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Abstract

This paper presents a solution procedure made available at an industrial level to study
delamination in composites. Two approaches are presented. The first one is based on an original
VCE (Virtual Crack Extension) method used to provide a quick estimate of the propagation load
and the critical inter-laminar cracks, in a linear finite element analysis. The second approach relies
on cohesive elements, and implies a non linear analysis. More general than the fracture mechanics
(VCE) approach, the cohesive elements technique allows to provide the value of the maximum
load that can be sustained by the structure, and to predict the residual strength and stiffness over
the fracture process. Those two methods are first compared in a DCB test case to show that the
results agree well with those from the literature or with the analytical solutions. Finally, a multi-
delaminated industrial test case is solved with both approaches.
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1. Introduction
Assessing the damage tolerance of composite structures is clearly a challenge. At
least two numerical approaches are available to study delamination with the finite
element method [1]. The first one consists in using fracture mechanics in a
(possibly linear) static analysis to compute the 3 modes of the strain energy
release rate GI, GII and GIII (opening, sliding and tearing modes, respectively)
along the different crack fronts. The most dangerous crack and the propagation
load are then predicted according to criteria such as those given in equation (1),
where GIc, GIIc and GIIIc are the fracture toughness for each mode. With this
approach crack growth analysis remains difficult to simulate and recent references
only propose specific solutions for simple 3D configurations with a single crack
front [2-6].
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In the second approach described in [1] a damage model is assigned to some
interface elements inserted between plies to represent their possible decohesion
and a fracture criterion is used to decide on flaws propagation [7-10]. Using such
cohesive elements in the analysis allows to estimate not only the propagation load
but also to predict the failure load, the crack propagation and the residual stiffness
during the fracture process in an automatic way. With this information more
accurate safety margins can be assessed.
Based on these observations, pure fracture mechanics seems reliable for
estimating the propagation load (possibly in a – fast – linear analysis), while
cohesive elements are a natural choice for cracks growth simulations, in a non
linear approach.
Modeling and solving industrial problems with such finite element approaches is
certainly difficult. An efficient numerical solution procedure should be able to
easily insert multiple crack fronts in a given large scale meshed structure and to
efficiently manage the multiple contacts between the plies and the possible non
linear material behaviors assigned to the numerous interfaces. However most of
the published works in the field present solutions for simple composite structures
with a small amount of delamination sites and therefore few contact conditions.
The objective of this note is twofold: firstly it aims at reporting the level of
complexity of an industrial problem and secondly it presents the solutions
obtained with the methodologies developed in the commercial finite element code
SAMCEF [11], which is an implicit code. A static formulation is used here to
obtain the solutions. A specific Virtual Crack Extension method (and not the
Virtual Crack Closure Technique, [2]) for computing the modes of the energy
release rate is briefly presented, and different strategies for insuring a good
convergence of the non linear analysis, including cohesive elements, are recalled.
Those two methods are first compared in a DCB test case to show that the results
agree well with those from the literature or with the analytical solutions. Finally
the industrial solution procedure is tested on a multi-delaminated composite. This
test case is studied because it is representative of the current industrial concerns.

2. Solution procedures for assessing damage
tolerance in composites

2.1 The Virtual Crack Extension (VCE) method

The Virtual Crack Closure Technique (VCCT) is certainly the most popular
method for computing the modes of the energy release rate (GI, GII, GIII) needed
for estimating the onset of delamination [2-6]. A specific Virtual Crack Extension
method (VCE), based on [12], is presented here as an alternative to VCCT. This
method is available in the commercial FE code used here for problems that
possibly include geometric non linearity, for linear and hyper-elastic materials. In
VCE the variation of the total potential energy  with respect to an increase of the
crack surface A is computed as a semi-analytical sensitivity analysis for the
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current displacements field in equilibrium, and therefore requires only one
structural analysis. This provides the distribution of the total energy release rate
GT (2). This computation is carried out for each node of each crack front, by
slightly (“virtually”) modifying the nodal coordinates in the direction normal to
the crack front, thus simulating local virtual crack advances in the crack planes
(see Fig. 1).

Figure 1

In (2), pert is related to the locally modified cracked configuration at equilibrium
(Fig. 1. C2), while init corresponds to the initial crack length (Fig. 1.C1), with
identical displacements.
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This total energy release rate is then distributed over the opening, shearing and
sliding modes based on the relative opening energies associated with each mode
as in (3). Ri are the reactions to the crack extension computed at the crack front
nodes while the relative displacements Ui are measured in the crack axes with
sensor nodes located along the crack tips close to the crack front.
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As for VCCT, accurate results are obtained for a fine mesh in the vicinity of the
crack fronts.

2.2. The cohesive elements approach

The polynomial constitutive law for the damaged interface developed in [7]
proved reliable in providing numerical results that were in very good agreement
with experimental ones. According to [7], the potential assigned to the interface
elements is given by (4), where three damage variables dI, dII and dIII are
considered:
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0 is an undamaged stiffness. The constitutive relation corresponding to this

potential is written in (5):
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The thermodynamic forces Yi (i=I,II,III) are obtained by deriving (4) with respect
to di (i=I,II,III). For mixed loading, the damage evolution is related to the three
inter-laminar fracture toughness GIC, GIIC and GIIC. The equivalent
thermodynamic force Y takes the following form:
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where  is equal to 1 in the present study. It is assumed here the three damage
variables have the same evolution over the loading, and a single damage d is
therefore used to identify delamination. The damage variable d is related to the
equivalent thermodynamic force Y via a function g(Y), i.e. d=G(Y). In [7], the
function g(Y) corresponds to a polynomial cohesive law. In the commercial FE
code used here the approach of [7] is extended to bi-triangular and exponential
softening laws [13]. The three available laws are illustrated in Fig. 2. For the first
two material models of Fig. 2, the damage appears after a linear elastic behaviour
of the interface (grey regions in Fig. 2), whereas for the exponential law there is
no threshold and the damage occurs immediately the interface is loaded. Initially
equal to zero, the damage variable reaches a unity value when all the resistance
capacity of the interface has been consumed (Gi = Gic for pure modes, or a
combination of the effects via Eq. 6 for mixed modes).

Figure 2

According to fracture mechanics considerations an important parameter of the
model is surely the fracture toughness Gic, i.e. the area under the curves of Fig. 2.
For a given inter-laminar fracture toughness, increasing the available inter-laminar
tension i

max, while keeping a constant initial stiffness, will decrease the part
linked to smooth damage propagation (i.e. the length of the cohesive zone), and
will provide a rough transition between finite elements for the crack propagation,
possibly leading to convergence problems of the non linear numerical scheme
[14]. Contrary to the fracture mechanics approach (VCE) previously presented
cohesive elements can be used with a coarser mesh at the crack front location.
According to [1], at least three finite elements must be active in the process zone,
i.e. where intermediate damage takes place. This means that small elements
should be used when the cohesive zone is small. In practice, the maximum
strength of the interface imax is decreased [10], and a larger cohesive zone is
therefore used, together with less refined mesh. Decreasing this limiting tension
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lowers the level of the structure’s failure load, but eases the numerical solution
procedure. It has also been observed that defining a delay in the damage
occurrence, as in [15], can also limit numerical difficulties in the solution
procedure, while slightly increasing the resulting maximum load level. Finally,
different strategies, described in [16], for computing the material stiffness are also
available here: allowing the use of the consistent, tangent or null stiffness in the
softening part of the constitutive laws. A tangent stiffness is used in the following
applications.

3. The DCB test case
In order to demonstrate the accuracy of the two approaches a simple test case is
first considered. A DCB specimen with a UD lay-up (only 0 deg. plies) and a
A[++30] lay-up (A[++30] = [±30/06/06/-30/30/d]S, see ref. [3]) is studied. The
applied force is equal to 10N. The material is C12K/R6376 Graphite/epoxy
prepreg (see Table 1).
The DCB width is 25mm for the UD and 25.4mm for the A[++30]. The length of
the specimen is 150mm. 32 plies of 0.127mm define the laminate. The crack
length is 57.15 mm. The mesh used is given in [3] and shown in Fig. 3.

Table 1

Figure 3

First order volume elements with internal modes are used. Eight elements are
defined over the thickness, with a refinement at the crack propagation plane
including 4 layers of 0.127 mm. A refinement is also defined at the location of the
crack front: in Fig. 3, 20 finite elements are used along 10mm and le = 0.5mm. 22
elements are used across the width, with a 1mm wide section on both edges
modeled with 5 elements. For the model with cohesive elements, the length of the
refined region is 55mm instead of 10mm and 16 elements are used along the
width, with the 1mm wide sections on both edges modeled with 2 elements. The
crack is very easily inserted in the model by selecting faces (interfaces) at given
locations over the thickness and assigning them interface elements. These
elements are automatically generated and double coincident nodes are created.
The interface elements are then deleted, leaving a mesh with double nodes
modeling the crack. The contact conditions, if needed, can be defined based on the
same groups of faces and corresponding nodes. Contact elements are then defined,
measuring the gap between the nodes. Linear relations and lagrangian multipliers
are added to the classical set of equilibrium equations.

3.1 Solution obtained with VCE (linear analysis)
In Figure 4, the maximum value of the mode I energy release rate over the crack
front for the UD is compared to the solution from the beam theory, given in (7).
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where P is the external load, a is the crack length, B is the specimen width, h is
the thickness of the cantilever arm, and E11 is the modulus of elasticity. Here, the
analytical solution is GI = 5.089J/m².
For le = 0.5mm it turns out that the difference is about 10%, which seems
comparable to the results obtained with VCCT for the same discretization at the
crack front (see [3]). When plane strain is assumed in the 3D model, the numerical
solution gets closer to the analytical reference, with a difference of less than 3%
for le=0.5mm. The evolution of GI along the crack front for both laminates (UD
and A[++30]) is compared in Figure 4 to the solution obtained with VCCT in [3],
for a same mesh (le=0.5mm, see Fig. 3). It is concluded that VCE provides results
in good agreement with the references. Table 2 collects some information related
to these computations. Each analysis takes less than 20 seconds on a today’s
computer. A detailed comparison of VCCT and VCE will be undertaken in the
near future.

3.2 Solution with the cohesive elements (non linear analysis)
Concerning the cohesive elements approach, results in close agreement with
analytical solutions are obtained for the UD, for the 3 interfacial models of Fig. 2,
as illustrated in Fig. 5. Besides the numerical results, two theoretical curves are
plotted in Fig. 5, obtained from the beam theory. They represent the initial
stiffness of the elastic cantilever beam subjected to a concentrated load P at one
side, and the relation between the transversal displacement w and the applied load
P for a critical crack with GI = GIC :
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The influence of the mesh on the results is also presented in Fig. 5, for the bi-
triangular law. As it was the case with the VCE approach, the solution converges
with a mesh refinement. It is seen that for a large range of element size (le =
0.5mm to 2mm), reliable results are obtained. For a coarser mesh (le = 4mm),
oscillations appear in the solution. This effect can be damped by reducing the
maximum allowable stress at the interface from 5N/mm² to 1N/mm² (curve for
le=4mm with a lower Sigma Max). However, this lowers the level of the
structure’s failure load. When the maximum stress at the interface is set to
25N/mm², together with a larger initial stiffness of 130000N/mm³ instead of
10620 N/mm³ (see Table1), similar results are obtained (curve for le=0.5mm with
a higher Sigma Max), however to the expand of a much larger computational
effort. A reduction of the maximum stress at the interface is therefore attractive
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for a fast computational solution procedure, and yet an accurate result. Table 3
collects some information related to these computations. The order of magnitude
for the CPU is a couple of hours on a today’s computer for the finest mesh, and a
couple of minutes for the coarsest one.

Figure 4

Figure 5

4. The multi-delaminated test case
The following example demonstrates the methodology presented in this paper to
analyse delamination and to identify the critical cracks in a multi-delaminated
composite structure. The reader will appreciate that some data and experimental
results are omitted here for confidentiality reasons. For real industrial
applications, suitable interface properties should be derived based on a
comparison of results from virtual and physical simple prototypes such as DCB.
Moreover, since numerical models are involved, the sensitivity of the solution to
the mesh and to the interface material properties should be studied, but these two
points are not fully covered in this short paper. The test case rather aims at
reporting the level of complexity of an industrial problem, and for the reasons
mentioned previously the results are therefore more qualitative than quantitative.
Here the mesh densities for the VCE and the cohesive elements models, as well as
the interface material properties are selected based on the conclusions of the
previous study on the DCB. The material properties are given in Table 1. In the T-
section laminated composite structure depicted in Figure 6, 14 cracked surfaces
are located between each ply of the skin, in the cap and between the noodle and
the stiffener’s web. The stacking sequences include plies oriented at 0°, +45°, -45°
and 90°. The structure is subjected to a pull test. Cracks are simply inserted in the
finite element model as was explained for the DCB and the very large amount of
contact conditions is considered.

Figure 6

4.1 Solution obtained with VCE (linear analysis)
The model includes 1249044 degrees of freedom (204922 nodes, 88928 first order
volume elements with internal modes and 17794 contact elements). The mesh
density is selected based on the conclusions of the DCB test: in the vicinity of the
crack fronts, an average mesh size le of about 0.5mm is used. The solution
obtained with the VCE method is presented in Fig. 7, for an imposed load of
5000N. Cracks 52 and 55 are the most dangerous (see Figure 6). The propagation
load for this linear analysis is around 3650N for the criterion (1). In Figure 8, the
energy release rates by modes, GI, GII and GIII for the most critical cracks are
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plotted with respect to the normalized cracks width. It is clear that, depending on
the location, the cracks are subjected to modes I, II and III.

For a comparison, the results obtained with a coarser mesh (166053 degrees of
freedom and an average le equal to 1mm in the vicinity of the crack fronts) are
given in Figure 9. In this case, lower energy release rates are obtained, which are
less accurate, according to the conclusions we formulated in the DCB test case.

Figure 7

Figure 8

Figure 9

4.2 Solution with the cohesive elements (non linear analysis)
Results obtained for two different mesh refinements are presented: le = 3mm and
le = 2mm, where le measures the average in plane length of the elements in the
model. The bi-triangular cohesive law is used (see Fig. 2). The displacement of
the stiffener is imposed via a Rigid Body Element defined on its upper face.
Figure 10 compares the load-displacement curves for both meshes. The results
presented in the Figures 11 and 12 correspond to the model with le = 3mm, which
includes 293332 degrees of freedom (64574 nodes, 18880 first order volume
elements with internal modes, 12664 2D cohesive elements and 1221 contact
elements). For this model, a propagation load of about 3950 N is obtained.
Although a first damage appears between the noodle and the stiffener, the
structure fails due to a de-cohesion between the cap and the stiffener. The
maximum carrying load is 6530N. Additional information is provided in Table 4.

A comparison between the propagation load from both approaches (VCE and
cohesive elements) is not always easy, but the numerical values obtained, together
with experimental results, may provide a guideline for the designer.

Figure 10

Figure 11

Figure 12
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5. Conclusion
Solution procedures used today at an industrial level to solve complex
delamination problems in composite structures have been presented. Large scale
models, with large numbers of initial cracks and contact zones characterize an
industrial application. The solution consists in using fracture mechanics to
estimate the critical cracks and propagation load in a linear analysis, while a more
advanced cohesive elements approach predicts the damage evolution and the
ultimate load, in a non linear analysis. Using such analyses remains complicated.
Comparison of the numerical and experimental tests will be provided in a near
future. A first comparison of results from experiment and the presented numerical
solution procedure in a post-buckling analysis of a damaged stiffened composite
panel is available in [17]. A detailed comparative study of the VCCT and the VCE
approach will be undertaken.
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Figure 1. Illustration of the VCE method of SAMCEF

Figure 2. Material laws for the interfaces
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Figure 3. Mesh of the DCB, and zoom at the crack front. Here le = 0.5 mm (20 finite elements
over a refined zone of 2 5mm)

Figure 4. Results for the DCB specimen, with the VCE method. Comparison with the beam
theory (on the left) and with the results from [3] (on the right)
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Figure 5. Results for the DCB specimen, with the cohesive elements method. On the top,
comparison of the 3 available laws of Figure 2 for a mesh size le = 1mm.  On the bottom, the
influence of the mesh on the results, for the bi-triangular law.
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Figure 6. The laminated composite structure with multiple delamination sites subjected to a
pull test. Numbering of the cracks fronts in the structure

Figure 7. Evolution of the fracture criterion (1) along the crack fronts with VCE. Mesh with
an average le close to 0.5 mm
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Figure 8. Evolution of the energy release rates by modes along the critical crack fronts with
VCE (in kJ/m²). Mesh with an average le close to 0.5 mm

Figure 9. Evolution of the fracture criterion (1) along the critical crack fronts with VCE.
Mesh with an average le close to 1 mm
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Figure 10. Load-displacement curves until failure, and displacement for 2.28 mm in the
model with le = 3 mm (amplification factor for deformation = 5)

Figure 11. Evolution of the displacements over the loading for the model with le = 3mm
(amplification factor for deformations = 3)
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Figure 12. Evolution of the damage (d0.99) and displacements over the loading, up to
failure, in the interface elements (model with le = 3 mm)

E11 = 146860 MPa E22 = 10620 MPa E33 = 10620 Mpa
12 = 0.33 13 = 0.33 23 = 0.33
G12 = 5450 MPa G13 = 5450 MPa G23 = 3990 MPa
GIc = 340 J/m² GIIc = 1280 J/m² GIIIc = 1280 J/m²
K0

3 (33) = 10620
N/mm³

k0
1 (31) = 5450

N/mm³
k0

2 (32) = 5450
N/mm³

Table 1  Material properties used in the computations
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le (mm) Degrees of freedom Relative CPU GI (plane strain) J/m²
0.2

5 143547 100
5.12

0.5 97377 60 5.23
1   

2.5 60441 34 6.12

Table 2  DCB solved with the VCE approach - UD

le (mm) Degrees of freedom Relative CPU Maximum load (N)
0.5 (higher
max) 219135 100

76.1

0.5 219135 26 71.9
1 127593 10 71.7
2   
4 60909 4 77.1

4 (lower
max) 60909 2

62.1

Table 3  DCB solved with the cohesive element approach - UD

Mean le

(mm)
Degrees of

freedom
Relative CPU to reach

the maximum load
Maximum load

(N)
Propagation load

(N)
2 553889 100 6700 3850
3 293332 40 6530 3950

Table 4  Multi-delamination solved with the cohesive element approach


