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Abstract

This paper presents a solution procedure made available at an industrial level to study
delamination in composites. Two approaches are presented. The first oneis based on an original
VCE (Virtual Crack Extension) method used to provide a quick estimate of the propagation load
and the critical inter-laminar cracks, in alinear finite element analysis. The second approach relies
on cohesive elements, and implies anon linear analysis. More general than the fracture mechanics
(VCE) approach, the cohesive elements technique allows to provide the value of the maximum
load that can be sustained by the structure, and to predict the residual strength and stiffness over
the fracture process. Those two methods are first compared in a DCB test case to show that the
results agree well with those from the literature or with the analytical solutions. Finally, a multi-
delaminated industrial test case is solved with both approaches.
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1. Introduction

Assessing the damage tolerance of composite structuresis clearly achalenge. At
least two numerical approaches are available to study delamination with the finite
element method [1]. Thefirst one consists in using fracture mechanicsin a
(possibly linear) static analysis to compute the 3 modes of the strain energy
release rate G, G and Gy (opening, siding and tearing modes, respectively)
along the different crack fronts. The most dangerous crack and the propagation
load are then predicted according to criteria such as those given in equation (1),
where Gic, Giic and Giiic are the fracture toughness for each mode. With this
approach crack growth analysis remains difficult to smulate and recent references
only propose specific solutions for ssmple 3D configurations with a single crack
front [2-6].
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In the second approach described in [1] adamage model is assigned to some
interface elements inserted between plies to represent their possible decohesion
and afracture criterion is used to decide on flaws propagation [7-10]. Using such
cohesive elements in the analysis allows to estimate not only the propagation load
but also to predict the failure load, the crack propagation and the residua stiffness
during the fracture process in an automatic way. With this information more
accurate safety margins can be assessed.

Based on these observations, pure fracture mechanics seemsreliable for
estimating the propagation load (possibly in a- fast — linear analysis), while
cohesive elements are a natural choice for cracks growth simulations, in anon
linear approach.

Modeling and solving industrial problems with such finite el ement approachesis
certainly difficult. An efficient numerical solution procedure should be able to
easily insert multiple crack frontsin a given large scale meshed structure and to
efficiently manage the multiple contacts between the plies and the possible non
linear material behaviors assigned to the numerous interfaces. However most of
the published worksin the field present solutions for simple composite structures
with a small amount of delamination sites and therefore few contact conditions.
The objective of this note istwofold: firstly it aims at reporting the level of
complexity of anindustrial problem and secondly it presents the solutions
obtained with the methodol ogies developed in the commercial finite element code
SAMCEF [11], which isan implicit code. A static formulation is used hereto
obtain the solutions. A specific Virtual Crack Extension method (and not the
Virtual Crack Closure Technique, [2]) for computing the modes of the energy
release rateis briefly presented, and different strategies for insuring a good
convergence of the non linear analysis, including cohesive elements, are recalled.
Those two methods are first compared in a DCB test case to show that the results
agree well with those from the literature or with the analytical solutions. Finally
the industria solution procedure is tested on a multi-delaminated composite. This
test caseis studied because it is representative of the current industrial concerns.

2. Solution procedures for assessing damage
tolerance in composites

2.1 The Virtual Crack Extension (VCE) method

The Virtual Crack Closure Technique (VCCT) is certainly the most popular
method for computing the modes of the energy release rate (G, Gii, Giii) heeded
for estimating the onset of delamination [2-6]. A specific Virtual Crack Extension
method (VCE), based on [12], is presented here as an dternativeto VCCT. This
method is available in the commercial FE code used here for problems that
possibly include geometric non linearity, for linear and hyper-elastic materials. In
V CE the variation of the total potential energy p with respect to an increase of the
crack surface A is computed as a semi-analytical sensitivity analysis for the



Applied Composite Materials, 16(3), 149-162, 2009

current displacements field in equilibrium, and therefore requires only one
structural analysis. This provides the distribution of the total energy release rate
Gt (2). Thiscomputation is carried out for each node of each crack front, by
slightly (*virtually”) modifying the nodal coordinates in the direction normal to
the crack front, thus simulating local virtual crack advancesin the crack planes
(seeFig. 1).

Figure 1

In (2), ppert isrelated to the locally modified cracked configuration at equilibrium
(Fig. 1. C2), while pinit corresponds to theinitial crack length (Fig. 1.C1), with
identical displacements.

_Ap _ P pert ~Pinit
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Thistotal energy release rate is then distributed over the opening, shearing and
sliding modes based on the relative opening energies associated with each mode
asin (3). R are the reactions to the crack extension computed at the crack front
nodes while the relative displacements Ui are measured in the crack axes with
sensor nodes located along the crack tips close to the crack front.
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Asfor VCCT, accurate results are obtained for a fine mesh in the vicinity of the
crack fronts.

2.2. The cohesive elements approach

The polynomial constitutive law for the damaged interface developed in [7]
proved reliable in providing numerical results that were in very good agreement
with experimental ones. According to [7], the potential assigned to the interface
elementsis given by (4), where three damage variables d, di and di;i are
considered:
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ki is an undamaged tiffness. The constitutive relation corresponding to this
potential iswritten in (5):
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The thermodynamic forces Yi (i=1,11,l11) are obtained by deriving (4) with respect
to di (i=1,I1,111). For mixed loading, the damage evolution is related to the three

inter-laminar  fracture toughness Gic, Gic and Guc. The equivalent
thermodynamic force Y takes the following form:
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where a isequal to 1 in the present study. It is assumed here the three damage
variables have the same evolution over the loading, and asingle damaged is
therefore used to identify delamination. The damage variable d isrelated to the
equivaent thermodynamic force Y viaafunction g(Y), i.e. d=G(Y). In[7], the
function g(Y) corresponds to a polynomia cohesive law. In the commercial FE
code used here the approach of [7] is extended to bi-triangular and exponential
softening laws [13]. The three available laws areillustrated in Fig. 2. For thefirst
two material models of Fig. 2, the damage appears after alinear elastic behaviour
of the interface (grey regionsin Fig. 2), whereas for the exponential law thereis
no threshold and the damage occurs immediately the interface isloaded. Initially
equal to zero, the damage variable reaches a unity value when all the resistance
capacity of the interface has been consumed (Gi = Gic for pure modes, or a
combination of the effects via Eq. 6 for mixed modes).

Figure 2

According to fracture mechanics considerations an important parameter of the
mode! is surely the fracture toughness Gic, i.€. the area under the curves of Fig. 2.
For a given inter-laminar fracture toughness, increasing the available inter-laminar
tension oi™®, while keeping a constant initia stiffness, will decrease the part
linked to smooth damage propagation (i.e. the length of the cohesive zone), and
will provide arough transition between finite elements for the crack propagation,
possibly leading to convergence problems of the non linear numerical scheme
[14]. Contrary to the fracture mechanics approach (V CE) previously presented
cohesive elements can be used with a coarser mesh at the crack front location.
According to [1], at least three finite elements must be active in the process zone,
I.e. where intermediate damage takes place. This means that small elements
should be used when the cohesive zone is small. In practice, the maximum
strength of the interface simax IS decreased [10], and alarger cohesive zoneis
therefore used, together with less refined mesh. Decreasing this limiting tension
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lowers the level of the structure’s failure load, but eases the numerical solution
procedure. It has also been observed that defining adelay in the damage
occurrence, asin [15], can aso limit numerical difficultiesin the solution
procedure, while dlightly increasing the resulting maximum load level. Finally,
different strategies, described in [16], for computing the material stiffness are also
available here: allowing the use of the consistent, tangent or null stiffnessin the
softening part of the constitutive laws. A tangent stiffnessis used in the following
applications.

3. The DCB test case

In order to demonstrate the accuracy of the two approaches asimple test caseis
first considered. A DCB specimen with aUD lay-up (only O deg. plies) and a
A[++30] lay-up (A[++30] = [+30/06/0s/-30/30/d]s, seeref. [3]) is studied. The
applied forceisequal to 10N. The material is C12K/R6376 Graphite/epoxy
prepreg (see Table 1).

The DCB width is 25mm for the UD and 25.4mm for the A[++30]. The length of
the specimen is 150mm. 32 plies of 0.127mm define the laminate. The crack
length is57.15 mm. The mesh used isgivenin [3] and shown in Fig. 3.

Table 1

Figure 3

First order volume elements with internal modes are used. Eight elements are
defined over the thickness, with arefinement at the crack propagation plane
including 4 layers of 0.127 mm. A refinement is also defined at the location of the
crack front: in Fig. 3, 20 finite elements are used along 10mm and le = 0.5mm. 22
elements are used across the width, with a 1mm wide section on both edges
modeled with 5 elements. For the model with cohesive elements, the length of the
refined region is 55mm instead of 10mm and 16 elements are used aong the
width, with the Imm wide sections on both edges modeled with 2 elements. The
crack isvery easily inserted in the model by selecting faces (interfaces) at given
locations over the thickness and assigning them interface elements. These
elements are automatically generated and double coincident nodes are created.
The interface elements are then deleted, |eaving a mesh with double nodes
modeling the crack. The contact conditions, if needed, can be defined based on the
same groups of faces and corresponding nodes. Contact €l ements are then defined,
measuring the gap between the nodes. Linear relations and lagrangian multipliers
are added to the classical set of equilibrium equations.

3.1 Solution obtained with VCE (linear analysis)

In Figure 4, the maximum value of the mode | energy release rate over the crack
front for the UD is compared to the solution from the beam theory, givenin (7).

5
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where P isthe externa load, aisthe crack length, B is the specimen width, his
the thickness of the cantilever arm, and E11 is the modulus of elasticity. Here, the
analytical solution is G; = 5.089J/m2.

For le = 0.5mm it turns out that the difference is about 10%, which seems
comparable to the results obtained with VCCT for the same discretization at the
crack front (see[3]). When plane strain is assumed in the 3D model, the numerical
solution gets closer to the analytical reference, with adifference of less than 3%
for |le=0.5mm. The evolution of G, along the crack front for both laminates (UD
and A[++30]) is compared in Figure 4 to the solution obtained with VCCT in [3],
for asame mesh (1e=0.5mm, see Fig. 3). It is concluded that V CE provides results
in good agreement with the references. Table 2 collects some information related
to these computations. Each analysis takes less than 20 seconds on a today’s
computer. A detailed comparison of VCCT and VCE will be undertaken in the
near future.

3.2 Solution with the cohesive elements (non linear analysis)

Concerning the cohesive elements approach, resultsin close agreement with
analytical solutions are obtained for the UD, for the 3 interfacial models of Fig. 2,
asillustrated in Fig. 5. Besides the numerical results, two theoretical curves are
plotted in Fig. 5, obtained from the beam theory. They represent the initial
stiffness of the elastic cantilever beam subjected to a concentrated load P at one
side, and the relation between the transversal displacement w and the applied load
P for acritical crack with Gy = Gic :

Pas . -
= : theoretical curve 1in Figure 5 (8)
3E4!
15
BG,cEql . -
w= (BCicEu 2) : theoretical curve 2 in Figure 5 (9)
3Eq411P
with
Bh®
| = —— 10
o (10)

The influence of the mesh on the resultsis aso presented in Fig. 5, for the bi-
triangular law. As it was the case with the V CE approach, the solution converges
with amesh refinement. It is seen that for alarge range of element size (le=
0.5mm to 2mm), reliable results are obtained. For a coarser mesh (le= 4mm),
oscillations appear in the solution. This effect can be damped by reducing the
maximum allowable stress at the interface from 5N/mm2 to IN/mm? (curve for
le=4mm with alower Sigma Max). However, this lowers the level of the
structure’s failure load. When the maximum stress at the interface is set to
25N/mm?, together with alarger initial stiffness of 130000N/mms instead of
10620 N/mm3 (see Tablel), similar results are obtained (curve for |e=0.5mm with
ahigher Sigma Max), however to the expand of a much larger computational
effort. A reduction of the maximum stress at the interface is therefore attractive
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for afast computational solution procedure, and yet an accurate result. Table 3
collects some information related to these computations. The order of magnitude
for the CPU is a couple of hours on a today’s computer for the finest mesh, and a
couple of minutes for the coarsest one.

Figure 4

Figure 5

4. The multi-delaminated test case

The following example demonstrates the methodology presented in this paper to
analyse delamination and to identify the critical cracksin a multi-delaminated
composite structure. The reader will appreciate that some data and experimental
results are omitted here for confidentiality reasons. For real industrial
applications, suitable interface properties should be derived based on a
comparison of results from virtual and physical simple prototypes such as DCB.
Moreover, since numerical models are involved, the sensitivity of the solution to
the mesh and to the interface material properties should be studied, but these two
points are not fully covered in this short paper. The test case rather aims at
reporting the level of complexity of an industrial problem, and for the reasons
mentioned previoudly the results are therefore more qualitative than quantitative.
Here the mesh densities for the VCE and the cohesive elements models, as well as
the interface material properties are selected based on the conclusions of the
previous study on the DCB. The material properties are given in Table 1. Inthe T-
section laminated composite structure depicted in Figure 6, 14 cracked surfaces
are located between each ply of the skin, in the cap and between the noodle and
the stiffener’s web. The stacking sequencesinclude plies oriented at 0°, +45°, -45°
and 90°. The structure is subjected to a pull test. Cracks are simply inserted in the
finite element model as was explained for the DCB and the very large amount of
contact conditions is considered.

Figure 6

4.1 Solution obtained with VCE (linear analysis)

The model includes 1249044 degrees of freedom (204922 nodes, 88928 first order
volume elements with internal modes and 17794 contact elements). The mesh
density is selected based on the conclusions of the DCB test: in the vicinity of the
crack fronts, an average mesh size le of about 0.5mm is used. The solution
obtained with the VCE method is presented in Fig. 7, for an imposed load of
5000N. Cracks 52 and 55 are the most dangerous (see Figure 6). The propagation
load for thislinear analysisis around 3650N for the criterion (1). In Figure 8, the
energy release rates by modes, G, G and Gy, for the most critical cracks are
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plotted with respect to the normalized cracks width. It is clear that, depending on
the location, the cracks are subjected to modes 1, 11 and 111.

For a comparison, the results obtained with a coarser mesh (166053 degrees of
freedom and an average le equal to 1mm in the vicinity of the crack fronts) are
givenin Figure 9. In this case, lower energy release rates are obtained, which are
less accurate, according to the conclusions we formulated in the DCB test case.

Figure 7

Figure 8

Figure 9

4.2 Solution with the cohesive elements (non linear analysis)

Results obtained for two different mesh refinements are presented: le = 3mm and
le = 2mm, where le measures the average in plane length of the elementsin the
model. The bi-triangular cohesive law is used (see Fig. 2). The displacement of
the stiffener isimposed viaa Rigid Body Element defined on its upper face.
Figure 10 compares the | oad-displacement curves for both meshes. The results
presented in the Figures 11 and 12 correspond to the model with le = 3mm, which
includes 293332 degrees of freedom (64574 nodes, 18880 first order volume
elements with internal modes, 12664 2D cohesive elements and 1221 contact
elements). For this model, a propagation load of about 3950 N is obtained.
Although a first damage appears between the noodle and the stiffener, the
structure fails due to a de-cohesion between the cap and the stiffener. The
maximum carrying load is 6530N. Additional information is provided in Table 4.

A comparison between the propagation load from both approaches (V CE and
cohesive el ements) is not always easy, but the numerical values obtained, together
with experimental results, may provide a guideline for the designer.

Figure 10

Figure 11

Figure 12




Applied Composite Materials, 16(3), 149-162, 2009

5. Conclusion

Solution procedures used today at an industrial level to solve complex
delamination problems in composite structures have been presented. Large scale
models, with large numbers of initial cracks and contact zones characterize an
industrial application. The solution consists in using fracture mechanics to
estimate the critical cracks and propagation load in alinear analysis, while amore
advanced cohesive elements approach predicts the damage evolution and the
ultimate load, in anon linear analysis. Using such anal yses remains complicated.
Comparison of the numerical and experimental tests will be provided in a near
future. A first comparison of results from experiment and the presented numerical
solution procedure in a post-buckling analysis of a damaged stiffened composite
panel isavailablein [17]. A detailed comparative study of the VCCT and the VCE
approach will be undertaken.
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Displacement = 1,35 mm
Load — 4450 N

P

Displacement — 2.16 mimn
Load = 6100 N

2009

Displacemert = 1.95 mmn
Load — 6050 N

Displacement — 2.25 mm
Load = 3000 N

Figure 12. Evolution of the damage (d30.99) and displacements over the loading, up to
failure, in the interface elements (model with le = 3 mm)

Ein= 146860 M Pa Ey = 10620 MPa Esxs = 10620 M pa
Vi2 = 0.33 Vi3 = 0.33 V23 = 0.33

G]_z = 5450 MPa G13 = 5450 MPa ng = 3990 MPa

Gic = 340 Jme Giic = 1280 Jm? Giic = 1280 J/mz

K% (ess) = 10620 K% (ya) = 5450 k% (y:2) = 5450

N/mm3 N/mm3

N/mm3

Table1l Material properties used in the computations
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le (mm) Degreesof freedom Relative CPU G, (plane strain) J/n?

0.2

5.12
5 143547 100
0.5 97377 60 5.23
1 74292 44 5.49
25 60441 34 6.12
Table2 DCB solved with the VCE approach - UD
le (mm) Degrees of freedom Relative CPU  Maximum load (N)
0.5 (higher 76.1
0.5 219135 26 719
1 127593 10 717
2 82515 6 72.1
4 60909 4 77.1
4 (lower 62.1
Omax) 60909 2
Table 3 DCB solved with the cohesive element approach - UD
Mean le Degrees of Relative CPU to reach Maximumload Propagation load
(mm) freedom the maximum load (N) (N)
2 553889 100 6700 3850
3 293332 40 6530 3950

Table4 Multi-delamination solved with the cohesive element approach
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