ¼ q1 þ q2��:

After the factorization of KT , we solve the system twice, for q1 and for q2:

KT q1 ¼ F; KT q2 ¼ ~f :

The value of �� is then given by considering the second line of (12):

�� ¼ � � þ aTq1

gþ aTq2

:

5. Sensitivity Analyses

Since a gradient-based optimization method is used (see Sec. 2) to quickly solve large

scale optimization problems, the ¯rst order derivatives of the functions must be

computed. This is the role of the sensitivity analysis. These derivatives are used to

build the approximations of the problem (6), to select the kind of approximation

Fig. 4. Illustration of the collapse mode of a fuselage section: equilibrium path (for the initial values of the

design variables, given in Table 1).
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(monotonous, nonmonotonous, linear, if relevant) according to the tests (3)�(5), and

to ¯nd the intermediate optimum of the approximated problem with a mathematical

programming approach, as illustrated in Fig. 1.

5.1. Linear buckling semianalytical sensitivity analysis

The ¯rst order derivative of the buckling load factor is well known,14,35 and is given

by (13), where xi is the considered design variable. This expression is based on the

eigenmodes �j, obtained when solving (7), and on the derivatives of the sti®ness and

geometric matrices, K and S:

@�j

@xi

¼ �T
j

@K

@xi

� �j

@S

@xi

� �
�j: ð13Þ

In an industrial ¯nite element code, the sensitivity of K and S is carried out at the

element level with a ¯nite di®erence scheme in order to provide a general procedure

applicable to the whole library of ¯nite elements. The resulting approach is then called

semianalytical sensitivity analysis, since it is based on the analytical expression (13)

including derivatives obtained from ¯nite di®erences.

@K

@xi

ffi �K

�xi

¼ Kðx1;x2; . . . ;xi þ�xi; . . . ;xnÞ �Kðx1;x2; . . . ;xi; . . . ;xnÞ
�xi

; ð14Þ

@S

@xi

ffi �S

�xi

¼ Sðx1;x2; . . . ;xi þ�xi; . . . ;xnÞ � Sðx1;x2; . . . ;xi; . . . ;xnÞ
�xi

: ð15Þ

The approach described above is rigorous for computing the sensitivity of the

eigenfrequency in a modal analysis (not studied here), where the matrix S corre-

sponds to the mass matrix M, which depends only on the design variables x, i.e.

M(x). However, the presented approach (15) is an approximation for linear buckling

analysis for nonisostatic structures, since in this case S depends not only on

the design variables x but also on the stresses ¾, themselves functions of x, i.e.

S(x, ¾(x)). In order to reduce the cost of evaluation, the in°uence of the variation of

the stress state with the design variable is often neglected in industrial software, as

proposed in Ref. 14. This simpli¯cation is of course a source of (minor) error, since

there is no longer a strict correspondence between a function value and its gradient.

In practice, however, a safety margin is used and a percentage of infeasibility is

accepted for the constraints in the optimization problem (a few percent, e.g. 2.5%).

This approximation balances the error made in the computation of the derivatives of

the buckling loads.

The sensitivity analysis of multiple eigenvalues requires a speci¯c treatment, as

described in Ref. 20. Moreover, mode-tracking techniques18 may sometimes be

necessary when buckling modes are also included in the optimization problem, but

this is not the case in the optimization problems addressed in this paper.
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5.2. Collapse semianalytical sensitivity analysis

The goal of this sensitivity analysis is to compute the value @�=@x at the collapse

load, where x denotes the vector of design variables and � is the load factor. The

equilibrium equation (8) and its derivatives take the forms

Fðq; �;xÞ ¼ 0;

@F

@q
dqþ @F

@�
d�þ @F

@x
dx ¼ 0:

ð16Þ

To be consistent with the system of equations (8)�(9) and to obtain an accurate

measure of @�=@x along a vector t orthogonal to the load�displacement curve,24 the

following equation is added to the set (16):

�ðq; �;xÞ ¼ tT dqþ d� ¼ 0: ð17Þ
Based on (16)�(17), the following system of equations is obtained, which has the

same form as (12):

@F

@q

@F

@�

tT 1

2
64

3
75 dq

d�

( )
¼ �

@F

@x

0

8><
>:

9>=
>;dx:

Since @F=@q ¼ �KT and @F=@� ¼ ~f (see Subsec. 4.2), using (17) and after some

algebra, it can be shown that:

@�

@x
¼ � tTK�1

T
@F
@x

1þ tTK�1
T

~f
; ð18Þ

where the inverse of the tangent sti®ness matrix is known from the solution of

(8)�(9). The derivatives of the forces with respect to the design variables in (18) are

computed by ¯nite di®erences, leading to a semianalytical approach to computing

the sensitivity. For improved accuracy, a central ¯nite di®erence scheme is used. The

sensitivity @�=@x is computed all over the loading up to the collapse, identi¯ed by a

certain decrease in the load increment. This value of the derivatives is used to feed

the optimizer.

6. Applications

The solution procedure described above is illustrated in the framework of a real

industrial test case. The reader will appreciate that some data and results are

omitted here for con¯dentiality reasons. The results are more qualitative than

quantitative. In any case the proposed application illustrates the di±culty of the

topic and the complexity of an industrial test case. For all applications, a section of

the fuselage including six supersti®eners is considered. The optimization problem (6)
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contains 36 design variables, and 100 buckling modes are used, when buckling is

considered. The weight is minimized, with respect to either buckling only, or collapse

only, or both kinds of restrictions. The initial values of the design variables are given

in Table 1. According to our experience, selecting other initial values should not

compromise the success of the optimization. Their minimum and maximum allow-

able values are 0.35mm and 2mm, respectively. The limiting values � and �collapse

depend on the application but, as mentioned in Subsec. 5.1, an infeasibility of 2.5% is

allowed at the optimum. This means that for � ¼ 0:8 the design is supposed to be

feasible when �j � 0:78 for all j. The model is given in Fig. 2; it includes 92,639

degrees of freedom. A single load case is considered; it includes shear along the edges

and normal forces in the direction of the sti®eners. The optimal design is presumed to

be obtained when, for a feasible design, the relative variation of the design variables

or the objective function ¯rst becomes lower than 0.1%. The GBMMA32,33 optim-

ization method is used. A comparison with Conlin34 is conducted in Subsec. 6.3.

Comparisons for buckling optimization are given in Ref. 17.

6.1. Buckling optimization

In this ¯rst numerical test, only buckling is considered in the optimization problem

(Subsecs. 4.1 and 5.1). Here, the buckling loads must be larger than 1.2. The

structure is therefore designed to avoid any buckling at the nominal loading, with a

safety margin of 20%. The optimal solution is obtained after 12 iterations. The

convergence history is illustrated in Fig. 5. The weight decreases by 31%. The total

thicknesses obtained are provided in Table 2. This kind of optimization is quite fast,

Fig. 5. Convergence history for the buckling optimization with GBMMA.

Table 1. Initial values of the design variables (in mm).

t0
�

i skin t45
�

i skin t90
�

i skin t0
�

i stiff t45
�

i stiff t90
�

i stiff

Supersti®ener i (i ¼ 1; . . . ; 6Þ 2 1.04 0.52 1 0.5 1

12 M. Bruyneel et al.
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since one iteration generally takes less than 5min on today's computers. Note in

Fig. 5 that a sti®ener buckling appears for mode 2.

This solution is now checked with respect to collapse. A nonlinear analysis is

conducted with the optimal values previously obtained for the design variables. The

equilibrium load�displacement curve for three speci¯c nodes is plotted in Fig. 6. The

result from this analysis is that the collapse load is equal to 1.05, which is below

the minimum buckling load factor �1 previously obtained at 1.19. The structure is

designed to withstand buckling, but a more accurate nonlinear analysis predicts that

it will reach a limit point and fail before local buckling occurs. Moreover, the assumed

20% safety margin is ¯nally reduced to 5%, which is certainly too low and will result

in an unsafe design.

Designing an aircraft sti®ened panel against buckling alone is therefore insu±cient,

since it can provide a nonconservative solution, and should be used with care. As this

is the case when initial imperfections are present in the structure, the critical point is

no longer related to a bifurcation but rather to a limit point, as depicted in Fig. 6.

Moreover, this result suggests that the design of structural components that are not

usually designed to withstand collapse (e.g. the wing skins) should, however, include

such restrictions since buckling alone gives a poor estimation of structural stability.

Table 2. Thicknesses at the solution of the

buckling optimization problem (in mm).

Skin panel Sti®ener

Supersti®ener 1 3.50 1.42
Supersti®ener 2 3.67 1.41

Supersti®ener 3 3.60 1.41

Supersti®ener 4 3.52 1.41

Supersti®ener 5 3.77 1.40
Supersti®ener 6 3.39 1.43

Fig. 6. Equilibrium load�displacement curves for three speci¯c nodes of the composite panel.

Exploiting Semianalytical Sensitivities from Linear and Nonlinear Finite Element Analyses 13

June 12, 2010 4:32:34pm WSPC/165-IJSSD 00379 ISSN: 0219-4554
1stReading

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42



6.2. Collapse optimization

When collapse is considered only in the design problem (Subsecs. 4.2 and 5.2), large

oscillations appear during the iterative optimization procedure, as illustrated in

Fig. 7, where �collapse ¼ 1:2. As is often the case for buckling, when only �1 is con-

strained,17 considering collapse only can lead to convergence problems. The best

feasible design is obtained at iteration 46, with a gain of 46% in the weight. However,

such a convergence history is clearly not expected with a gradient-based method.

Generally 1�3 h CPU time is needed to run one iteration on a recent processor. The

time spent in the optimizer is less than 1% of the total CPU time.

6.3. Buckling and collapse optimization

In this problem, � ¼ 0:8 and �collapse ¼ 1:2. When buckling and collapse design

functions enter the optimization problem, convergence is found after just nine iter-

ations (Fig. 8). The relative weight at the solution is about 61% of its initial value.

This solution is lighter than the one obtained previously with the buckling design

functions alone (Subsec. 6.1). Moreover, it is feasible with respect to the collapse

criterion. The total thicknesses obtained for each skin panel and sti®ener are reported

in Table 3. The optimum panel undergoes local buckling modes after a bifurcation

point in the equilibrium path (i.e. buckling of the skin between the sti®eners) and

then a global buckling mode (skin half-waves encompassing several sti®eners)

resulting in collapse (Fig. 9).

It is interesting to note that the ¯rst optimization run provided the convergence

history illustrated in Fig. 10. At iteration 9 we are close to convergence, since the

design is feasible and the relative variation of the objective function is about 0.3%

between two successive design steps. However, a divergence appears at iteration 10:

the maximum allowable iteration number in the Newton scheme is reached, and a

Fig. 7. Convergence problems for collapse optimization with GBMMA.
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Fig. 8. Convergence history for the buckling and collapse optimization with GBMMA.

Table 3. Thicknesses at the solution of the buckling
and collapse optimization problem (in mm).

Skin panel Sti®ener

Supersti®ener 1 2.75 1.40

Supersti®ener 2 3.40 1.40
Supersti®ener 3 2.85 1.93

Supersti®ener 4 2.90 1.92

Supersti®ener 5 3.41 1.40

Supersti®ener 6 2.75 1.40

Fig. 9. Equilibrium load�displacement curve for the optimal composite panel.
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destabilization appears in the solution procedure because of an automatic decrease of

the time step. At this moment, we perhaps branch o® into another equilibrium path,

and reach a smaller value for the collapse load factor. This phenomenon occurs again

later in the iterative process, which was intentionally stopped at iteration 24.

Increasing the allowable number of Newton iterations allows us to converge more

properly, and to ¯nd the solution as illustrated in Fig. 8. Including an imperfection in

the structure based on the ¯rst buckling mode (possibly of the initial design) for the

nonlinear analysis could perhaps avoid this phenomenon. This e®ect clearly needs to be

understood and a solution strategy should be further investigated. In order tomake the

process more reliable, another strategy to manage convergence failure of the structural

nonlinear analysis during the iterative optimization process should be developed.

Fig. 10. Convergence problems for the buckling and collapse optimization.

Fig. 11. Convergence problems for the buckling and collapse optimization with Conlin.
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The solution of nonlinear problems at the optimization and structural analysis

levels remains a demanding task, being dependent on the convergence of iterative

processes. These processes are sensitive to the solution scheme parameters, and

furthermore nonlinear analysis can prove costly in computational time.

When Conlin34 is used to solve the problem with the same conditions as in Fig. 8,

it is not possible to ¯nd a solution within 40 iterations (Fig. 11). In this case, the

collapse load often presents a value lower that unity. The best feasible solution is

obtained at iteration 31, with a decrease of 40% in the weight.

This illustrates the fact that the selection of a suitable gradient-based optimiz-

ation method — more precisely, of an approximation scheme — is another key issue

in determining a reliable scheme for collapse and buckling optimization.

7. Conclusions

A solution procedure for buckling and collapse optimization has been presented. The

developments were carried out in the SAMCEF ¯nite element code, and the BOSS

Quattro optimization toolbox was used to set up and solve the optimization problem.

The optimal design of a section of a composite fuselage was conducted, which

demonstrated that the methodology is available for solving industrial applications.

It is clear that buckling and collapse optimization is a di±cult task. Through the

applications it is shown that it is not su±cient to take into account a linear buckling

analysis only, since a linear behavior cannot be assumed in the initial equilibrium

path. On the other hand, such a linear analysis could provide a ¯rst buckling load

larger than the collapse load predicted with a nonlinear analysis (see Subsec. 6.1). It

is then concluded that, when possible, a more accurate nonlinear analysis should be

part of the buckling optimization. Taking collapse into account in the optimization

process can certainly improve the quality of the simulation and allows one to

decrease the structural weight. Together with a linear buckling analysis, it allows

the design of e±cient sti®ened panels for aircraft applications, which present ¯rst

local buckling modes so that the structure can still carry loads in the postbuckling

range. Moreover, the oscillations in the convergence history for collapse design can

be decreased by considering additional buckling restrictions in the optimization

problem.

However, since nonlinear analyses are required at both the optimization and the

structural analysis levels, the procedure can lead to convergence di±culties, either in

the analysis tool or in the optimizer. This kind of advanced optimization must then

be undertaken with care. Moreover, the CPU time for the nonlinear analysis can

become prohibitive.

Further work will investigate the in°uence of imperfections on the convergence

process, the e®ect of local (stress) constraints as design criteria, the bending�twisting

coupling issue, and the possible optimization of the sti®eners' dimensions.
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