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Practical informations I

I Instructor: Marc Van Droogenbroeck

I Assistant: Renaud Vandeghen

I Slides: http://orbi.uliege.be

I Evaluation
1 personal project (split in several sub-tasks): 3 students, evaluated in

December.
The project is compulsory!
If a sub-task is not done, then the student gets a note of 0 for
the sub-task AND following sub-tasks.
No possibility to resubmit in August!

2 written exam (also compulsory!), closed book, during the exam session.
3 [August only] written examination.
4 Notation:

1 January: 2/3 for the project, 1/3 for the exam
2 August/September: 1/2 for the project, 1/2 for the exam
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Practical informations II

I Hands on computer vision ⇒“practice” computer vision

Reference book

Szeliski R., Computer Vision: Algorithms and Applications, second edition,
Springer, 2022.
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The 4 “pillars” of computer vision I
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The 4 “pillars” of computer vision II

A Computer Vision (CV) workflow

1 Acquisition (sensors, camera, representation)

2 → Processing (filtering, signal “shaping”)

3 → Computer vision (CV) algorithm (generic algorithms, not
application-tuned)

4 → Application
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The 4 “pillars” of computer vision III

1 Acquisition
1 Human perception (color, reflection)
2 Sensor, camera
3 3D vision, video

2 Processing
1 Linear filters
2 Morphological tools (openings, geodesic distance)

3 “Generic” CV algorithms
1 Classical tools for images (edge detection, watershed, granulometry)
2 Motion detection
3 Data-driven tools (machine learning / deep learning)

4 Application
1 Tasks: counting, segmentation, detection, tracking
2 Evaluation
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The 4 “pillars” of computer vision IV

I Don’ forget the acquisition step

understanding your data is essential (also for machine learning
applications!)

I Linear framework → non-linear frameworks

I A world of trade-offs (computational load ↔ framerate, etc.)

I There is no unique, universal, solution to a computer vision problem

I Lectures in the spirit of a “catalog”
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Outline

1 Fundamentals of 2D imaging

2 Motion analysis and background subtraction

3 Performance analysis

4 3D vision: calibration and reconstruction

5 Linear filtering

6 Mathematical morphology

7 Edge detection

8 Non-linear filtering

9 Feature detection and tracking

10 Segmentation

11 Object description and analysis

12 Template Matching & Image Registration

13 Introduction to machine learning
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Fundamentals of 2D imaging
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Fundamentals of 2D imaging

Topics

I Elements of visual perception

Colors: representation and colorspaces
Transparency

I Data structure for images
I Examples of industrial applications:

Segmentation
Optical character recognition
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Fundamentals of 2D imaging Color perception and representation
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Fundamentals of 2D imaging Color perception and representation

Human visual system, light and colors I

fovea
optical axis

retina

aqueous

visual axis

lens

iris

optic nerve

cornea

Figure: Lateral view of the eye globe (rods and cones are receptors located on the
retina).
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Fundamentals of 2D imaging Color perception and representation

Human visual system, light and colors II

color wavelength interval λ [m] frequency interval f [Hz]

purple ∼ 450–400 [nm] ∼ 670–750 [THz]

blue ∼ 490–450 [nm] ∼ 610–670 [THz]

green ∼ 560–490 [nm] ∼ 540–610 [THz]

yellow ∼ 590–560 [nm] ∼ 510–540 [THz]

orange ∼ 635–590 [nm] ∼ 480–510 [THz]

red ∼ 700–635 [nm] ∼ 430–480 [THz]

Figure: Visible colors (remember that λ = 3×108

f ).
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Fundamentals of 2D imaging Color perception and representation

Human visual system, light and colors III
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Figure: Colors on the visible spectrum.
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Fundamentals of 2D imaging Color perception and representation

Frequency representation of colors
∫

λ
L(λ) dλ (1)

Impossible from a practical perspective because this would require one
sensor for each wavelength.
Solution: use colorspaces

? X

aA bB

cC

Figure: Equalization experiment for colors. The aim is to mix A, B, and C to get as close as

possible to X .
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Fundamentals of 2D imaging Color perception and representation

The RGB additive colorspace

Three fundamental colors: red R (700 [nm]), green G (546, 1 [nm]) and
blue B (435, 8 [nm]),

v(λ)

400 500 600 700 λ[nm]

r(λ)
b(λ)

0

-0,1

0,1

0,2

0,3

0,4

Figure: Equalization curves obtained by mixing the three fundamental colors to
simulate a given color.
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Fundamentals of 2D imaging Color perception and representation

CIE chromatic diagram for RGB

We consider R+G+B=1, so positive RGB values are in a triangle
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Fundamentals of 2D imaging Color perception and representation

Notion of intensity

R+G+B = intensity (intensity ∈ [0, 1])

100%

R

B

G

0%

Figure: Pyramid derived from an RGB color representation.
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Fundamentals of 2D imaging Color perception and representation

Towards other colorspaces: the XYZ colorspace I




X
Y
Z


 =




2, 769 1, 7518 1, 13
1 4, 5907 0, 0601
0 0, 0565 5, 5943







R
G
B


 (2)

x =
X

X + Y + Z
(3)

y =
Y

X + Y + Z
(4)

z =
Z

X + Y + Z
(5)

x + y + z = 1 (6)
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Fundamentals of 2D imaging Color perception and representation

Towards other colorspaces: the XYZ colorspace II

y

x

Figure: Approximative chromatic colorspace defined by two chrominance variables
x and y .
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Fundamentals of 2D imaging Color perception and representation

Luminance

Luminance: Y = 0.2126×R + 0.7152×G + 0.0722×B

Figure: xy chromatic diagram and maximal luminance for each color.
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Fundamentals of 2D imaging Color perception and representation

The HSI colorspace

Colorspace that has a better physical meaning:

I hue

I saturation

I intensity
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Fundamentals of 2D imaging Color perception and representation

Other colorspaces

I a subtractive colorspace: Cyan, Magenta, and Y ellow (CMY)
I Luminance + chrominances ( YIQ, YUV or YCbCr )

In practice, we use 8 bits (≡ 1 byte) to describe one color channel (instead
of a value between 0 and 1). So, colors ≡ 24 bits.

Hexadecimal Decimal
00 00 00 0 0 0
00 00 FF 0 0 255
00 FF 00 0 255 0
00 FF FF 0 255 255
FF 00 00 255 0 0
FF 00 FF 255 0 255
FF FF 00 255 255 0
FF FF FF 255 255 255

Table: Two representations of RGB color values (8 bit per color channel).
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Fundamentals of 2D imaging Color perception and representation

Acquisition: three sensors

Figure: Acquisition of a Y Cb CR signal [Wikipedia]

There are variations, such as the Y U V colorspace, mainly developed for
compression:

1 information concentrated in the Y channel ⇒ better compression.

2 better decorrelation between channels.
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Fundamentals of 2D imaging Color perception and representation

Acquisition: one sensor + Bayer filter I

A Bayer filter mosaic is a color filter array for arranging RGB color filters
on a square grid of photo sensors.

Figure: The Bayer arrangement of color filters on the pixel array of an image
sensor.
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Fundamentals of 2D imaging Color perception and representation

Acquisition: one sensor + Bayer filter II

Figure: Profile/cross-section of sensor.
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Fundamentals of 2D imaging Color perception and representation

Bayer filter: practical considerations

I Most mono-sensor cameras use the Bayer pattern, except for
professional 3CCD cameras (three sensor planes + prism to split the
incoming light)

I The filter pattern is 50% green, 25% red and 25% blue. Why?

I We only have one value per pixel. Other values are re-built by
interpolation, but they might not even exist... !

I For compression or processing,

1 sensor plane ⇒ normally only one byte to process. Possible if the
processing occurs in the sensor, not anymore if the interpolated image
is forwarded.
3 sensor planes ⇒ 3 planes to process or to compress.
Expected compression rate: more or less the same as for a grayscale
image.

I It might be wiser, for processing, to have a black-and-white (or a
monochromatic, such as red) camera, instead of a color camera.
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Fundamentals of 2D imaging Color perception and representation
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Fundamentals of 2D imaging Color perception and representation

Visual effects

Figure: Illustration of a masking visual effect.

A machine does not take psycho-visual effects into account. But, for
evaluating the subjective quality of a compression algorithm, one has to!
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Fundamentals of 2D imaging Data representations
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Fundamentals of 2D imaging Data representations

Sampling grid and frame organization

I Each sample located on a grid is named a pixel (which stands for
picture element).

I There are two common sampling grids and they induce certain types
of connectivity (defined the number of neighbors).

Square grid Hexagonal grid

4-connectivity 8-connectivity 6-connectivity

Table: Types of grid and associated connectivities.
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Fundamentals of 2D imaging Data representations

Data structure for dealing with images

I Typical data structure for representing images: matrices (or 2D
tables), vectors, trees, lists, piles, . . .

I For matrices, there are several ways to organize the memory:
1 channel (for example, luminance):

upper left corner coordinate correspond to the (0, 0) location in the
matrix.
one byte per pixel

3 channels, such RGB images. We have two options:
1 store 3 matrices separately (according to the 1 channel storage scheme)
2 store the RGB values consecutively (intermixed) for each pixel. For

example, if R1G1B1 and R2G2B2 are the color values of two consecutive
pixels, then we could store the values as R1G1B1R2G2B2 in a single
matrix.
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Fundamentals of 2D imaging Data representations

The bitplanes of an image

A grayscale image is an array of bytes like 1 0 1 1 0 0 0 0.

Table: Image and its 8 bitplanes starting with the Most Significant Bitplane
(MSB) to the Least Significant Bit (LSB).
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Fundamentals of 2D imaging Data representations

Typology of images and videos

2D. This types refers to a “classic” image and is usually expressed
as a 2D array of values. It might represent the luminance, a
color, depth, etc.

3D. 3D images are obtained with devices that produce 3D images
(that is with x , y , z coordinates). Medical imaging devices
produce this type of images.

2D+t. t refers to time. Therefore, 2D + t denotes a video
composed over successive 2D images, indexed by t.

3D+t. 3D + t images are in fact animated 3D images. A typical
example is that of animated 3D graphical objects, like that
produced by simulations.
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Fundamentals of 2D imaging Data representations

Compression I

Compression ratios: ITU-R 601 (ex CCIR 601)

I YCbCr

I 4:4:4 (720/720/720) = 270 [Mb/s]

I 4:2:2 (720/360/360) = 180 [Mb/s]

Two main principles:

1 remove some redundancies inside the frame (intraframe coding)

2 remove some redundancies between frames (interframe coding)

  I  B   B   P  B  B  P   B  B   I

Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 35 / 538



Fundamentals of 2D imaging Data representations

MPEG-2 levels and profiles

Profile Simple Main SNR Spatial High

Low level (235 x 288 x 30Hz) X X

Main level (720 x 576 x 30Hz) X X X X

High-1440 level (1440 x 1152 x

60Hz)

X X X

High level (1920 x 1152 x

60Hz)

X X

A 50 Hz video stream of size 720× 576 (PAL) corresponds to 270 [Mb/s]
uncompressed

I Lossless compression: ≈ 100 [Mb/s]

I Lossy compression (but intraframe only): ≈ 27 [Mb/s]

I Lossy compression (including interframe coding): MPEG-2 format
≈ 5 [Mb/s] or less
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Fundamentals of 2D imaging Applications
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Fundamentals of 2D imaging Applications

Image segmentation
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Fundamentals of 2D imaging Applications

Character recognition

Several successive stages:

I Selection of a Region of Interest (ROI). Processing is limited to that
area.

I Detection of edges (contours).

I Identification and classification of characters.
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Fundamentals of 2D imaging Applications

Example of classification task: classify handwritten digits

I Goal: learn to recognize handwritten digits (by machine learning)
I Dataset: the MNIST (Mixed National Institute of Standards and

Technology) database of handwritten digits has
a training set of 60, 000 examples.
a test/validation set of 10, 000 examples.
normalization: the digits have been size-normalized and centered in a
fixed-size image.
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Motion analysis and background subtraction
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Motion analysis and background subtraction

Detection of motion

There are basically two “pure” approaches for motion analysis/detection in
a video sequence:

1 Motion analysis by tracking (= motion estimation based techniques):

detects some particular points in a video frame.
find the corresponding points/objects in the next frame.
based on a model, interpret the trajectories of the points/objects
(usually at the object level).

2 Motion detection by background subtraction:

build a reference frame or model with no foreground in it.
compare a next frame to the reference.
update the reference.
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Motion analysis and background subtraction Motion analysis by tracking
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Motion analysis and background subtraction Motion analysis by tracking

Motion analysis by tracking: principles

There are several techniques but, usually, they involve the following steps:

1 detect features in successive frames.

2 make some correspondences between the features detected in
consecutive frames

3 based on a model, regroup some features to facilitate the tracking of
objects.
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Motion analysis and background subtraction Motion analysis by tracking

Feature detection

Some known feature detectors:
I Harris’s corner detector
I Scale Invariant Feature Transform (SIFT)
I Speeded Up Robust Features from an image (SURF)
I Features from Accelerated Segment Test (FAST)
I ...

Original image Features detected by SURF
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Motion analysis and background subtraction Motion analysis by tracking

Feature correspondence
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Motion analysis and background subtraction Motion analysis by tracking

Difficulties for feature correspondence

Typical questions/difficulties for tracking approaches (targeting motion
estimation):

I How to filter the features? (remove some useless features)
I How do we regroup features?

we need a model. But this introduces a bias towards the model.

I How do we ensure continuity over time?

I What happens when occlusions occur?

I How to solve ambiguities (one feature in one image is identical to
several in the next frame)?

I ...
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Motion analysis and background subtraction Background subtraction
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Motion analysis and background subtraction Background subtraction

Motion detection by background subtraction I

Original image Features detected by ViBe

Figure: Segmentation (pixels that are “in motion”) by background subtraction.

Background subtraction is also referred to as change detection.
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Motion analysis and background subtraction Background subtraction

Example of a pixelwise background subtraction technique

I Any application with moving objects

I Video-surveillance
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Motion analysis and background subtraction Background subtraction

Challenges

I Input related issues
lighting/illumination changes

slow (day/night cycles)
fast (light switch, clouds in the sky, ...)

unwanted motions

camera shaking (wind)
in the background (tree leaves, waving grass, water)

appearance changes of foreground objects (reflections), shadows,
camouflage, ...

I Implementation related issues

robustness
real time
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Motion analysis and background subtraction Background subtraction

Applications

I Motion detection (you don’t need a precise segmentation map):

raise an alarm
start/stop recording

I Foreground/background segmentation:

counting
traffic analysis
human motion interpretation
sport analysis
coding
aerial imaging
detection of exoplanets
...
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Motion analysis and background subtraction Technical details of background subtraction
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Motion analysis and background subtraction Technical details of background subtraction

Background subtraction

Common tasks:

I background subtraction ⇒ segmentation

I change detection ⇒ generate alarms (and reduce rate of false alarms!)

Plethora of methods (2023):

I ’motion detection’ on IEEE Xplore: 34,620 papers

I ’background subtraction video’ on IEEE Xplore: 3,750 papers

Different spatial contexts:

I pixel-based (pixelwise)

I region-based

I tracking (spatio-temporal neighborhood)
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Motion analysis and background subtraction Technical details of background subtraction

Techniques for background subtraction

Objective of pixel-based background subtraction techniques

Separate the foreground (pixels “in motion”) from the background (“static”
pixels).

Implementation perspective

A video sequence is like a data cube whose dimension is only fixed in 2
dimensions.

I The data cube extends with time.

Challenges for building a background subtraction algorithm:

1 need to find a way to accumulate knowledge of increasing size inside
of a constant sized memory block.

2 this knowledge should be updated regularly to deal with changes.
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Motion analysis and background subtraction Technical details of background subtraction

Implementation of background subtraction in 3 steps

Steps

[1. Initialization] build a reference frame or a statistical model for the
background.

[2. Subtraction or segmentation] compare the current frame to the
reference frame or model, and “subtract” the frame to get a
binary image indicating pixels who have changed.

[3. Updating] update the reference frame or model.

When we develop a technique, we have to detail these three steps!
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Motion analysis and background subtraction Technical details of background subtraction

Principles

I Major assumption: fixed camera
I Otherwise,

1 we have to compensate for the camera motion
2 what for new areas (for which we have no past information)?
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Motion analysis and background subtraction Technical details of background subtraction

Reference frame or a model?

One frame in the sequence Built reference frame

Figure: Building a reference frame (or an unimodal model).

Building a reference frame from a video sequence is the task of
background estimation/background generation.
For real-time processing, we need a reference frame as soon as possible.
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Motion analysis and background subtraction Technical details of background subtraction

Elementary method (reference frame)

Naive approach for the step of segmentation (static background)

Foreground is detected, pixel by pixel, as the difference between the
current frame and a static reference image (background).
Let p be a pixel location. p belongs to the background if

|It(p)− B(p)| ≤ threshold (7)

where

I It(p) is the current pixel value (at time t),

I B(p) is the reference background value for that pixel.

Problems:

I How do we choose the reference image?

I The reference image should change over time.

I What is the best threshold?
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Motion analysis and background subtraction Technical details of background subtraction

Problem with a unique threshold for the whole image
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Motion analysis and background subtraction Technical details of background subtraction

Choices for a better reference image

Simple techniques (for the step of updating)

I One “good” image is chosen (usually a frame empty of foreground
objects).

I Exponentially updated reference image (blending)

Bt(p) = αIt(p) + (1− α)Bt−1(p) (8)

Typical value for α: 0.05 (in that case, Bt = 0.05 It + 0.95 Bt−1)

I Median of the last N frames (for each pixel separately).
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Motion analysis and background subtraction Technical details of background subtraction

Intermediate summary: remember the components

I Initialization

⇒ fill in the first reference image or initialize the model
difficulty: problem with the presence of ghosts.

I Segmentation

⇒ rules + parameters ...
difficulties:

homogeneous rule for the whole image?
how to set the values of the parameters?

I Updating

⇒ we need strategies
difficulty: how to adapt the scene dynamics?
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There are two main strategies for the updating

Blind update (the most common)

update the reference image or the model for all pixels, regardless of the
segmentation result (that is if the pixel is a foreground or a background
pixel)

I does it make sense?

Conservative update

only update when the pixel belongs to the background

I what if the segmentation was wrong (deadlock)?
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Motion analysis and background subtraction Technical details of background subtraction

Advanced techniques

The background is modeled as a probability density function to be
estimated

I One Gaussian distribution per pixel

I Mixture of Gaussians for each pixel

I Kernel-based estimation of the probability density function
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Motion analysis and background subtraction Technical details of background subtraction

One Gaussian per pixel

[Model]
For each pixel, the probability density function of observed values is
modeled by a single Gaussian.
Let v be an observed value for a pixel p:

pdf(v) ∼ G (µ, σ) =
1√

2πσ2
e−

(v−µ)2

2σ2 (9)

Once the model is built (here it means that we need to estimate the mean
and variance), we evaluate the distance to the mean.

[Segmentation step]
If

|vt − µ| ≤ parameter× σ (10)

then the pixel p belongs to the background.
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Mixture of Gaussians Model

Motivation: the probability density function of the background is
multi-modal

[Stauffer, 1999, 2000] [Power, 2002] [Zivkovic, 2006]
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Motion analysis and background subtraction Technical details of background subtraction

Mixture of Gaussians (MoG) Model

For each pixel:

pdf(v) ∼
N∑

i=1

αiG (µi , σi ) (11)

Typical values for n: 3 or 5

Fundamental assumptions

I The background has a low variance.

I The background is more frequently visible than the foreground.
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Kernel Density Estimation (KDE) methods

For each pixel:

pdf(v) ∼
N∑

i=1

αiKσ(v − vi ) (12)

where {vi}i=1, ...,N are the N last values observed (samples) for that pixel,
and Kσ() is a kernel probability function centered at vi .

Decision rule

The pixel belongs to the background if pdf (v) ≤ threshold.

[Elgammal, 2000] [Zivkovic, 2006]
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Parameters of KDE techniques

Typical values pdf(v) ∼∑N
i=1 αiKσ(v − vi ) with

I Number of samples: N = 100

I Weight: αi = α = 1
N

I Spreading factor: σ = Variance(vi )

I Probability density function chosen to be Gaussian:
Kσ(v − vi ) = G (vi , σ

2)
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GMM techniques vs KDE techniques
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Motion analysis and background subtraction Technical details of background subtraction

Other advanced techniques

I Codebook

I Principal Components Analysis (PCA)

I Relaxation techniques (mainly post-processing of binary segmentation
maps)

I Local Binary Patterns

I ViBe: no model, all based on samples

I Deep learning based methods
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More details about ViBe: design rules

The design of ViBe was motivated by:

1 information at the pixel level should be preferred to aggregated
features (for speed and efficiency).

2 collect samples, rather than build a statistical model:
1 sample values have been observed in the past.
2 no bias towards a model.

3 minimize the number of collected samples.
4 no “planned obsolescence” notion for samples.

1 don’t use the commonly (and exclusively) adopted substitution rule
that consists to replace oldest samples first or to reduce their
associated weight.

2 all samples are equally valid.

5 foresee a mechanism to ensure spatial consistency.

6 keep the decision process simple.
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Motion analysis and background subtraction Technical details of background subtraction

Requirements while designing ViBe

1 No pre- or post-processing!

2 Be real-time.

3 A unique set of parameters.

4 Working as soon as you get the second frame.
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Keys of a background subtraction technique

1 Model. What is a good model for the background?

2 How to classify pixels in the background/foreground? Need for a
classification criterion.

3 How to update the model?

4 Initialization?
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Motion analysis and background subtraction Technical details of background subtraction

Model

I Model each background pixel with a set of samples (non-parametric
method), instead of with an explicit pixel model. Each background
pixel x is modeled by a collection of N background sample values:
M(x) = {v1, v2, . . . , vN}

Avoid the difficult task of estimating the probability density function.
No statistical notion. Assume a binary image, what is the meaning of
the mean? It is even a value that might never be observed ...
How could a model consider values of its immediate neighborhood?
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Pixel classification

I A pixel belongs to the background if
there are at least two matches:
#{SR(v(x)) ∩ {v1, v2, ..., vN}} ≥ #min

I N = 20 and #min = 2
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Updating the model over time

Principles:

I Conservative update: update the model only if a pixel value is
considered as a background. If it is foreground, do not update at all.

Mechanisms:

1 The background model of a pixel is updated randomly! One sample
in the model is chosen randomly and replaced. The lifetime of the
replaced value is ignored.

2 Random time subsampling. Not every model is updated. Which one
is decided randomly (typically 1 out of 16, on average).

3 Randomly select a neighbor and modify the model of it with the value
of the local pixel and according to the 1 and 2 mechanisms (spatial
diffusion).
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Model Initialization

From a single frame, populate the pixel models with values found in the
spatial neighborhood of each pixel.

I Values randomly taken in their neighborhood

I Values chosen in the close 8-connected neighborhood
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Results
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Deep learning based background subtraction techniques

Traditionally

We choose the best feature set and optimize the background subtraction
algorithm. But there are many (sub-optimal) possibilities.
I T. Bouwmans, C. Silva, C. Marghes, M. Zitouni, H. Bhaskar, and C.

Frelicot. On the role and the importance of features for background
modeling and foreground detection. CoRR, abs/1611.09099:1–131, 2016.

What if we automate the search (quest) for the best features?
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What’s next? I

More and more machine learning for background subtraction.

Figure: Deep learning for extracting the background in video scenes (M. Braham and M. Van

Droogenbroeck. Deep Background Subtraction with Scene-Specific Convolutional Neural

Networks. In IEEE IWSSIP, May 2016).
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What’s next? II

Method F overall FBaseline F Jitter FShadows F LowFramerate

ConvNet-GT 0.9046 0.9813 0.9020 0.9454 0.9612

IUTIS-5 0.8093 0.9683 0.8022 0.8807 0.8515

SuBSENSE 0.8018 0.9603 0.7675 0.8732 0.8441

PAWCS 0.7984 0.9500 0.8473 0.8750 0.8988

PSP-MRF 0.7927 0.9566 0.7690 0.8735 0.8109

ConvNet-IUTIS 0.7897 0.9647 0.8013 0.8590 0.8273

EFIC 0.7883 0.9231 0.8050 0.8270 0.9336

Spectral-360 0.7867 0.9477 0.7511 0.7156 0.8797

SC SOBS 0.7450 0.9491 0.7073 0.8602 0.7985

GMM 0.7444 0.9478 0.6103 0.8396 0.8182

GraphCut 0.7394 0.9304 0.5183 0.7543 0.8208

Table: Overall and per-category F scores for different methods.
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Motion analysis and background subtraction Evaluation

Evaluation

Elements

1 Metric

2 Ground truth data

3 Interpretation

Evaluation tasks

I Determine the intrinsic performance of a method

I Compare methods

I Rank methods
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Performance analysis General discussion

What do we want to evaluate?

Segmentation Edge detection Background subtraction

It is challenging...
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Performance analysis General discussion

General principles of evaluation I

The process of evaluation might involve:

I The definition of a methodology that comprises experiments (note
that it is important to be explicit on experimental conditions).

I Criteria or scores.
I Reference data:

unlabeled data, which is collected “in the wild”.
labeled or annotated data, sometimes named as ground truth data.
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Performance analysis General discussion

General principles of evaluation II

Typology of evaluation methods:

1 Subjective. The evaluation process involves a representative group of
human viewers.

[+] takes the user’s experience into account.
[−] is time-consuming (→ expensive),

provides subjective evaluation scores,
depends on the experimental setup.

2 Objective. Based on objective measurements.

Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 89 / 538



Performance analysis General discussion

Objective quality measures and distortion measures I

Let f be the input image (whose size is N × N) and f̂ be the image after
some processing.

Original data Noisy image Cleaned image

Ground truth Input Output

Not always available Available Calculated
f f̂
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Performance analysis General discussion

Objective quality measures and distortion measures II

Definition (Mean Square Error)

MSE =
1

NM

N−1∑

j=0

M−1∑

k=0

(
f (j , k)− f̂ (j , k)

)2
(13)

Definitions (Signal to noise ratios)

[Signal to Noise Ratio]

SNR =

∑N−1

j=0

∑M−1

k=0
(f (j , k))2

∑N−1

j=0

∑M−1

k=0

(
f (j , k)− f̂ (j , k)

)2
(14)

[Peak Signal to Noise Ratio]

PSNR =
NM × 2552

∑N−1

j=0

∑M−1

k=0

(
f (j , k)− f̂ (j , k)

)2
(15)
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On the importance of ground truth data

Depending of the availability of ground truth, we have:

I Standalone evaluation.
When a reference is not available.

I Relative evaluation.
When ground truth data is available for comparison.

Properties of “good” ground truth data

1 representative for the application.

2 different conditions for the acquisition (large variety of samples,
always directly related to the application).

3 correctly annotated (→ there is some agreement on the quality of the
reference).
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Performance analysis General discussion

Difficulties specific to ground truth data

Annotation process

I the “annotation” process (which consists to build the ground truth
data) is complex and sometimes debatable.
Two “flavors”:

synthetic data (which comes with synthetic annotations)
real data with manually annotated data.

I the annotation process is partly subjective.
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Performance analysis General discussion

An example of ground truth data I

ChangeDetection.NET (CDNET) dataset: a dataset for testing background subtraction
algorithms
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An example of ground truth data II

Main characteristics:

I 11 categories: about 5 videos per category

I long video sequences
I thousands of annotated images (ground truth data)

5 labels: static (≡ background), shadow, non-ROI, unknown, and
moving (≡ foreground)

I 7 performance metrics are computed

I ranking per video, category, and globally
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Performance analysis General discussion

Evaluation tasks

We can distinguish 3 main reasons for evaluation:

1 Optimization/analysis of a solution. For example, we have different
parameter sets, then
. what are the best parameters?

2 Comparison between algorithms
. Is algorithm A better than algorithm B?

3 Ranking.
. Which one is the best?

Ideally, evaluation tools should be different for these tasks. In practice,
there is a confusion.
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Performance analysis Evaluation criteria and metrics

A framework for developing evaluation criteria

Terminology from the classification theory.

Definition (Classification)

In machine learning and statistics, classification is the process of
identifying the category/class of a new observation, on the basis of a
training set of data containing observations (or instances) whose category
membership is known.

The categories are named “classes”.

Example (In background subtraction, there are two classes:)

1 Foreground

2 Background

But there could be more: shadows, sky, road, etc.
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The notion of positive and negative

Let us consider a two-class problem and denote the “negative” and
“positive” classes by c− and c+, respectively. In background subtraction,
background ≡ negative and foreground ≡ positive .

Original image Binary segmentation map

Figure: Background subtraction identifies pixels belonging to the foreground (positive

class c+, white pixels) and pixels belonging to the background (negative class c−, black

pixels).
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Performance analysis Evaluation criteria and metrics

Some definitions and notations

A classifier estimates the class of each new sample (pixel in the case of
background subtraction).

There are two notions of classes:

[true class or ground truth] it is denoted by y ∈ {c−, c+}.
[estimated class] the class estimated by the classifier is denoted by

ŷ ∈ {c−, c+}

Other notions:

I π− = p (y = c−) and π+ = p (y = c+) are the priors.

I the rates of negative and positive predictions, denoted by
π̂− = p (ŷ = c−) and π̂+ = p (ŷ = c+) respectively (not to be
confused with the priors!).
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Confusion matrix

Definition (Confusion matrix)

There are four possibilities, described by the confusion matrix:

prediction ŷ
c+ c−

real class y
c+ True Positive (TP) False Negative (FN)
c− False Positive (FP) True Negative (TN)

Remarks:

I There are four quantities: TP, FN, FP, TN.

I It is easy to extend a confusion matrix to more than two classes.

I How do we build metrics/performance indicators?
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Performance analysis Evaluation criteria and metrics

Evaluation metrics

Definitions (Conditional probabilities)

They involve the true class:

I True Positive Rate, also named sensitivity or recall, is defined as

TPR = p
(
ŷ = c+|y = c+) =

TP

TP + FN
(16)

I True Negative Rate (also named specificity) is

TNR = p
(
ŷ = c−|y = c−

)
=

TN

TN + FP
(17)

These quantities are linked to the

I False Positive Rate FPR = (1− TNR) = FP
FP+TN

I False Negative Rate FNR = (1− TPR)
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Receiver Operating Characteristic (ROC) evaluation space

Definition (Receiver Operating Characteristic (ROC))

The (FPR, TPR) pair defines the ROC evaluation space.
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Performance analysis Evaluation criteria and metrics

Precision/recall evaluation space

Definition (Precision)

P = p
(

y = c+|ŷ = c+
)

=
TP

TP + FP
(18)

Definitions (Recall [≡ TPR])

R = p
(

ŷ = c+|y = c+
)

=
TP

TP + FN
(19)
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Particularities of the ROC and Precision/Recall space

I Unachievable zone in the PR space, but only the upper part of the
ROC curve makes sense.

I In the ROC space, the diagonal represents the random classifiers.

Figure: Isoperformance lines for the F metric (F = 2 P×R
P+R = 2TP

2TP+FP+FN ).
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Evaluation of segmentation quality I

Problem statement
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Performance analysis Illustrations

Evaluation of segmentation quality II

Practice:

I Does not nicely fit into the framework of classification

I Some difficulties:

individual object segmentation quality vs overall segmentation quality
evaluation
subjectivity for defining the ground truth

I Two major classes of metrics for standalone segmentation quality
evaluation

intra-object homogeneity
inter-object disparity

I Metrics for relative segmentation quality evaluation

spatial accuracy
temporal accuracy
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Evaluation of edge detection I

Problem statement
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Performance analysis Illustrations

Evaluation of edge detection II

Practice:

I Some evaluation methods rely on the classification theory.

I Use of the Precision/Recall evaluation space.

I The F score is a trade-off (harmonic mean between P and R):
F = 2

1
P

+ 1
R

= 2 P×R
P+R
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Figure: Maximum Precision and Recall curve obtained by varying the parameter set. Circles

indicate where the F measure is maximal.
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Evaluation of background subtraction I

Problem statement
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Performance analysis Illustrations

Evaluation of background subtraction II

Practice:

I Many dataset with ground truth available.

I Background subtraction is often considered as a classification task.

I Many algorithms available ⇒ most people try to rank algorithms.

I Many metrics. No agreement over the best one (if it exists).
Therefore, an algorithm is evaluated with respect to multiple metrics.

I It is still hard to evaluate the dynamic (≡ over time) behavior.
Usually, there is one score for the whole video sequence.

I The role of priors is underestimated or just ignored.
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Problems with the ChangeDetection dataset I

Reminder: main characteristics

I 11 categories: about 5 videos per category

I long video sequences
I thousands of annotated images (ground truth data)

5 labels: static (≡ background), shadow, non-ROI, unknown, and
moving (≡ foreground)

I 7 performance metrics are computed

I ranking per video, category, and globally

Are there problems?
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Performance analysis Illustrations

Problems with the ChangeDetection dataset II

I About the content:

Some categories are irrelevant for most targeted applications.
Some hand-made annotations are debatable. For example, how do you
handle ghosts or static objects? How do you define the shadow?

I About the methodology:

All the data is available ⇒ it is possible to fine tune all the
parameters.
Parameters of methods are supposed to be the same for all videos.
How do we treat methods that adaptively tune parameters?
Problem with the ranking methodology.
The averaging process for the metrics (per category and globally) is
incorrect.
No source code available for some methods ⇒ some results are
impossible to check.
Some metrics are redundant
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3D vision: calibration and reconstruction

Motivation

The physical world is in 3D (but flattened/2D by color cameras)

I Acquire 3D information

I Understand 3D geometry (in the eyes of a camera)

I Exploit 3D information for computer vision tasks

I Change the viewpoint of an observer
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3D vision: calibration and reconstruction Camera calibration: the pinhole model

Two common tasks in 3D vision I

Camera calibration

Definition. Camera calibration is defined as the technique of estimating
the characteristics of a camera.

Goal. Determine an accurate relationship between (X ,Y ,Z ), a 3D
point in the real world, and (x , y), its corresponding 2D
projection in the image acquired by a calibrated camera.
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3D vision: calibration and reconstruction Camera calibration: the pinhole model

Two common tasks in 3D vision II

3D reconstruction

Definition. 3D reconstruction is the process of capturing the shape and
appearance of real objects.
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3D vision: calibration and reconstruction Camera calibration: the pinhole model

Basic set of 2D planar transformations
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3D vision: calibration and reconstruction Camera calibration: the pinhole model

Building a mathematical model for cameras I

A camera projects a 3D world onto a 2D image.
⇒ this is the concept of projection.

Remarks:

I when we apply a transformation, some characteristics are preserved.
For example, when you translate an object, its dimensions and angles
are preserved.

I translations and rotations (which can be expressed as the product of a
matrix on the (X , Y , Z )T real world coordinates) preserves distances,
angles, etc. These leads to so-called Euclidean transformations.

I But what is preserved in general?

distances? angles? parallelism? alignment of pixel (≡ lines)?
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3D vision: calibration and reconstruction Camera calibration: the pinhole model

Building a mathematical model for cameras II

The real problem if that we have some ambiguities when we project an 3D
object to a 2D plane.

One of the simplest model (and most common): pinhole camera (central
projection)

What is preserved?

I distances? angles? “parallelism”? No.

I alignment of pixel (≡ lines)? Yes
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Pinhole camera model

I All the light rays converge to a unique point (camera center) before
arriving on the sensor plane.

p
f

C

Y

Z

f Y / Z

y

Y

x

X

x

p

image plane
camera
centre

Z

principal axis

C

X

I Vocabulary terms:

camera center: center of the central projection.
image plane: plane of the sensor.
principal axis: line passing through the camera center and orthogonal
to the image plane.
principal point: intersection between the principal axis and the image
plane.
f is called the focal length.
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Mathematical model of the pinhole camera I

p
f

C

Y

Z

f Y / Z

y

Y

x

X

x

p

image plane
camera
centre

Z

principal axis

C

X

If X = (X , Y , Z )T is a point in space1 and x = (x , y)T is its projection
on the image plane, then similar triangles gives

x

f
=

X

Z
and

y

f
=

Y

Z
(20)

Ambiguity: although f is fixed for a camera, we cannot derive the absolute
values of X and Y from the measured pair of values (x , y).
⇒ a convenient representation is that of homogeneous coordinates

1We use capital/uppercase letters to denote coordinates in the real world.
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Homogeneous coordinates I

Homogeneous coordinates

Idea: new representation, by adding a trailing 1: (x , y , 1)

(x , y) ≡ (x , y , 1) (21)

By definition, we assume that

(x , y) ≡ (λx , λy , λ) (22)

so that all pixels with varying λ are equivalent. In other words, in
homogeneous coordinates, a point may be expressed by an infinite number
of homogeneous coordinates.
Note: this is similar to how we define rational numbers, that have many
different equivalent representations:

1

3
=

2

6
=

13

39
(23)
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Homogeneous coordinates II

Properties:

I (x , y , 0) is not equivalent to (x , y). It is a special point.

I A point of Rn is represented by a vector of size n + 1. Example:

x = (x1, x2, x3)T ∈ R3 7→
(

x1

x3
,

x2

x3

)T

∈ R2

I A line in a plane is represented by the following equation
ax + by + c = 0. With homogeneous coordinates, this becomes:

l = (a, b, c)T

I A point belongs to a line if and only if xT l = 0.

I Intersection between two lines: x = l× l′ where × is the product
between vectors.
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Simple example to show the interest of homogeneous
coordinates

Let us consider translations.
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Camera matrix I

With the help of homogeneous coordinates, the relationships of a pinhole
camera model can be expressed in a convenient matrix form:

λ




x
y
1


 =




f 0 0 0
0 f 0 0
0 0 1 0







X
Y
Z
1


 (24)

where λ is equal to the depth Z .
Remember that we don’t know the depth Z from the observation in the
place image (depth ambiguity).




X
Y
Z
1


 7→ λ




x
y
1


 =




f 0 0 0
0 f 0 0
0 0 1 0







X
Y
Z
1


 = PX
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Camera matrix II

I P is a camera (projection) matrix

I For convenience, P is decomposed as follows:

P =




f 0 0
0 f 0
0 0 1







1 0 0 | 0
0 1 0 | 0
0 0 1 | 0


 (25)

= K [I3×3|03×1] (26)

I K = diag(f , f , 1) is the calibration matrix.
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Generalization of the pinhole camera model I

(1) The central point might not be at (0, 0) in the image plane

⇒ two additional parameters in the calibration matrix

y

0

0 p

cam

x cam
y

y

x x

I If (x0, y0)T are the coordinates of the principal point, the projection
becomes:

(X , Y , Z )T 7→
(

f
X

Z
+ x0, f

Y

Z
+ y0

)T

(27)
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Generalization of the pinhole camera model II

I The matrix form is

λ




x + x0

y + y0

1


 =




f 0 x0 0
0 f y0 0
0 0 1 0







X
Y
Z
1


 (28)

I The matrix K becomes

K =




f x0

f y0

1


 (29)
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Generalization of the pinhole camera model III

(2) Non rectangular light-elements on the sensor

→ skew parameter s

(3) Non squared elements

This modifies the aspect ratio → αx and αy .

Finally,

K =



αx s x0

αy y0

1


 (30)
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Intrinsic parameters

Intrinsic parameters

In a refined camera model,

K =



αx s x0

αy y0

1


 (31)

This matrix has 5 parameters. These parameters are called intrinsic
parameters.

They characterize a camera and should be estimated for each camera
separately. But once they are known, there is no need to estimated them
again!
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Calibration

Definition

A camera is said to be calibrated if

K =



αx s x0

αy y0

1




is known.

In general:

I αx ' αy

I s ' 0

I x0 and y0 close to 0 pixel (typically a few pixels maximum).

But we have a problem: we don’t know where the center of camera is
located in the real world. So there is no way to measure (X , Y , Z , 1)T .
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Towards extrinsic parameters I

Points in the 3D world need to be expressed in a system coordinate
different from that of the camera (which is not known).

I Both coordinate systems are related by a rotation and a translation:

X

Z

Y

R, t

Y

Xcam

cam

O

C Zcam
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Towards extrinsic parameters II

For a translation:



Xc

Yc

Zc

1


 =




X0 − t1

Y0 − t2

Z0 − t3

1


 =




1 0 0 −t1

0 1 0 −t2

0 0 1 −t3

0 0 0 1







X0

Y0

Z0

1


 (32)

=

[
I −t
0 1

]



X0

Y0

Z0

1


 (33)

More generally (translation + rotation):




Xc

Yc

Zc

1


 =

[
RT 0
0 1

] [
I −t
0 1

]



X0

Y0

Z0

1


 (34)
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Towards extrinsic parameters III

In conclusion:

Xc =

[
RT −RT t
0 1

]
X0 (35)

where R is a rotation matrix and t a translation vector. This is not a
projection, but an Euclidean transform between coordinate systems.

Extrinsic parameters

There are 6 degrees of freedom/parameters (called extrinsic parameters):

I a translation vector (3 values)

I 3 rotation angles
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Conclusions on P I

Pinhole camera model:

λx = K [I3×3|03×1] Xc (36)

Link between the coordinate system of the camera and an arbitrary
coordinate system:

Xc =

[
RT −RT t
0 1

]
X (37)

By combination:

λx = KRT [I| − t] X = PX (38)

where P = KRT [I| − t].
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Conclusions on P II

Definition

A camera represented with a camera matrix of the form P = KRT [I| − t] is
called normalized camera.

P is a 3× 4 matrix, which is subject to scale ambiguity. Therefore, P has
11 degrees of freedom (unknown parameters):

I 5 intrinsic parameters (related to camera itself; the manufacturer can
computed them and give them to the user who buys the camera).

I 6 extrinsic parameters (related to the choice of an external coordinate
system).
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Outline

1 Fundamentals of 2D imaging

2 Motion analysis and background subtraction

3 Performance analysis

4 3D vision: calibration and reconstruction
Camera calibration: the pinhole model
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3D reconstruction

5 Linear filtering

6 Mathematical morphology

7 Edge detection

8 Non-linear filtering

9 Feature detection and tracking

10 Segmentation

11 Object description and analysis

12 Template Matching & Image Registration

13 Introduction to machine learning
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Calibration procedure I

How do we find the parameters of P?

I We need correspondences between some 3D positions on their
location on the projected 2D image Xi ↔ xi = (xi , yi , zi ).

I As a result

xi = PXi ⇒ xi × PXi = 0

Let Pj be the vector with the jth line of P,




0T −ziX
T
i yiX

T
i

ziX
T
i 0T −xiX

T
i

−yiX
T
i xiX

T
i 0T







P1

P2

P3


 = 0

I Two of these equations are linearly independent. But how many
correspondences do we need to solve this linear systems?

At least 6
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Calibration procedure II

I In practice, we have an over-determined system of linear equations
Ap = 0 if there is no noise. But, due to noise, we use an optimization
procedure, such as the minimum square optimization

I Use of a precise and well-known 3D calibration pattern
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Outline

1 Fundamentals of 2D imaging

2 Motion analysis and background subtraction

3 Performance analysis

4 3D vision: calibration and reconstruction
Camera calibration: the pinhole model
Calibration procedure
3D reconstruction

5 Linear filtering

6 Mathematical morphology

7 Edge detection

8 Non-linear filtering

9 Feature detection and tracking

10 Segmentation

11 Object description and analysis

12 Template Matching & Image Registration

13 Introduction to machine learning
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3D reconstruction

Reconstruction involves several aspects:
I 3D reconstruction of the scene

dense reconstruction (we have to find the depth for every pixels of the
scene)
non-dense reconstruction

I detection of features. Usually, these are special points of objects
(corners, centers, etc)

I the scene content might be moving

Feature detection and motion are often related to each other!
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Technologies for dealing with 3D information

Acquisition

I Single monochromatic/color camera

I Multiple cameras (stereoscopy, network of cameras)

I Depth (range) cameras

Rendering
I Glasses

Color anaglyph systems

Polarization systems

I Display

Autostereoscopic display technologies
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3D reconstruction

There are several ways to reconstruct the 3D geometry of a scene
(typology of methods)
I Direct methods:

depth cameras (also named range or 3D cameras)
stereoscopic vision or multiview camera systems

I Indirect methods (more or less out of fashion due the existence of 3D
cameras):

“depth from motion”
“depth from focus”
“depth from shadow”
...
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Depth cameras I

There are two acquisition technologies for depth-cameras, also called
range- or 3D-cameras:
[1] estimation of the deformations of a pattern sent on the scene
(structured light).
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Depth cameras II

First generation of the Kinects
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Depth cameras III

[2] measurements by time-of-flight (ToF). Time to travel forth and back
between the source led (camera) and the sensor (camera).

If d is the distance to a point in the scene and t is the time for the signal
to travel from and back to the sensors, then

d =
c

2t

where c = 3× 108 m/s is the speed of light.

Mesa Imaging, Kinect (second generation), PMD cameras
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Depth cameras IV
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Illustration of a depth map acquired with a range camera

Two informations are provided by a range camera:
depth and intensity

Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 151 / 538

3D vision: calibration and reconstruction 3D reconstruction

Systems composed of multiple cameras

Three elements interact:

I calibration

I possible motion of the cameras

I 3D structure of the scene

Theorem

Assume a series of images taken with an uncalibrated moving camera for
which we have establish correspondences between pairs of points, then it is
only possible to reconstruct the 3D scene up to a projective transform.

In the following, we only consider fixed cameras.
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Steps to reconstruct a scene from multiple cameras
(stereoscopic system)

Generally, we have to find correspondences between points of the views of
two color cameras.
There are several possibilities:

1 cameras are aligned (mechanically of numerically, after a
transformation) → computation of the disparity map.

2 cameras are not aligned → corresponding points in the two camera
planes are related to each other via the fundamental matrix.
The fundamental matrix imposes a constraint; it is not sufficient to
reconstruct a scene (calibration is needed, etc). This is studied under
the name of epipolar geometry.

3 all the points are in the same plane → this constraint (knowledge)
facilitates the correspondence finding between two views. The
transformation is named an homography.
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Stereoscopic cameras (aligned cameras)

If cameras are aligned, the disparity is the inverse of depth.
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Computation of a disparity (depth) map

If two cameras only differ in the horizontal direction, the horizontal
difference between two locations provides an information about the depth.

Attention:

I cameras and alignments are not perfect!

I disparity only estimates Z !
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Disparity maps: illustration and difficulties I
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Disparity maps: illustration and difficulties II

left view right view disparity contours

The computation is disparity is difficult:

I close to borders (diffraction effects)

I in texture-less zones
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Discussion

Advantages (+) or drawbacks (-) of a reconstruction (≡ depth
computation) by the technique of disparity maps:

I (+) the process is simple. One only has to estimate the distance
between two corresponding points along a line.

I (-) cameras must be aligned,

either mechanically,
or by software. This usually involves re-sampling the image, leading to
precision losses.

We need an alternative when the cameras are not aligned.
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Unaligned cameras: epipolar geometry and fundamental
matrix I

C C /

 π

x x

X

epipolar plane  

/

C and C′ are the center of the two cameras.
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Unaligned cameras: epipolar geometry and fundamental
matrix II

x

e

X ?

X

X ?

l

e

epipolar line
for x

/

/

The use of a second camera is supposed to help determining the location
of a point X along the projection line of the other camera.
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Major challenges I

Objective: find a way to use the correspondences between points in a pair
of views to be able to find (X , Y , Z ) for every point in the scene.

I Calibration:
each camera has its own calibration matrix:

solution: find the intrinsic and extrinsic parameters

when there are two cameras

solution: there exists a way to build the relationship between the
projections in the camera planes that is expressed by the fundamental
matrix or the essential matrix.

I Camera placement:

fixed: the manufacturer can calibrate the camera.
changing or unknown: one can isolate the intrinsic parameters, but this
requires a calibration procedure.

I Object structures: they might lead to ambiguities (holes, shadows,
etc).
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Major challenges II

“realistic” solution: do some prior assumptions about the objects. It is
impossible to solve all the ambiguities, even with an infinite number of
cameras.
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Towards the fundamental matrix

Consider a point X in space. It is viewed by the two cameras as:

λ1x1 = P1X = [A1| b1]X (39)

λ2x2 = P2X = [A2| b2]X (40)

We find X , Y , Z with the help of the equations of the first camera:

λ1x1 = P1X = [A1| b1]X = A1




X
Y
Z


+ b1 (41)

therefore, 


X
Y
Z


 = A−1

1 (λ1x1 − b1) (42)

By substitution, in the second equation, we get

λ2x2 = A2A
−1
1 (λ1x1 − b1) + b2 = λ1A12x1 + (−A12b1 + b2) (43)

Consequently, x1 and x2 are linearly independent.
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Fundamental matrix

Epipolar constraint



x ′

y ′

1




T

F




x
y
1


 = 0 (44)

I The fundamental matrix F is a 3× 3 matrix that constraints the
values of the coordinates in the image planes of two cameras.

I x′Fx = 0 for all the corresponding pairs x↔ x′.

Characteristics:

I 7 degrees of freedom (rank 2 matrix)

I the determinant is null

I it is defined up to a scaling factor
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Link between the fundamental matrix and the calibration
matrices of the cameras I

We can derive the fundamental matrix, starting from the two camera
models. Assume that:

1 we are able to isolate the intrinsic and extrinsic parameters of both
cameras.

2 the absolute 3D coordinate systems is placed on the internal
coordinate of one camera. Then, we have

P = K [I|0] and P′ = K′ [R|t] (45)
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Link between the fundamental matrix and the calibration
matrices of the cameras II

Then, it can be shown that the fundamental matrix is given by

F = K′−T [t]×RK−1 = K′−TR[RT t]×K−1 (46)

where

[a]× =




0 −a3 a2

a3 0 −a1

−a2 a1 0


 (47)

If the intrinsic parameters are known, the coordinates can be normalized to
remove the effect of the intrinsic parameters (according to transformation
such as û = K−1u and û′ = K′−1u′), leading to

P = [I|0] and P′ = [R|t] (48)
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Link between the fundamental matrix and the calibration
matrices of the cameras III

The fundamental matrix simplifies, which results in the essential matrix.

E = [t]×R = R[RT t]× (49)

The major advantage of this matrix is that only the extrinsic parameters
play a role (the essential matrix has 5 degrees of freedom).
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Computation of the fundamental matrix: similar ideas to
that of the computation of the calibration matrix

I We have to find a number of pairwise correspondences xi ↔ x′i
(minimum of 4)

I We build a system of linear equations by means of x′iFxi = 0

I The resolution of the system leads to F

There exist several algorithms to proceed to the determination of F.

Remember that, if the fundamental matrix links the points between two
planes, it does not suffice to reconstruct a scene.
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Reconstruction of a 3D: steps I

1 Find correspondences between pairs of points in the two views

2 Calculate the fundamental/essential matrix

3 Find the camera parameters, with the help of the essential matrix:

P = [I|O] P′ =
[
[e′]×F|e′

]

where

[a]× =




0 −a3 a2

a3 0 −a1

−a2 a1 0




and

FTe′ = 0
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Reconstruction of a 3D: steps II

4 For each pixel xi ↔ x′i , triangulate Xi :

PXi × xi = 0 et P′Xi × x′i = 0

We have 4 equations for 3 unknowns.

Attention! Remember that this reconstruction is valid up to a projective
transform.
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Outline

1 Fundamentals of 2D imaging

2 Motion analysis and background subtraction

3 Performance analysis
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8 Non-linear filtering

9 Feature detection and tracking

10 Segmentation

11 Object description and analysis
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13 Introduction to machine learning
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Linear filtering

What is filtering?

f (x) 25 27 30 24 17 15 22 23 25

x 0 1 2 3 4 5 6 7 8

min{f (x + 1), f (x), f (x − 1)} 25 24 17 15 15 15 22

max{f (x + 1), f (x), f (x − 1)} 30 30 30 24 22 23 25

“better” version of f (x)?

But, why do we filter an image?
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Linear filtering Linear filtering

Linear filtering

I Fourier transform and filtering operation

I The notion of “ideal” filter

I Categories of ideal filters
I Typical filters:

Low-pass filters
High-pass filters
Gabor filters
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Linear filtering Linear filtering

Fourier transform: definition and interpretation I

Let us take f (x , y) as the values of a single channel image (for example,
the grayscale component):

I (x , y) are the coordinates

I f (x , y) is the single-valued image of the pixel located at (x , y)

Definition ((Continuous) Fourier transform)

The (continuous) Fourier transform F(u, v) of f (x , y) is defined by

F(u, v) =

∫ +∞

−∞

∫ +∞

−∞
f (x , y)e−2πj(ux+vy)dxdy (50)
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Linear filtering Linear filtering

Fourier transform: definition and interpretation II

Example

The Fourier transform is a complex image (it has a real component and an
imaginary component). Often, we are interested in the amplitude.

(a) (b)

Figure: (a) original image and (b) centered Fourier transform of its amplitude.
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Linear filtering Linear filtering

Fourier transform: definition and interpretation III

What is a spatial frequency?

Simple waveforms and profiles

Complex waveform
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Linear filtering Linear filtering

Fourier transform: definition and interpretation IV

The Fourier transform is a representation of f (x , y) in terms of spatial
frequencies:
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Linear filtering Linear filtering

Fourier transform: definition and interpretation V

Definition ((Continuous) inverse Fourier transform)

The inverse (continuous) Fourier transform is defined by

f (x , y) =

∫ +∞

−∞

∫ +∞

−∞
F(u, v)e2πj(ux+vy)dudv (51)

There is a one-to-one relationship between a f (x , y) and F(u, v):

f (x , y)
 F(u, v) (52)

Definition (Filtering)

Applying a filter H(u, v) corresponds to modify the Fourier coefficient of
some frequencies

F(u, v) −→ F(u, v)H(u, v) (53)
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Linear filtering Linear filtering

Notion of “ideal” filter

A filter is said to be “ideal” if every transform coefficient is multiplied by 0
or 1.

Definition (Ideal filter)

An ideal filter is such that its transfer function is given by

∀(u, v), H(u, v) = 0 or 1. (54)

The notion of ideal filter is closely related to that of idempotence. The
idempotence for a filter is to be understood such that, for an image
f (x , y),

F(u, v)H(u, v) = F(u, v)H(u, v)H(u, v) (55)
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Linear filtering Linear filtering

Typology of ideal filters I

For one-dimensional signals (such as the image function along an image
line):

Band-passLow-pass

‖H(u)‖

u

1

High-pass

Figure: One-dimensional filters.
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Linear filtering Linear filtering

Typology of ideal filters II

There are three types of circular ideal filters:

I Low-pass filters:

H (u, v) =

{
1

√
u2 + v 2 ≤ R0

0
√

u2 + v 2 > R0
(56)

(a) Original image (b) Low-pass filtered image
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Linear filtering Linear filtering

Typology of ideal filters III

I High-pass filters:

H (u, v) =

{
1

√
u2 + v 2 ≥ R0

0
√

u2 + v 2 < R0
(57)

I Band-pass filters. There are equivalent to the complementary of a
low-pass filter and a high-pass filter:

H (u, v) =

{
1 R0 ≤

√
u2 + v 2 ≤ R1

0 otherwise
(58)
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Linear filtering Linear filtering

Typology of ideal filters IV

u

v

H(u, v)

Figure: Transfer function of pass-band filters.

Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 184 / 538



Linear filtering Linear filtering

Effects of filtering

Figure: Fourier spectra of images filtered by three types of circular filters.
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Linear filtering Linear filtering

Low-pass filters I

A typical low-pass filter is the Butterworth filter (of order n) defined as

H (u, v) =
1

1 +
(√

u2+v2

R0

)2n . (59)

u

v

H(u, v)

Figure: Transfer function of a low-pass Butterworth filter (with n = 1).
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Linear filtering Linear filtering

Low-pass filters II

(a) Input image (b) Spectrum of the filtered image

Figure: Effects of an order 1 Butterworth filter (cut-off frequency: fc = 30).
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Linear filtering Linear filtering

Effect of a low-pass filter (with decreasing cut-off
frequencies)
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Linear filtering Linear filtering

High-pass filters I

H (u, v) =
1

1 +
(

R0√
u2+v2

)2n (60)

(a) Filtered image (b) Spectrum of (a)

Figure: Effects of an order 1 Butterworth filter 1 (cut-off frequency: fc = 50).

Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 189 / 538

Linear filtering Linear filtering

Effect of a high-pass filter (with increasing cut-off
frequencies)
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Linear filtering Linear filtering

Gabor filters I

Definition
Gabor filters belong to a particular class of linear filters. There are directed
filters with a Gaussian-shaped impulse function:

h(x , y) = g(x ′, y ′)e2πj(Ux+Vy) (61)

I (x ′, y ′) = (x cosφ+ y sinφ ,−x sinφ+ y cosφ), these are the (x , y)
coordinates rotated by an angle φ, and

I g(x ′, y ′) = 1
2πσ2 e(−(x ′/λ)2+y ′2)/2σ2

.

The corresponding Fourier transform is given by

H(u, v) = e−2π2σ2[(u′−U′)2λ2+(v ′−V ′)2] (62)

I (u′, v ′) = (u cosφ+ v sinφ ,−u sinφ+ v cosφ), and

I (U ′,V ′) is obtained by rotating (U,V ) with the same angle φ.
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Linear filtering Linear filtering

Gabor filters II

Figure: Transfer function of Gabor filter. The white circle represents the −3 [dB] circle

(= half the maximal amplitude).
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Linear filtering Linear filtering

Gabor filters III

Figure: Input image and filtered image (with an filter oriented at 135o).
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Linear filtering Linear filtering

Implementation

There are mainly 4 techniques to implement a Gaussian filter:

1 Convolution with a restricted Gaussian kernel. One often chooses
N0 = 3σ or 5σ

g1D [n] =

{
1√
2σ

e−(n2/2σ2) |n| ≤ N0

0 |n| > N0
(63)

2 Iterative convolution with a uniform kernel:

g1D [n] ' u[n]⊗ u[n]⊗ u[n] (64)

where

u[n] =

{
1

(2N0+1) |n| ≤ N0

0 |n| > N0
(65)

3 Multiplication in the Fourier domain.

4 Implementation as a recursive filter.

Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 194 / 538



Mathematical morphology
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Mathematical morphology

Mathematical morphology

I Reminders of the set theory

I Basic morphological transforms

I Neighboring transformations

I Geodesy and reconstruction

I Grayscale morphology

Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 196 / 538



Mathematical morphology

Reminders of the set theory I

Sets will be denoted with capital letters, such as A, B, . . ., and elements
of these sets by lowercase letters a, b, . . .

I Set equality
Two sets are equal if they contain the same elements:
X = Y ⇔ (x ∈ X ⇒ x ∈ Y and x ∈ Y ⇒ x ∈ X ). The empty set is
denoted as ∅.

I Inclusion
X is a subset of Y (that is, X is included in Y ) if all the elements of
X also belong to Y : X ⊆ Y ⇔ (x ∈ X ⇒ x ∈ Y ).

I Intersection
The intersection between X and Y is the set composed of the
elements that belong to both sets:
X ∩ Y = {x such that x ∈ X and x ∈ Y }.
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Mathematical morphology

Reminders of the set theory II

I Union
The union between two sets is the set that gathers all the elements
that belong to at least one set:
X ∪ Y = {x such that x ∈ X or x ∈ Y }.

I Difference
The set difference between X and Y , denoted by X − Y or X\Y is
the set that contains the elements of X that are not in Y :
X − Y = {x |x ∈ X and x 6∈ Y }.
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Mathematical morphology

Reminders of the set theory III

I Complementary
Assume that X is a subset of a E space, the complementary set of X
with respect to E is the set, denoted X c , given by
X c = {x such that x ∈ E and x 6∈ X}.

X X c

I Symmetric
The symmetric set, X̌ , of X is defined as X̌ = {−x |x ∈ X}.
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Mathematical morphology

Reminders of the set theory IV

I Translated set
The translate of X by b is given by {z ∈ E|z = x + b, x ∈ X}.

b

X Xb

o
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Mathematical morphology Morphology on sets/objects
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Mathematical morphology Morphology on sets/objects

Basic morphological operators I

Erosion

Definition (Morphological erosion)

X 	 B = {z ∈ E|Bz ⊆ X}. (66)

The following algebraic expression is equivalent to the previous definition:

Definition (Alternative definition for the morphological erosion)

X 	 B =
⋂

b∈B
X−b. (67)

B is named “structuring element”.
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Mathematical morphology Morphology on sets/objects

Basic morphological operators II

X

b1

b2

0

X

XX

X−b1

X−b2 X−b2

X−b1

X 	 B

Figure: Algebraic interpretation of the erosion.
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Mathematical morphology Morphology on sets/objects

Erosion with a disk

B

X

X 	 B

Figure: Erosion of X with a disk B. The origin of the structuring element is
drawn at the center of the disk (with a black dot).
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Mathematical morphology Morphology on sets/objects

Dilation I

Definition (Dilation)

From an algebraic perspective, the dilation (dilatation in French!), is the
union of translated version of X :

X ⊕ B =
⋃

b∈B
Xb =

⋃

x∈X
Bx = {x + b|x ∈ X , b ∈ B}. (68)
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Mathematical morphology Morphology on sets/objects

Dilation II

Xb1

Xb1

X

X

b1

b2

0

X

Xb2

Xb2

X ⊕ B

Figure: Illustration of the algebraic interpretation of the dilation operator.
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Mathematical morphology Morphology on sets/objects

Dilation III

B

X

X ⊕ B

Figure: Dilation of X with a disk B.
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Mathematical morphology Morphology on sets/objects

Properties of the erosion and the dilation

Duality
Erosion and dilation are two dual operators with respect to
complementation:

X 	 B̌ = (X c ⊕ B)c (69)

X 	 B = (X c ⊕ B̌)c (70)

Erosion and dilation obey the principles of“ideal”morphological operators:

1 erosion and dilation are invariant to translations: Xz 	B = (X 	B)z .
Likewise, Xz ⊕ B = (X ⊕ B)z ;

2 erosion and dilation are compatible with scaling:
λX 	 λB = λ(X 	 B) and λX ⊕ λB = λ(X ⊕ B);

3 erosion and dilation are local operators (if B is bounded);

4 it can be shown that erosion and dilation are continuous transforms.
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Mathematical morphology Morphology on sets/objects

Algebraic properties

1 erosion and dilation are increasing operators: if X ⊆ Y , then
(X 	 B) ⊆ (Y 	 B) and (X ⊕ B) ⊆ (Y ⊕ B);

2 if the structuring element contains the origin, then the erosion is
anti-extensive and the dilation is extensive, that is X 	 B ⊆ X and
X ⊆ X ⊕ B.
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Mathematical morphology Morphology on sets/objects

Morphological opening I

Definition (Opening)

The opening results from cascading an erosion and a dilation with the
same structuring element:

X ◦ B = (X 	 B)⊕ B (71)
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Mathematical morphology Morphology on sets/objects

Interpretation of openings (alternative definition)

The interpretation of the opening operator (which can be seen as an
alternative definition) is based on

X ◦ B =
⋃
{Bz |z ∈ E and Bz ⊆ X} (72)

In other words, the opening of a set by structuring element B is the set of
all the elements of X that are covered by a translated copy of B when it
moves inside of X .
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Mathematical morphology Morphology on sets/objects

Morphological closing

Definition (Closing)

A closing is obtained by cascading a dilation and an erosion with a unique
structuring element:

X • B = (X ⊕ B)	 B (73)

Opening and closing are dual operators with respect to set
complementation: indeed,

(X ◦ B)c = X c • B̌ (74)

and
(X • B)c = X c ◦ B̌ (75)
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Mathematical morphology Morphology on sets/objects

Opening and closing of X with a disk B

B

X

X ◦ B X • B
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Mathematical morphology Morphology on sets/objects

Opening and closing properties

By construction, the opening and closing follow the “ideal” principles of
morphological operators.
The most important algebraic properties of X ◦ B and X • B are

1 opening and closing are increasing. If X ⊆ Y , then

(X ◦ B) ⊆ (Y ◦ B) and (X • B) ⊆ (Y • B) (76)

2 opening is anti-extensive, and closing is extensive (no condition
related on the origin here!)

X ◦ B ⊆ X , X ⊆ X • B (77)

3 opening and closing are idempotent operators (projective operators).
This means that

(A ◦ B) ◦ B = A ◦ B and (A • B) • B = A • B (78)
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Mathematical morphology Morphology on sets/objects

General properties I

I Dilation is commutative and associative

X ⊕ B = B ⊕ X (79)

(X ⊕ Y )⊕ C = X ⊕ (Y ⊕ C ) (80)

I Dilation distributes the union

(
⋃

j

Xj)⊕ B =
⋃

j

(Xj ⊕ B) (81)

I The erosion distributes the intersection

(
⋂

j

Xj)	 B =
⋂

j

(Xj 	 B) (82)
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Mathematical morphology Morphology on sets/objects

General properties II

I Chain rule (≡ cascading rule):

X 	 (B ⊕ C ) = (X 	 B)	 C (83)

I The opening and closing are not related to the exact location of the
origin (so they do not depend on the location of the origin when
defining B). Let z ∈ E

X ◦ Bz = X ◦ B (84)

X • Bz = X • B (85)
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Mathematical morphology Morphology on sets/objects

A practical problem: dealing with borders I

X X

Image

border

Physical assumption 1 Physical assumption 2

Figure: Two possible physical assumptions for borders.
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Mathematical morphology Morphology on sets/objects

A practical problem: dealing with borders II

X X

X 	 B X 	 B

Physical assumption 1 Physical assumption 2

Some pixels added to X
B

Figure: Comparison of the effects of two physical assumptions on the computation
of the erosion of X .
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Mathematical morphology Geodesic operators

Neighboring transforms

Definition

The Hit or Miss transform X ⇑ (B,C ) is defined as
X ⇑ (B,C ) = {x |Bx ⊆ X , Cx ⊆ X c} (86)

If C = ∅ the transform reduces to an erosion of X by B.
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Mathematical morphology Geodesic operators

Geodesy and reconstruction I

Geodesic dilation
A geodesic dilation is always based on two sets (images).

Definition

The geodesic dilation of size 1 of X conditionally to Y , denoted D
(1)
Y (X ),

is defined as the intersection of the dilation of X and Y :

∀X ⊆ Y , D
(1)
Y (X ) = (X ⊕ B) ∩ Y (87)

where B is usually chosen according to the frame connectivity (a 3× 3
square for a 8-connected grid).
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Mathematical morphology Geodesic operators

Geodesy and reconstruction II

(a) Set to be dilated (b) Geodesic mask

(c) Elementary dilation (d) Geodesic dilation

Figure: Geodesic dilation of size 1.

Definition

The geodesic dilation of size n of a set X conditionally to Y , denoted

D
(n)
Y (X ), is defined as n successive geodesic dilation of size 1:

∀X ⊆ Y , D
(n)
Y (X ) = D

(1)
Y (D

(1)
Y (. . . D

(1)
Y︸ ︷︷ ︸

n times

(X ))) (88)

where B is usually chosen according to the frame connectivity.
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Mathematical morphology Geodesic operators

Morphological reconstruction

Definition

The reconstruction of X conditionally to Y is the geodesic dilation of X
until idempotence. Let i be the iteration during which idempotence is
reached, then the reconstruction of X is given by

RY (X ) = D
(i)
Y (X ) with D

(i+1)
Y (X ) = D

(i)
Y (X ). (89)

(a) Blobs (b) Marking blobs (c) Reconstructed blobs

Figure: Blob extraction by marking and reconstruction.
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Mathematical morphology Grayscale morphology
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Mathematical morphology Grayscale morphology

Grayscale morphology I

Notion of a function
Let G be the range of possible grayscale values. An image is represented
by a function f : E → G, which projects a location of a value of G. In
practice, an image is not defined over the entire space E , but on a limited
portion of it, a compact D.

We need to define an order between functions.

Definition (Partial ordering between functions)

Let f and g be functions. f is inferior to g ,

f ≤ g if f (x) ≤ g(x), ∀x ∈ E (90)

Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 225 / 538

Mathematical morphology Grayscale morphology

Grayscale morphology II

Definition (Infimum and supremum)

Let fi be a family of functions, i ∈ I . The infimum (respectively the
supremum) of this family, denoted ∧i∈I fi (resp. ∨i∈I fi ) is the largest lower
bound (resp. the lowest upper bound).

In the practical case of a finite family I , the supremum and the infimum
correspond to the maximum and the minimum respectively. In that case,

∀x ∈ E ,
{

(f ∨ g)(x) = max (f (x), g(x))
(f ∧ g)(x) = min (f (x), g(x))

(91)

Definition (Translate of a function)

The translate of a function f by b, denoted by fb, is defined as

∀x ∈ E , fb(x) = f (x − b). (92)
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Mathematical morphology Grayscale morphology

Additional definitions related to operators I

Definition (Idempotence)

An operator ψ is idempotent if, for each function, a further application of
it does not change the final result. That is, if

∀f , ψ(ψ(f )) = ψ(f ) (93)

Definition (Extensivity)

An operator is extensive if the result of applying the operator is larger that
the original function

∀f , f ≤ ψ(f ) (94)
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Mathematical morphology Grayscale morphology

Additional definitions related to operators II

Definition (Anti-extensivity)

An operator is anti-extensive if the result of applying the operator is lower
that the original function

∀f , f ≥ ψ(f ) (95)

Definition (Increasingness)

An increasing operator is such that it does not modify the ordering
between functions:

∀f , g , f ≤ g ⇒ ψ(f ) ≤ ψ(g) (96)

By extension, an operator ψ1 is lower that an operator ψ2 if, for every
function f , ψ1(f ) is lower to ψ2(f ):

ψ1 ≤ ψ2 ⇔ ∀f , ψ1(f ) ≤ ψ2(f ) (97)

Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 228 / 538



Mathematical morphology Grayscale morphology

Erosion and dilation

Definition (Grayscale dilation and erosion)

Let B be the domain of definition of a structuring element. The grayscale
dilation and erosion (with a flat structuring element) are defined,
respectively as,

f ⊕ B =
∨

b∈B
fb(x) (98)

f 	 B =
∧

b∈B
f−b(x) (99)
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Mathematical morphology Grayscale morphology

Numerical example (B = {−1, 0, 1})

x 0 1 2 3 4 5 6 7 8 9 10

f (x) 25 27 30 24 17 15 22 23 25 18 20

f (x − 1) 25 27 30 24 17 15 22 23 25 18

f (x) 25 27 30 24 17 15 22 23 25 18 20

f (x + 1) 27 30 24 17 15 22 23 25 18 20

f 	 B(x) = min 25 24 17 15 15 15 22 18 18

f ⊕ B(x) = max 30 30 30 24 22 23 25 25 25

Typical questions:

I best algorithms? (note that there is some redundancy between
neighboring pixels)

I how do we handle borders?
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Mathematical morphology Grayscale morphology

Algorithms

I Based on the decomposition of the structuring element:

f 	 (H ⊕ V ) = (f 	 H)	 V
f 	 (B ⊕ B) = (f 	 B)	 ∂(B)

I Appropriate structure for storing and propagating the local min and
max

queues
histogram
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Mathematical morphology Grayscale morphology

Illustration I

B

f
f ⊕ B

f 	 B

Figure: Erosion and dilation of a function.
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Mathematical morphology Grayscale morphology

Illustration II

Figure: Erosions with squares of increasing sizes.
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Mathematical morphology Grayscale morphology

Illustration III

Figure: Dilations with squares of increasing sizes.
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Mathematical morphology Grayscale morphology

Morphological opening and closing I

The opening f ◦ B is obtained by cascading an erosion followed by a
dilation. The closing f •B is the result of a dilation followed by an erosion.

Definition (Morphological opening and closing)

f ◦ B = (f 	 B)⊕ B (100)

f • B = (f ⊕ B)	 B (101)
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Mathematical morphology Grayscale morphology

Morphological opening and closing II

f ◦ B
B

f

Figure: Opening of a function.

f • B

B

f

Figure: Closing of a function.

Figure: Opening with squares of increasing sizes.

Figure: Closing with squares of increasing sizes.

(a) Original image f (b) Erosion with a square

(c) Dilation with a square (d) Opening with a square

Figure: Morphological operators on a grayscale image.
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Mathematical morphology Grayscale morphology

Properties of grayscale morphological operators

Erosion and dilation are increasing operators

f ≤ g ⇒
{

f 	 B ≤ g 	 B
f ⊕ B ≤ g ⊕ B

(102)

Erosion distributes the infimum and dilation distributes the supremum

(f ∧ g)	 B = (f 	 B) ∧ (g 	 B) (103)

(f ∨ g)⊕ B = (f ⊕ B) ∨ (g ⊕ B) (104)

Opening and closing are idempotent operators

(f ◦ B) ◦ B = f ◦ B (105)

(f • B) • B = f • B (106)

Opening and closing are anti-extensive and extensive operators respectively

f ◦ B ≤ f (107)

f ≤ f • B (108)
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Mathematical morphology Grayscale morphology

Reconstruction of grayscale images I

Definition

The reconstruction of f , conditionally to g , is the geodesic dilation of f
until idempotence is reached. Let i , be the index at which idempotence is
reached, the reconstruction of f is then defined as

Rg (f ) = D(i)
g (f ) with D(i+1)

g (f ) = D(i)
g (f ). (109)
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Mathematical morphology Grayscale morphology

Reconstruction of grayscale images II

Figure: Original image, eroded image, and several successive geodesic dilations.
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Mathematical morphology Grayscale morphology

Reconstruction of grayscale images III

Figure: Original image, eroded image, reconstructed image starting from the
eroded image, and difference image (reverse video).
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Mathematical morphology Grayscale morphology

Reconstruction of grayscale images IV

Figure: Original image, dilated image, reconstructed image starting from the
dilated image (dual reconstruction), and difference image (reverse video).
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Edge detection

Outline

1 Fundamentals of 2D imaging

2 Motion analysis and background subtraction

3 Performance analysis

4 3D vision: calibration and reconstruction

5 Linear filtering

6 Mathematical morphology

7 Edge detection
Linear operators
Non-linear operators
Hough’s transform

8 Non-linear filtering

9 Feature detection and tracking

10 Segmentation

11 Object description and analysis

12 Template Matching & Image Registration

13 Introduction to machine learning
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Edge detection

What’s a border/contour/edge? Towards a definition

Figure: An image (diagonal gradient) and its contours (in black).
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Edge detection

(physical) Edges in depth images
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Range image Ground truth Sobel PED-2 (Lejeune)
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Edge detection

Can we locate edge points?

f (x)

0

transition
x1 2

Figure: Problem encountered in locating an edge point.
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Edge detection

Border/contour/edge detection

Outline

1 Linear operators

First derivate operators
Second derivate operators
Sampling the derivate

Residual error
Synthesis of operators for a fixed error

Practical expressions of gradient operators and convolution masks

2 Non-linear operators

Morphological gradients

3 Hough’s transform
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Edge detection Linear operators

Outline

1 Fundamentals of 2D imaging

2 Motion analysis and background subtraction

3 Performance analysis

4 3D vision: calibration and reconstruction

5 Linear filtering

6 Mathematical morphology

7 Edge detection
Linear operators
Non-linear operators
Hough’s transform

8 Non-linear filtering

9 Feature detection and tracking

10 Segmentation

11 Object description and analysis

12 Template Matching & Image Registration

13 Introduction to machine learning
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Edge detection Linear operators

Linear operators I

For derivate operators, we have to address two problems simultaneously:

1 find the best approximate for the derivate.

2 avoid an excessive amplification of the noise.

These are two apparent contradictory requirements ⇒ trade-offs
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Edge detection Linear operators

Linear operators II

Figure: Images (left-hand side) and gradient images (right-hand side)
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Edge detection Linear operators

Fourier transform (quick reminder) I
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Edge detection Linear operators

Fourier transform (quick reminder) II
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Edge detection Linear operators

Fourier transform (quick reminder) III
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Edge detection Linear operators

First derivate operator I

Let us consider the partial derivate of a function f (x , y) with respect to x .
Its Fourier transform F(u, v) becomes

∂

∂x
f (x , y)
 2πjuF(u, v) (110)

In other words, deriving with respect to x consists of multiplying the
Fourier transform of f (x , y) by the following transfer function
Hx(u, v) = 2πju, or of filtering f (x , y) with the following impulse function:

hx(x , y) =

∫ +∞

−∞

∫ +∞

−∞
(2πju) e2πj(xu+yv)dudv (111)

If we adopt a vectorial notation of the derivate, we define the gradient ∇f
of image f by

∇f =
∂f

∂x
−→ex +

∂f

∂y
−→ey = (hx ⊗ f )−→ex + (hy ⊗ f )−→ey (112)
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Edge detection Linear operators

First derivate operator II

Definition (Gradient amplitude)

|∇f | =
√

(hx ⊗ f )2 + (hy ⊗ f )2 (113)

The amplitude of the gradient is sometimes approximated by

|∇f | ' |hx ⊗ f |+ |hy ⊗ f | (114)

which introduces a still acceptable error (in most cases) of 41%!
But we still have to find a way to calculate hx ⊗ f and hy ⊗ f ...

Definition (Gradient orientation)

ϕ∇f = tan−1
(

hy ⊗ f

hx ⊗ f

)
(115)
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Edge detection Linear operators

Second derivate operator

Definition (Laplacian ∇2f )

The Laplacian is the scalar defined as

∇2f =
∂2f

∂x2
+
∂2f

∂y 2
= (hxx ⊗ f ) + (hyy ⊗ f ) (116)

As the first derivate, it can be shown that in the Fourier domain, the
Laplacian consists to apply the following filter

∇2f 

(

(2πju)2 + (2πjv)2
)
F(u, v) (117)


 −4π2(u2 + v 2)F(u, v) (118)

As can be seen, high frequencies tend to be amplified. Is this suitable?
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Edge detection Linear operators

Sampling the gradient and residual error I

In order to derive practical expressions for the computation of a derivate,
we adopt the following approach:

1 develop some approximations and derive the error due to the
approximation,

2 study the spectral behavior of these approximations, and

3 discuss some practical approximations expressed in the terms of
convolution masks.
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Edge detection Linear operators

Sampling the gradient and residual error II

Centered approximations (along a single axis!, for example a line of
the image)?
First derivate: an approximation is

f ′a(x) =
f (x + h)− f (x − h)

2h
=

(+1)f (x + h) + (−1)f (x − h)

2h
(119)

where h is the distance between two samples and index a denotes that it is
an approximation. Note that this approximation consists to filter f (x) by
the following “multiplicative” mask

1

2h

[
−1 0 +1

]
(120)

or the convolution mask

1

2h

[
+1 0 −1

]
(121)
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Edge detection Linear operators

Sampling the gradient and residual error III

Second derivate: one possible approximation is

f ′′a (x) =
f (x + h)− 2f (x) + f (x − h)

h2
(122)
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Edge detection Linear operators

Sampling the gradient and residual error IV

We make use of the following representation of a function.

Theorem (Taylor series)

The Taylor series of a real valued function f (z) that is infinitely
differentiable at a real number a is the following power series

f (z) = f (a) +
f ′(a)

1!
(z − a) +

f ′′(a)

2!
(z − a)2 + . . . (123)

Then, we substitute:

I location a by location x

I location z by either x + h or x − h
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Edge detection Linear operators

Sampling the gradient and residual error V

Computation of the residual error. Let’s consider the following Taylor
series

f (x + h) = f (x) + h f ′(x) +
h2

2
f ′′(x) + . . .+

hn

n!
f (n)(x) + . . . (124)

f (x − h) = f (x)− h f ′(x) +
h2

2
f ′′(x) + . . .+ (−1)n

hn

n!
f (n)(x) + . . .

First derivate. By subtraction, member by member, these two equalities,
one obtains

f (x + h)−f (x − h) = 2h f ′(x) +
2

3!
h3f (3)(x) + . . . = 2h f ′(x) + O(h3)

(125)
After re-ordering,

f ′(x) =
f (x + h)− f (x − h)

2h
+ O(h2) (126)
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Edge detection Linear operators

Sampling the gradient and residual error VI

Second derivate.

f (x + h) = f (x)+h f ′(x) +
h2

2
f ′′(x) + . . .+

hn

n!
f (n)(x) + . . . (127)

f (x − h) = f (x)−h f ′(x) +
h2

2
f ′′(x) + . . .+ (−1)n

hn

n!
f (n)(x) + . . .(128)

Like for the first derivate, we use the Taylor extension by add them this
time,

f (x + h)+f (x − h) = 2f (x) + h2f ′′(x) +
2

4!
h4f (4)(x) + . . . (129)

As a result:

f ′′(x) =
f (x + h)− 2f (x) + f (x − h)

h2
+ O(h2) (130)

The f ′′a (x) approximation is also of the second order in h.
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Edge detection Linear operators

Sampling the gradient and residual error VII

Synthesis of expressions with a pre-defined error.
Another approximation, of order O(h4), can be built.
It corresponds to

f ′a(x) =
−f (x + 2h) + 8f (x + h)− 8f (x − h) + f (x − 2h)

12h
(131)
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Edge detection Linear operators

Spectral behavior of discrete gradient operators I

Consider the one-dimensional continuous function f (x) and the following
first derivate:

f ′a(x) =
f (x + h)− f (x − h)

2h
(132)

Its Fourier is given by

f (x + h)− f (x − h)

2h

 e2πjuh − e−2πjuh

2h
F(u) (133)

which is, given that sin(a) = e ja−e−ja

2j ⇔ e2πjuh − e−2πjuh = 2j sin(2πhu),

f (x + h)− f (x − h)

2h

 (2πju)

sin(2πhu)

2πhu
F(u) (134)

where the (2πju) factor corresponds to the ideal (continuous) expression
of the first derivate.
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Edge detection Linear operators

Spectral behavior of discrete gradient operators II

Let us now consider the approximation of the second derivate

f ′′a (x) =
f (x + h)− 2f (x) + f (x − h)

h2
(135)

Its Fourier transform is given by

f (x + h)− 2f (x) + f (x − h)

h2

 (−4π2u2)

(
sin(πhu)

(πhu)

)2

F(u) (136)
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Edge detection Linear operators

Spectral behavior of discrete gradient operators III

Figure: Spectral behavior of the derivate approximations (for h = 1).
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Edge detection Linear operators

Practical expressions of gradient operators and
convolution/multiplication masks I

Practical expression are based on the notion of convolution masks

[
+1 −1

]
(137)

corresponds to the following non-centered approximation of the first
derivate:

(−1)× f (x , y) + (+1)× f (x + h, y)

h
(138)

This “convolution mask” has an important drawback. Because it is not
centered, the result is shifted by half a pixel. One usually prefers to use a
centered (larger) convolution mask such as

[
+1 0 −1

]
(139)
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Edge detection Linear operators

Practical expressions of gradient operators and
convolution/multiplication masks II

In the y (vertical) direction, this becomes




+1
+0
−1


 (140)

But then, it is also possible to use a diagonal derivate:




+1 . .
. 0 .
. . −1


 (141)
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Edge detection Linear operators

Practical expressions of gradient operators and
convolution/multiplication masks III

Figure: (a) original image, (b) after the application of a horizontal mask, (c) after the

application of a vertical mask, and (d) mask oriented at 1350.
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Edge detection Linear operators

Practical problems

The use of (centered) convolution masks still has some drawbacks:

I Border effects.
Solutions:

(i) put a default value outside the image;
(ii) mirroring extension: copy inside values starting from the border;
(iii) periodization of the image –pixels locate on the left are copied on
the right of the image,
(iv) copy border values to fill an artificial added border.

I The range (dynamic) of the possible values is modified.

I It might be needed to apply a normalization factor.
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Edge detection Linear operators

Prewitt gradient filters

[hx ] =
1

3

[
1 0 −1
1 0 −1
1 0 −1

]
=

1

3

[
1
1
1

]
[

1 0 −1
]

(142)

[hy ] =
1

3

[
1 1 1
0 0 0
−1 −1 −1

]
=

1

3

[
1
0
−1

]
[

1 1 1
]

(143)

Figure: Original image, and images filtered with a horizontal and vertical Prewitt
filter respectively.
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Edge detection Linear operators

Sobel gradient filters

[hx ] =
1

4

[
1 0 −1
2 0 −2
1 0 −1

]
=

1

4

[
1
2
1

]
[

1 0 −1
]

(144)

Figure: Original image, and images filtered with a horizontal and vertical Sobel
filter respectively.
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Edge detection Linear operators

Second derivate: basic filter expressions

[
1 −2 1

]
[

1
−2
1

] [
0 1 0
1 −4 1
0 1 0

] [
1 1 1
1 −8 1
1 1 1

]
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Edge detection Non-linear operators

Outline

1 Fundamentals of 2D imaging

2 Motion analysis and background subtraction

3 Performance analysis

4 3D vision: calibration and reconstruction

5 Linear filtering

6 Mathematical morphology

7 Edge detection
Linear operators
Non-linear operators
Hough’s transform

8 Non-linear filtering

9 Feature detection and tracking

10 Segmentation

11 Object description and analysis

12 Template Matching & Image Registration

13 Introduction to machine learning
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Edge detection Non-linear operators

Non-linear operators I

Morphological gradients

I Erosion gradient operator:

GE (f ) = f − (f 	 B) (145)

I Dilation gradient operator:

GD(f ) = (f ⊕ B)− f (146)

I Morphological gradient of Beucher: GE (f ) + GD(f ).

I Top-hat operator: f − f ◦ B;

I min/max gradient operators:
min(GE (f ), GD(f )), max(GE (f ), GD(f ))

I Non-linear Laplacian: GD(f )− GE (f ).
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Edge detection Non-linear operators

Gradient of Beucher

(a) Original image f (b) f ⊕ B

(c) f 	 B (d) (f ⊕ B)− (f 	 B) (inverse video)
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Edge detection Non-linear operators

Different non-linear border detectors

(a) (f ⊕ B)− (f 	 B) (b) f − f ◦ B (top-hat)

(c) max(GE(f ), GD(f )) (d) GD(f )− GE(f )
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Edge detection Hough’s transform

Outline

1 Fundamentals of 2D imaging

2 Motion analysis and background subtraction

3 Performance analysis

4 3D vision: calibration and reconstruction

5 Linear filtering

6 Mathematical morphology

7 Edge detection
Linear operators
Non-linear operators
Hough’s transform

8 Non-linear filtering

9 Feature detection and tracking

10 Segmentation

11 Object description and analysis

12 Template Matching & Image Registration

13 Introduction to machine learning
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Edge detection Hough’s transform

Detecting lines

Challenge: detect lines in an image
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Edge detection Hough’s transform

Towards the Hough transform

I Difficulty: matching a set of points arranged as a line
I Idea: instead of considering the family of points (x , y) that belong to

a line y = ax + b, consider the two parameters
1 the slope parameter a (but a is unbounded for vertical lines)
2 the intercept parameter b (that is for x = 0)
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Edge detection Hough’s transform

Definition of the Hough transform I

θ

x

y

r

With the Hough transform, we consider the (r , θ) pair where

I the parameter r represents the distance between the line and the
origin,

I while θ is the angle of the vector from the origin to the line closest
point
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Edge detection Hough’s transform

Definition of the Hough transform II

We have several ways to characterize a line:

1 Slope a and b, such that y = ax + b.

2 The two parameters (r , θ), with θ ∈ [0, 2π[ and r ≥ 0.

Link between these characterizations:
The equation of the line becomes

y =

(
−cos θ

sin θ

)
x +

(
r

sin θ

)
(147)

Check:

I For x = 0, r = y sin θ → ok.

I For x = r cos θ, y = r sin θ → ok.
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Edge detection Hough’s transform

Families of lines passing through a given point (x0, y0)

(x0, y0)

x

y

r

θ

By re-arranging terms of y =
(
− cos θ

sin θ

)
x +

( r
sin θ

)
, we get that, for an

arbitrary point on the image plane with coordinates, e.g., (x0, y0), the
family of lines passing through it are given by

r = x0 cos θ + y0 sin θ (148)
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Edge detection Hough’s transform

Example

For three points (x0, y0), we explore the Hough space.
That is, we compute r for a given set of orientations θ:

θ r θ r θ r

0 40 0 57.1 0 74.6

30 69.6 30 79.5 30 89.6

60 81.2 60 80.5 60 80.6

90 70 90 60 90 50

120 40.6 120 23.4 120 6.0

150 0.4 150 19.5 150 39.6
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Edge detection Hough’s transform

Hough space

Thus, the problem of detecting colinear points can be converted to the
problem of finding concurrent curves.
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Edge detection Hough’s transform

Hough space
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Edge detection Hough’s transform

Algorithm for detecting lines

Algorithm

1 Detect edges in the original image.

2 Select only some pixels corresponding to “strong edges” for which
there is enough evidence that they belong to lines.

3 For each selected pixel, accumulate values in the corresponding bins
of the Hough space:

1 For example, we take each θ in [00, 3600] with a step of 10.
2 We calculate the corresponding r by r = x0 cos θ + y0 sin θ.
3 If Hough(r , θ) is one bin of the Hough space, then we do

Hough(r , θ)←− Hough(r , θ) + 1 (149)

4 Threshold the accumulator function Hough(r , θ) to select bins that
correspond to lines in the original image.

5 Draw the corresponding lines in the original image.
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Edge detection Hough’s transform

“Toy” example
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Edge detection Hough’s transform

Real example
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Non-linear filtering

Outline

1 Fundamentals of 2D imaging

2 Motion analysis and background subtraction

3 Performance analysis

4 3D vision: calibration and reconstruction

5 Linear filtering

6 Mathematical morphology

7 Edge detection

8 Non-linear filtering

9 Feature detection and tracking

10 Segmentation

11 Object description and analysis

12 Template Matching & Image Registration

13 Introduction to machine learning
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Non-linear filtering

Non-linear filtering

I Rank filters

Median

I Morphological filters

Algebraic definition
How to build a filter?
Examples of filters

Alternate sequential filters
Morphological filter

Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 290 / 538



Non-linear filtering

Introduction to rank filters

f (x) 25 27 30 24 17 15 22 23 25 18 20

f (x − 1) ? 25 27 30 24 17 15 22 23 25 18

f (x) 25 27 30 24 17 15 22 23 25 18 20

f (x + 1) 27 30 24 17 15 22 23 25 18 20 ?

f 	 B(x) = min 25 24 17 15 15 15 22 18 18

f ⊕ B(x) = max 30 30 30 24 22 23 25 25 25

We could also order the values:

f (x) 25 27 30 24 17 15 22 23 25 18 20

1 25 24 17 15 15 15 22 18 18 18

2 25 27 27 24 17 17 22 23 23 20 20

3 27 30 30 30 24 22 23 25 25 25

f 	 B(x) = min 25 24 17 15 15 15 22 18 18

f ⊕ B(x) = max 30 30 30 24 22 23 25 25 25
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Non-linear filtering

Definition of rank filters

Let k ∈ N be a threshold.

Definition (Rank filter)

The operator or k-order rank filter, denoted as ρB,k(f )(x), defined with
respect to the B structuring element, is

ρB,k(f )(x) =
∨
{t ∈ G|

∑

b∈B
[f (x + b) ≥ t] ≥ k} (150)

The simplest interpretation is that ρB,k(f )(x) is the k-est value when all
the f (x + b) values are ranked in decreasing (increasing) order.
Rank filters are ordered. Let ](B), be the surface of B, then

ρB,](B)(f )(x) ≤ ρB,](B)−1(f )(x) ≤ . . . ≤ ρB,1(f )(x) (151)
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Non-linear filtering

Median filter I

If n is odd, the k = 1
2 (](B) + 1) choice leads to the definition of a self-dual

operator, that is a filter that produces the same result as if applied on the
dual function. This operator, denoted medB , is the median filter.

f (x) 25 27 30 24 17 15 22 23 25 18 20

1 25 24 17 15 15 15 22 18 18 18

medB 25 27 27 24 17 17 22 23 23 20 20

3 27 30 30 30 24 22 23 25 25 25

f 	 B(x) = min 25 24 17 15 15 15 22 18 18

f ⊕ B(x) = max 30 30 30 24 22 23 25 25 25
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Non-linear filtering

Median filter II

(a) Original image f + noise (b) Opening with a 5× 5 square

(c) Low-pass Butterworth (fc = 50) (d) Median with a 5× 5 square
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Non-linear filtering

Effect of the size of the median filter

(a) Image f (b) 3× 3 median (c) 5× 5 median
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Non-linear filtering

Notes about the implementation

The median filter is not idempotent. Successive applications can result in
oscillations (theoretically if the domain of the function is infinite)

...

...

...

...

...

...

Figure: Repeated application of a median filter.

Also,
med5×5(f ) 6= med1×5(med5×1(f )) (152)

but it is an acceptable approximation!
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Non-linear filtering

Morphological filters

Definition (Algebraic filter)

By definition, a filter is an algebraic filter if and only if the operator is
increasing and idempotent:

ψ is an algebraic filter ⇔ ∀f , g

{
f ≤ g ⇒ ψ(f ) ≤ ψ(g)
ψ(ψ(f )) = ψ(f )

(153)

Definition (Algebraic opening)

An algebraic opening is an operator that is increasing, idempotent, and
anti-extensive. Formally,

∀f , g , f ≤ g ⇒ ψ(f ) ≤ ψ(g) (154)

∀f , ψ(ψ(f )) = ψ(f ) (155)

∀f , ψ(f ) ≤ f (156)

An algebraic closing is defined similarly, except that the operator is extensive.
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Non-linear filtering

How to build a filter? I

By combining know filters!

C
X

B

Figure: The composition (cascading) of two openings is not an opening.
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Non-linear filtering

How to build a filter? II

New filters can be built starting from openings, denoted αi , and closings,
denoted φi . The rules to follow are:

1 the supremum of openings is an opening: (
∨

i αi ) is an opening;

2 the infimum of closings is a closing: (
∧

i φi ) is a closing.
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Non-linear filtering

Supremum of two openings

Openings: γmH⊕nV (f ), γmH(f ), γnV (f ), and γmH(f ) ∨ γnV (f )
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Non-linear filtering

Composition rules: structural theorem

Let ψ1 and ψ2 be two filters such that ψ1 ≥ I ≥ ψ2 (for example, ψ1 is a
closing and ψ2 an opening).

Theorem (Structural theorem)

Let ψ1 and ψ2 be two filters such that ψ1 ≥ I ≥ ψ2, then

ψ1 ≥ ψ1ψ2ψ1 ≥ (ψ2ψ1 ∨ ψ1ψ2) ≥ (ψ2ψ1 ∧ ψ1ψ2) ≥ ψ2ψ1ψ2 ≥ ψ2 (157)

ψ1ψ2, ψ2ψ1, ψ1ψ2ψ1, ψ2ψ1ψ2 are all filers (158)

Note that there is no ordering between ψ1ψ2 and ψ2ψ1.
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Non-linear filtering

Examples of filters I

Alternate Sequential Filters (ASF)
Let γi (φi ) be an opening (resp. a closing) of size i and I be the identity
operator (i.e. I (f ) = f ).
We assume that there is the following order:

∀i , j ∈ N, i ≤ j , γj ≤ γi ≤ I ≤ φi ≤ φj , (159)

For each index i , we define these operators:

mi = γiφi , ri = φiγiφi ,

ni = φiγi , si = γiφiγi .
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Non-linear filtering

Examples of filters II

Definition (Alternate Sequential Filters (ASF))

For each index i ∈ N, the following operators are the alternate sequential
filters of index i

Mi = mimi−1 . . .m2m1 Ri = ri ri−1 . . . r2r1 (160)

Ni = nini−1 . . . n2n1 Si = si si−1 . . . s2s1 (161)

Theorem (Absorption law)

i ≤ j ⇒ MjMi = Mj but MiMj ≤ Mj (162)
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Non-linear filtering

Examples of filters III

(a) Image f (b) M1(f ) (c) M2(f ) (d) M3(f )

(e) 5× 5 median (f) N1(f ) (g) N2(f ) (h) N3(f )

Figure: Use of alternate sequential filters to remove some noise.
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Non-linear filtering

Toggle mappings I

The morphological center is a typical example of toggle mapping.

Definition (Morphological center)

Let ψi be a family of operators. The morphological center β of a function
f with respect to the ψi family is defined, for each location x of the
domain of f as follows:

β(f )(x) = (f (x) ∨ (
∧

i

ψi (x))) ∧ (
∨

i

ψi (x)) (163)
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Non-linear filtering

Toggle mappings II

β(f )

ψ2(f )

ψ1(f )

f

Figure: Morphological center of a one-dimensional signal.
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Feature detection and tracking
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Feature detection and tracking Introduction

Introduction

I Features are edges, corners, etc.
Most of them are based on derivatives.

I The choice of features is application-dependent!
I For tracking:

We need matching measures and metrics to find the best matching
locations between frames.
Features need to be “strong”: resilient to illumination changes, to local
deformations, etc.
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Feature detection and tracking Introduction

Historical example: the Laplacian of Gaussians I

Principle:

I first apply a Gaussian filter (with the purpose of reducing noise).

I compute the Laplacian of the filtered image.

I detect the locations of zero-crossings in the image.

Parameters:

I variance of the Gaussian filter

Result:

I collection of images with features detected at different scales.

I not suitable for tracking.

Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 310 / 538



Feature detection and tracking Introduction

Historical example: the Laplacian of Gaussians II
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Feature detection and tracking Introduction

Feature-based matching

Steps:

1 select a set of robust features in the reference frame (or
sub-frame/Region of Interest [ROI])

2 compute the same set of features in the target image

3 establish the relationship between the two sets of features.
Many strategies are possible:

global optimization
local optimization
RANSAC algorithm

Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 312 / 538



Feature detection and tracking Introduction

Feature detectors I

Classification [source: wikipedia]

Feature Edge Corner Blob

Sobel X

Canny X

Harris X X

Laplacian of Gaussians X X

Difference of Gaussians X X

FAST X X

MSER X
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Feature detection and tracking Introduction

Feature detectors II

MSER: 5 matches ASIFT: 202 matches
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Feature detection and tracking Feature detection
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Feature detection and tracking Feature detection

Harris detector (for detecting corners) I

Let p be a pixel with the (x , y) coordinates. We compute

M = σ2
Dg(σI )⊗

[
I 2
x (p, σD) Ix(p, σD)Iy (p, σD)

Ix(p, σD)Iy (p, σD) I 2
y (p, σD)

]
(164)

where

Ix(p, σD) =
∂

∂x
g(σD)⊗ I (p) (165)

g(σ) =
1

2πσ2
e−

x2+y2

2σ2 (166)

Definition (Cornerness)

Cornerness is defined as

det(M)− λ trace2(M) (167)

where λ is a tunable sensitivity parameter.
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Feature detection and tracking Feature detection

Harris detector (for detecting corners) II
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Feature detection and tracking Feature detection

Other feature detectors I

The calculation of features combines several steps and usually includes a
scale space and derivates.
Some variants:

I MSER: Maximally Stable Extremal Region extractor (2002)

I SIFT: Scale-Invariant Feature Transform (2004)

I SURF: Speeded Up Robust Features (2006)

I FAST (2006)

I BRISK: Binary Robust Invariant Scalable Keypoints (2011)

I ORB: Oriented BRIEF (2011)

I FREAK: Fast Retina Keypoint (2012)

I Learned features (by deep learning): Superpoint (2018), ...

Don’t forget that these methods have some parameters.
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Feature detection and tracking Feature detection

Other feature detectors II

Original MSER

FAST ORB
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Feature detection and tracking Tracking: Kalman filtering
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Feature detection and tracking Tracking: Kalman filtering

Approach

I There is an object, characterized by some quantities put in a vector
X , that cannot be observed directly.

I We assume that we can trust a dynamic model of the state that
allows us to predict how it evolves over time.

I Periodically, we observe the scene and produce a measure Y , that is a
function of the state of the system.

I With this observation, we correct our estimate of the system state.
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Feature detection and tracking Tracking: Kalman filtering

The tracking loop in practice (for one object)

1 Wait for a new image.

2 Predict the current state of the tracked object.

3 Use that prediction to delineate a region of interest.

4 Extract the tracked object in the new image.

5 Derive the object state from the previous step and use it to correct
the estimate of the object state.
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Feature detection and tracking Tracking: Kalman filtering

Independence assumptions

I The system state and the observation are considered as random
vectors.

I We limit the model to a Markov model.
If Xi defines the object state in frame i , then

p(Xi |Xi−1, Xi−2, . . .) = p(Xi |Xi−1) (168)

In other words, only the immediate past matters.

I The measurement only depends on the current state (no memory):

p(Yi |Xi , . . .) = p(Yi |Xi ) (169)
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Feature detection and tracking Tracking: Kalman filtering

Assumptions

1 The dynamic model is linear.

2 Errors in the modeling of state variables are considered as additive
Gaussian noise.

3 The measurement process is linear.

4 Noise on the measurement is characterized by an additive Gaussian
noise.
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Feature detection and tracking Tracking: Kalman filtering

Prediction and correction

Prediction
Multiply the state by a matrix D, and add Gaussian noise:

xt ∼ p(Xt |Xt−∆t) = N (Dtxt−∆t ; ΣDt) (170)

where ΣDt is the covariance matrix.

Measurement
Multiply the state by a matrix M, and add Gaussian noise:

yt ∼ p(Yt |Xt) = N (Mtxt ; ΣMt) (171)
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Feature detection and tracking Tracking: Kalman filtering

Example: first order model for the displacement of an
object I

State vector

x = [x , y , vx , vy ]T (172)

where (vx , vy ) are the components of the speed vector.
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Feature detection and tracking Tracking: Kalman filtering

Example: first order model for the displacement of an
object II

Model

We have that
x(t + ∆t) = x(t) + vx(t)∆t (173)

[
x(t + ∆t)
y(t + ∆t)

]
=




1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1







x(t)
y(t)
vx(t)
vy (t)


 (174)

Matrix of the dynamic system (state-transition model):

D =




1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1


 (175)
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Feature detection and tracking Tracking: Kalman filtering

Example: first order model for the displacement of an
object III

Measurement

y = [x , y ]T (176)

Observation matrix: M =

[
1 0 0 0
0 1 0 0

]
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Feature detection and tracking Tracking: Kalman filtering

A linear, recursive estimator

Compute: xt given xt−∆t and yt

Dynamic and measurement models:

xt ∼ N (Dtxt−∆t ; ΣDt) (177)

yt ∼ N (Mtxt ; ΣMt) (178)

Starting assumptions: x−0 and Σ−0 are known.

Under these assumptions (linear dynamics, linear measurement function,
Gaussian noise), the Kalman filter is the optimal recursive estimator.
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Feature detection and tracking Tracking: Kalman filtering

Kalman filtering equations

Prediction

Predicted state estimate x−t = Dtx
+
t−∆t

Predicted estimate covariance Σ−t = ΣDt + DtΣ
+
t−∆tD

T
t

Correction/update

Measurement residual rt = yt −Mtx
−
t

Residual covariance Rt = MtΣ
−
t MT

t + ΣMt

Optimal Kalman gain K t = Σ−t MT
t (Rt)

−1

Updated state estimate x+
t = x−t + K trt

Updated estimate covariance Σ+
t = (I − K tMt)Σ−t
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Feature detection and tracking Tracking: Kalman filtering

Limitations

I We are not using future measurements to refine past state estimate.
Solution: forwards-backwards Kalman filtering.

I Non-linear dynamic and measurement models.
Solutions:

Extended Kalman Filter (EKF): local linearization representation.
Unscented Kalman filter: non-linear propagation of the mean and
covariance using the unscented transform.
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Feature detection and tracking Tracking: Kalman filtering

How to deal with missing or multiple measurements?

Missing measurements. Skip the correction step.

Multiple measurements. Choose the closest measurement.

Multiple measurements and multiple targets. Find the best global target
assignment by computing a distance matrix.

The choice of the (generally probabilistic) distance metric is crucial in this
data association problem.
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Feature detection and tracking Tracking: Kalman filtering

Alternative to Kalman filter: particle filter
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Segmentation

Image segmentation I

Segmentation of a color image Segmentation of a depth image

I Problem statement

I Segmentation by thresholding
I Segmentation by region detection (region growing)

Watershed

I Segmentation by classification (semantic classification)
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Segmentation

Image segmentation II

General considerations:

I a very specific problem statement is not always easy.

I chicken-and-egg problem; segmentation is an ill-conditioned problem.
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Segmentation Problem statement
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Segmentation Problem statement

Problem statement I

Definition (Segmentation)

Generally, the problem of segmentation consists in finding a set of
non-overlapping regions R1, . . . , Rn such that

E =
n⋃

i=1

Rn and ∀i 6= j , Ri ∩ Rj = ∅ (179)

Definition (Alternative definition)

More formally, the segmentation process is an operator φ on an image I
that outputs, for example, a binary image φ(I ) that differentiates regions
by selecting their borders.
An alternative consists to attribute a different label to each pixel of
different regions (this is called scene labeling).
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Segmentation Problem statement

Problem statement II

Segmented image Labelled image
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Segmentation Problem statement

Problem statement III

Segmentation is a spatial process

As any similar operator, segmentation can be local or global:

I for local segmentation techniques, the results for one given pixel does
not impact the segmentation result outside a close neighborhood.

I for global techniques, changing one pixel value can impact the whole
result.
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Segmentation Problem statement

A first typology of segmentation techniques and
comparisons

Family of
segmentation
techniques

input local/global markers

Thresholding image local (pixel) no

Watershed image,
gradient, etc

global yes
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Segmentation Segmentation by thresholding
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Segmentation Segmentation by thresholding

Segmentation by thresholding I

(a) Original image (b) Thresholding at 110

(c) Thresholding at 128 (d) Thresholding after background equalization
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Segmentation Segmentation by thresholding

Segmentation by thresholding II

Rationale
There are two classes of pixels:

1 background pixels

2 foreground pixels

[Note that background and foreground do not refer to motion in this case!].
Sometimes, there is a “don’t know” class

Assumptions to solve the segmentation problem:

1 the probability density functions of the two content types are different.

2 one threshold or two thresholds (Otsu’s method) are sufficient.
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Segmentation Segmentation by thresholding

Segmentation by thresholding III

???

Background distribution

optimal threshold

treshold
threshold threshold

optimal threshold

chosen
chosen

optimal threshold

Foreground distribution

Figure: Optimal threshold.
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Segmentation Segmentation by region growing: illustration with the watershed
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Segmentation Segmentation by region growing: illustration with the watershed

Images can be seen as topographic surfaces

Figure: An image (left-hand side) and a view of its corresponding topographic
surface (right-hand side).
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Segmentation Segmentation by region growing: illustration with the watershed

Segmentation by watershed

In the terms of a topographic surface, a catchment basin C(M) is
associated to every minimum M.

watershed

catchment basins

minimums

Figure: Minimums, catchment basins, and watershed.
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Segmentation Segmentation by region growing: illustration with the watershed

The general principles of the watershed

Steps:

1 identify valleys (minimums)

2 proceed to flooding

3 construct dams between neighboring catchment basins
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Segmentation Segmentation by region growing: illustration with the watershed

A formal description of a segmentation algorithm based on
the watershed

Approach: proceed level by level

I An horizontal “slice” is binary image. Therefore, we first study the
case of binary images.

I definition of geodesic path and distance.

I description of an algorithm that handles a stack of thresholded
images.
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Segmentation Segmentation by region growing: illustration with the watershed

Geodesic path

Let X be a binary image.

Definition (Geodesic path)

A geodesic path, of length l , between two points s and t is a series of
l + 1 pixels x0 = s, x1, . . . , xl = t such that

∀i ∈ [0, l ], xi ∈ X and ∀i ∈ [0, l ], xi−1, xi are neighbors (180)

Note that this definition applies to images defined on digital grids.
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Segmentation Segmentation by region growing: illustration with the watershed

Geodesic distance

X

x
y

Figure: The shortest path between x and y .

Definition (Geodesic distance)

The geodesic distance between two points s and t is the length of the
shortest geodesic path linking s to t; the distance is infinite if such a path
does not exist.
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Segmentation Segmentation by region growing: illustration with the watershed

About the geodesic distance

Questions:

1 is the geodesic distance between x and y unique?

2 is the geodesic path between x and y unique?
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Segmentation Segmentation by region growing: illustration with the watershed

Algorithm for the construction of the geodesic skeleton by
growing the zone of influence

Notations:
The zone of influence of a set Zi , is denoted by ZI (domain =X,
center = Zi ) and its frontier by FR(domain =X, center = Zi ).
The skeleton by zone of influence (SZI) is obtained via the following
algorithm:

I first, one delineates the Zi zones of each region;

I for remaining pixels, an iterative process is performed until stability is
reached: if a pixel has a neighbor with an index i , then this pixel gets
the same index; pixels with none or two different indices in their
neighborhood are left unchanged;

I after all the iterations, all the pixels (except pixels at the interface)
are allocated to one region of the starting regions Zi .
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Segmentation Segmentation by region growing: illustration with the watershed

Example

Z1

X

Z2 Z3

Figure: Geodesic skeleton.
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Segmentation Segmentation by region growing: illustration with the watershed

The case of grayscale images (a gradient image for
example) I

dam
dam

minimums

water level

Figure: A dam is elevated between two neighboring catchment basins.
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Segmentation Segmentation by region growing: illustration with the watershed

The case of grayscale images (a gradient image for
example) II

Notations:

I f is the image.

I hmin and hmax are the limits of the range values of f on the function
support (typically, hmin = 0 and hmax = 255).

I Th(f ) = {x ∈ dom f : f (x) ≤ h} is a set obtained by thresholding f
with h. For h growing, we have a stack of decreasing sets.

I Mi are the minimums and C(Mi ) are the catchment basins.

Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 357 / 538

Segmentation Segmentation by region growing: illustration with the watershed

Step by step construction

Let Ch(Mi ) be the subset of the Mi basin filled at “time” (or “height”) h.
Then

Ch(Mi ) = C(Mi ) ∩ Th(f ) (181)

In this expression, C(Mi ) is unknown.
Initialization:

I Ch min(M) = Th min(f ); the initialization considers that all the local
minimums are valid catchment basin originators.

Construction
∀h ∈ [hmin + 1, hmax ] : Ch(M) = ZIh ∪Minh (182)

with

I ZIh = influence zone (with domain Th(f ));

I Minh is the set of all the points of Th(f ) that have no label after the
growing process of influence zones. They correspond to minimums
that are introduced at level h.
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Segmentation Segmentation by region growing: illustration with the watershed

Illustration: detection of pores in gypsum

Microtomograhy image Labeled image
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Segmentation Segmentation by region growing: illustration with the watershed

Markers

Marking is a process that allows to select only some of the local minimums.

Watershed has the following advantages with respect to other techniques
(such as thresholding):

I the possibility to be applicable to any sort of input image (original
image, gradient, etc).

I the flexibility to put some markers to select only a few local
minimums. With markers, the amount of regions is exactly equal to
the number of markers put in the image.
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Segmentation Segmentation by region growing: illustration with the watershed

Illustration: segmentation of cells
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Segmentation Segmentation by region growing: illustration with the watershed

Semantic segmentation (based on deep learning)

I Based on classification techniques and machine learning

I Pixel-based

I A series of semantic notions/objects (persons, cars, bicycles, etc)
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Segmentation Segmentation by region growing: illustration with the watershed

Panoptic segmentation (based on deep learning)

I Panoptic segmentation ≡ semantic segmentation + instance
segmentation

Semantic segmentation Panoptic segmentation
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Outline

1 Fundamentals of 2D imaging

2 Motion analysis and background subtraction

3 Performance analysis

4 3D vision: calibration and reconstruction

5 Linear filtering

6 Mathematical morphology

7 Edge detection

8 Non-linear filtering

9 Feature detection and tracking

10 Segmentation

11 Object description and analysis
General considerations
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Shape description

12 Template Matching & Image Registration

13 Introduction to machine learning
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Object description and analysis General considerations

General considerations

Objects have:

I a texture (inside)

I a shape (border)
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Outline

1 Fundamentals of 2D imaging
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Object description and analysis Texture analysis

Texture analysis

I Definition?
I Statistical characterization of textures

Local mean
Local standard deviation
Local histogram
Co-occurrence matrix of a grayscale image

I Geometrical characterization of textures

Spectral approach
Texture and energy
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Object description and analysis Texture analysis

Goals of texture analysis?

The major question related to texture are:

I texture analysis. The purpose is to characterize a texture by a set of
parameters called “texture descriptors”.

I texture recognition.

I image segmentation.
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Object description and analysis Texture analysis

Definition

Definition (Tentative definition)

A texture is a signal than can be extended naturally outside of its domain.

Figure: One possible texture (according to Lantuéjoul).
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Examples of “real” textures
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Object description and analysis Texture analysis

Simple analysis of a grayscale image

Figure: Example of an image with two textures.
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Statistical descriptors of textures

Simple descriptors:
I mean
I variance

But, there is a problem

Figure: Textures with identical means and variances.

Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 373 / 538

Object description and analysis Texture analysis

Statistics defined inside of a local window I

(a) (b)

Figure: Illustration of texture statistics computed over a circle. (a) grayscale
mean (103 and 156 respectively) (b) standard deviation (32 and 66 respectively).
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Local statistics

Definition (Local mean)

The local mean over a spatial window W is defined as

µf =
1

](W)

∑

(x ,y)∈W

f (x , y) (183)

where ](W) is the cardinality of W.

Definition (Local standard deviation)

The standard deviation over a spatial window W is defined as

σf =

√√√√
∑

(x ,y)∈W [f (x , y)− µf ]2

](W)
(184)
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Object description and analysis Texture analysis

Global and local histograms I

Definition (Histogram)

The histogram of an image is the curve that displays the frequency of each
grayscale level.

frequency (probability)

0 1 2 3

4

8

12

grayscale level

Figure: Non normalized histogram of an image.
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Global and local histograms II

Figure: An image and its global histogram (here W accounts for the whole image
domain).
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Object description and analysis Texture analysis

Global and local histograms III

Definition (Local histogram)

With a smaller window W, it is possible to define a local (normalized)
histogram p(l) as

p(l) =
] {(x , y) ∈W | f (x , y) = l}

](W)
(185)
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Histogram statistics

I Mean

µL =
L−1∑

l=0

l p(l) (186)

where L denotes the number of possible grayscale levels inside the W
window.

I Standard deviation

σL =

√√√√
L−1∑

l=0

(l − µL)2p(l) (187)

I Obliquity

Ss =
1

σ3
L

L−1∑

l=0

(l − µL)3 p(l) (188)

I “Kurtosis”

Sk =
1

σ4

L−1∑

l=0

(l − µL)4 p(l)− 3 (189)
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Object description and analysis Texture analysis

Co-occurrence matrix of a grayscale image I

Definition (Co-occurrence matrix)

A co-occurrence matrix is defined by means of a geometrical relationship R
between two pixel locations (x1, y1) and (x2, y2).
An example of such a geometrical relationship is

x2 = x1 + 1 (190)

y2 = y1 (191)

for which (x2, y2) is at the right of (x1, y1).

The co-occurrence matrix CR(i , j) is squared, with the L× L dimensions,
where L is the range of all possible grayscale values inside of B. Indices of
the co-occurrence matrix then indicates the amount of grayscale level
value pairs as defined by R.

Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 380 / 538



Object description and analysis Texture analysis

Co-occurrence matrix of a grayscale image II

Construction of the CR(i , j) matrix:

1 Matrix initialization: ∀i , j ∈ [0, L[ : CR(i , j) = 0.

2 Filling the matrix. If the relationship/condition R between two pixels
(x1, y1) and (x2, y2) is followed/met, then

CR (f (x1, y1), f (x2, y2))← CR (f (x1, y1), f (x2, y2)) + 1
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Example I

Let us consider an image with four grayscale levels (L = 4, and
l = 0, 1, 2, 3):

f (x , y) =

0 0 0 1
0 0 1 1
0 2 2 3
2 2 3 3

(192)

P00,d(i , j) = ]{(x1, y1), (x2, y2) ∈ B | y1 = y2, |x2 − x1| = d ,

f (x1, y1) = i and f (x2, y2) = j} (193)

The P00,1 and P900,1 matrices are 4× 4 matrices respectively given by

P00,1 =




6 2 1 0
2 2 0 0
1 0 4 2
0 0 2 2


 P900,1 =




6 1 2 0
1 2 1 1
2 1 2 1
0 1 1 2


 (194)
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Example II

About the use of co-occurrence matrices:

[+] Rich information about the texture

[−] Explosion of the number of features in the case of small
textures
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Object description and analysis Texture analysis

Geometrical characterization of textures

Use of the Fourier transform

Figure: Spectral characterization of a texture. Right-hand images are the modules
of the Fourier transforms (inverse video).
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Textures and energy I

Measures are derived from three simple vectors: (1) L3 = (1, 2, 1) that
computes the mean, (2) E3 = (−1, 0, 1) that detects edges, and (3)
S3 = (−1, 2,−1) which corresponds to the second derivate. By convolving
these symmetric vectors, Laws has derived 9 basic convolution masks:

1
36

[
1 2 1
2 4 2
1 2 1

]
1

12

[
1 0 −1
2 0 −2
1 0 −1

]
1

12

[ −1 2 −1
−2 4 −2
−1 2 −1

]

Laws 1 Laws 2 Laws 3

1
12

[ −1 −2 −1
0 0 0
1 2 1

]
1
4

[
1 0 −1
0 0 0
−1 0 1

]
1
4

[ −1 2 −1
0 0 0
1 −2 1

]

Laws 4 Laws 5 Laws 6

1
12

[ −1 −2 −1
2 4 2
−1 −2 −1

]
1
4

[ −1 0 1
2 0 −2
−1 0 1

]
1
4

[
1 −2 1
−2 4 −2
1 −2 1

]

Laws 7 Laws 8 Laws 9
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Textures and energy II

Textures Laws 3 Laws 5

a typical 5× 5 filter Laws 4 Laws 9

Figure: Laws “residues” (reverse video).
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Outline

1 Fundamentals of 2D imaging

2 Motion analysis and background subtraction

3 Performance analysis

4 3D vision: calibration and reconstruction

5 Linear filtering

6 Mathematical morphology

7 Edge detection

8 Non-linear filtering

9 Feature detection and tracking

10 Segmentation

11 Object description and analysis
General considerations
Texture analysis
Shape description

12 Template Matching & Image Registration

13 Introduction to machine learning
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Object description and analysis Shape description

Shape analysis

I Shape description. There are many of them:

Lineic shape description
Quadtree as a shape descriptor
Morphological skeleton
Other surfacic shape descriptors

I Measures

Basic geometrical measures
Shape factors
Moments
Morphological measures
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Shape descriptors

There are two main families for describing a shape:

I lineic shape descriptors. They follow the border and encode its
characteristics.

I surfacic shape descriptors. They represent the surface surrounded by
the border.

Properties

I translation, rotation, and scale (affine) invariance

I robustness to noise

I robustness to partial occlusions
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How to encode a series of pixels? I

Chain code

(b)

5

1

3

02 4 0

1

2

6

7

3

(a)

Figure: Definitions of directions in (a) 4-connectivity and (b) 8-connectivity.
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How to encode a series of pixels? II

(b)

0 0

3

33
2

6

4

44

(d)

(a)

(c)

30

30

22
1

22
1

1

1

0
1

0
7

0

7

5252

2

1

2

Figure: (a) A contour, (b) contour sampled on a digital grid, (c) 4-connected
chain code, and (d) 8-connected chain code.
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How to encode a series of pixels? III
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How to encode a series of pixels? IV

4 0

Code : 00017222533135754666

75

3 12

6

Figure: Contour with a crossing border pixel.
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How to encode a series of pixels? V

Direction of the descriptor:

I clockwise: external border

I counter-clockwise: internal border
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Polygonal approximation

d

(a) (b)

(c) (d)

a

b
d

c

d

a

b

c a

b

c

Figure: Polygonal approximation of a shape.
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Fourier descriptors I

Some shape descriptors see the object as:

I a binary function

f (x , y) =

{
1 if (x , y) belongs to the object

0 otherwise
(195)

I a series of points in the complex 2D space

s[n] = x [n] + jy [n] (196)

s[n] is a one-dimensional discrete collection of complex numbers.
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Fourier descriptors II

Imaginary part

x

y

y1

y2

x1 x2 Real part

Figure: Representation of a shape as a series of points in the complex 2D space.
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Fourier descriptors III

Definition (Fourier descriptor)

The discrete Fourier transform of s[n] is defined as

S[u] =
1

N

N−1∑

n=0

s[n]e−2πjun/N (197)

The S[u] coefficients are the Fourier descriptors of the shape.

Approximations.

Original

Figure: Original shape and approximations with a selection of Fourier descriptors.
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Object description and analysis Shape description

Approximation of a human silhouette

Figure: Approximations of a human silhouette by an increasing number of Fourier
descriptors.
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The quadtree as a shape descriptor

Figure: Quadtree decomposition and quadtree representation.
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Opening and closing of X with a disk B

B

X

X ◦ B X • B
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The morphological skeleton to describe a shape I

First attempts to define the skeleton

I Consider a continuous set X ans its frontier ∂X ; an element x of the
object X belongs to the skeleton of X , denoted by S(X ), if there
exists a disk centered on x , included in X , that touches ∂X at least
twice (maximal balls with two contact points).

I Locus of the center of all the maximal balls B contained in X .

These definitions are not fully equivalent, but they have the same
topological closure in R2.
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The morphological skeleton to describe a shape II

Figure: Shapes and their skeleton S(X ).

Skeletons are sensitive to noise on the object.
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Difficulty

...

... ...

...

Figure: What is the skeleton of this object X ? Ideally, it should be located
between the two rows. In practice, it is on the upper or lower row.

Properties of a skeleton transform

1 The skeleton transform is nor increasing, neither non-increasing.
Indeed, X ⊆ Y does not imply that S(X ) ⊆ S(Y ), nor that
S(Y ) ⊆ S(X ).

2 The skeleton transform is anti-extensive: S(X ) ⊆ X .

3 The skeleton transform is idempotent: S(S(X )) = S(X ).
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Morphological size I

Definition (Continuous object size)

Let B be a continuous set whose size is arbitrary set to 1. Then, we can
define a scale space of continuous sets by

rB = {rb|b ∈ B} r ≥ 0 (198)

where r is a continuous parameter.
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Morphological size II

Definition

The dilation (dilatation in French!) of X by B is defined as

X ⊕ B = {x + b|x ∈ X , b ∈ B} (199)

Definition (Discrete object size)

Let B be a discrete, convex, finite, set of Z2, whose size is arbitrary set to
1. Then, we build a family of homethetic versions of B, for n = 0, 1, . . .,
by

nB = B ⊕ . . .⊕ B︸ ︷︷ ︸
n−1 dilations

(200)

In this expression, nB is obtained as a cascade of (n − 1) successive
dilations. By convention, for n = 0, 0B = {(0, 0)}. Note that
nB ⊕mB = (n + m)⊕ B for every n, m.
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Morphological size III

Theorem

Let ∂(B) be the frontier of B in R2. Then

∂(B)⊕ B = B ⊕ B (201)

Therefore,

nB = B ⊕ . . .⊕ B︸ ︷︷ ︸
n−1 dilations

= B ⊕ ∂(B)⊕ . . .⊕ ∂(B)︸ ︷︷ ︸
n−2 dilations

(202)
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Multiresolution filters

Definition

We define the multiresolution opening and closing respectively as

X ◦ nB = (X 	 nB)⊕ nB (203)

X • nB = (X ⊕ nB)	 nB (204)

Since (X 	 B)	 C = X 	 (B ⊕ C ) and (X ⊕ B)⊕ C = X ⊕ (B ⊕ C ),
X ◦ nB = [(X 	 B)	 B...	 B]︸ ︷︷ ︸

n erosions

⊕B ⊕ B...⊕ B︸ ︷︷ ︸
n dilations

(205)

By definition,
X ◦ nB =

⋃

(nB)z⊆X
(nB)z (206)
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Formal definition of the skeleton I

Definition (Skeleton [Lantuéjoul])

The skeleton of a set X is the union of a family of subsets Sn, each of them
being the set of references to translates of nB included in X , except all the
references of translates of (n + 1)B contained in X . Formally, we have

Sn(X ) = (X 	 nB)\([X 	 nB] ◦ B), n = 0, 1, . . . , N (207)

S(X ) =
N⋃

n=0

Sn(X ) (208)

where B is a 2× 2 wide pixels set for a square digital grid or an hexagon
for an hexagonal grid.
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Formal definition of the skeleton II

Figure: Some skeletons obtained with Lantuéjoul’s formula.
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Inverse skeleton

We define

π(X ) = [[[SN(X )⊕ B] ∪ SN−1(X )]⊕ B ∪ SN−2(X )...]⊕ B ∪ S0(X ) (209)

It can be shown that

π(X ) =
N⋃

n=0

[Sn(X )⊕ nB]= X (210)

⇒ it is possible to reconstruct the shape perfectly based on the skeleton

Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 411 / 538

Object description and analysis Shape description

Alternative skeleton formulas I

Definition (Distance function)

The distance function of a set X ⊆ E , denoted by φ(X ), is defined as

[φ(X )](h) = d(X c , h) (211)

with the convention that d(∅, h) = +∞ for h ∈ E .

Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 412 / 538



Object description and analysis Shape description

Alternative skeleton formulas II

(a) Original image (b) Level sets of the distance function

(c) Local maximum of (b) (d) Skeleton by maximal balls

Figure: Skeleton by maximal balls.
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Alternative skeleton formulas III

Figure: Some skeletons obtained with Vincent’s algorithm.
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Surfacic shape descriptors based on a catalog of primitives

R T

C

(xT , yT )

(xC , yC )

(xR , yR)

Figure: A shape is described as the union of a rectangle, a triangle and a diamond.
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Summary of shape descriptors

1

000

0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1

04

3 1

75

2

6

Code : 0000000217777222...

(xt , yt)(xr , yr)

(xc , yc)

Figure: Comparison of some shape descriptors.
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Measures I

There are three fundamental measures

1 Perimeter

2 Area

3 Euler-Poincarré number

There is a relationship between the number of connected components C
and the number of holes H.

Definition (Euler number)

The Euler number E is defined as

E = C − H (212)
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Measures II

Figure: Euler number: E = 1− 2 = −1.
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Measures III

Figure: Two letters with a different Euler number.
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Shape factors

Figure: An object X and two reference sets (circumscribing disk/ellipse and smallest

rectangular bounding box R).

Shape factor name Expression

compactdness P(X )2

4πA(X )

rectangularity A(X )
A(R)

circularity 4A(X )

πD2
max

anisometry Dmax
Dmin
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Moments

Moments are surfacic measures, used for example in character recognition.
Remember that we can see an object as a binary function

f (x , y) =

{
1 if (x , y) belongs to the object

0 otherwise
(213)

Definition (Moment of order p + q)

The p + q moment of a function f (x , y) is defined as

mpq =
∑

x

∑

y

xpyqf (x , y) (214)

All these moments can be centered:

µpq =
∑

x

∑

y

(x −m10)p(y −m01)qf (x , y) (215)

and they can be normalized:

ηpq =
µpq

µ
p+3

2
00

(216)
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Morphological measures and granulometry I

Granulometry is an approach to compute a size distribution of grains in
binary images, using a series of opening operations.

Consider a ball nB whose radius is given by n, then we define a
granulometric curve by

ψ(n) = A(X ◦ nB) (217)

where A() denotes the area.
Abrupt changes is this curve are interesting for detecting typical sizes.

Definition (Pattern spectrum)

The Pattern Spectrum (PS) is defined as

PS(n) = −A(X ◦ nB)

dn
(218)
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Morphological measures and granulometry II

Figure: A binary object and a corresponding granulometric curve.
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Object description and analysis Shape description

Convexity

Definition (Convexity)

A set X ⊆ E is convex if rx + (1− r)y ∈ X for every x , y ∈ X where
r ∈ [0, 1].

In other words, a line joining two arbitrary points of X has to be entirely
included in X .

z

A B C

x y

Figure: A, B are convex; C is not convex.
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Object description and analysis Shape description

Convex envelope I

The notion of convexity leads to that of convex envelope

Definition (Convex envelope)

The convex envelope of a set X ⊆ E , denoted by co(X ), is the intersection
of all the convex sets comprising X .

S

Figure: A set X and its convex envelope.
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Object description and analysis Shape description

Convex envelope II

Theorem

For X , Y ⊆ E ,
co(X ⊕ Y ) = co(X )⊕ co(Y ) (219)

Definition (Convexity shape factor)

The convexity shape factor is defined as

C =
A(X )

A(co(X ))
(220)
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Template matching - Example
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Template Matching & Image Registration Introduction & Applications

Template matching - Definition

Definition

Template matching is the process of either finding any instance of a template image T
within another image I or finding which ones of the templates T1, T2, . . . , TN

correspond in some way to another image I .

We search how to transform or warp a template (resp. image) to make it similar to a
reference image (resp. template).
The template is also called the pattern or the model.

Figure: Find where the template T is

located in the observed image I .

Figure: Find the template Tk which

correspond to the observed image I .
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Image registration or alignment - Example
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Template Matching & Image Registration Introduction & Applications

Image registration or alignment - Definition

Definition

Image registration is the process of spatially aligning two images of a
scene/object so that corresponding points assume the same coordinates.

I Given two images taken, for example,

at different times,
from different devices
or different point of view;

I the goal is to determine a reasonable transformation of the images

I such that a transformed version of the first image is similar to the
second one.

Philippe Latour Computer Vision Academic year: 2023-2024 434 / 538



Template Matching & Image Registration Introduction & Applications

Table of content

I Introduction & Applications

Definition & Examples
Applications

I Some solutions and their corresponding approach

I Template matching & image registration components

I Implementation speed-up

Philippe Latour Computer Vision Academic year: 2023-2024 435 / 538

Template Matching & Image Registration Introduction & Applications

Machine vision I

Machine vision (and
especially template
matching) is per-
vasive in almost all
steps of an industrial
production chain.
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Machine vision II

I Measuring and assessing the matching quality, the component
presence/absence/type and/or position and orientation
→ Non destructive testing (NDT), defect detection, model
conformance assessment
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Template Matching & Image Registration Introduction & Applications

Machine vision III

I Counting the number of instances that matched the template
→ Detection of given objects, computing their location, type and/or
properties
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Electronic components manufacturing I
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Electronic components manufacturing II

I Wafer dicing is the process by which die are separated from a wafer of
semiconductor.
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Electronic components manufacturing III

I Die bonding is the process of attaching the semiconductor die either
to its package or to some substrate.

I Wire bonding is the process of making interconnections between an
integrated circuit or other semiconductor device and its packaging.
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Template Matching & Image Registration Introduction & Applications

Printed board assembly (pick & place) I

I Position of picked components

I Position of placement area

I Control of welding after the process
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Printed board assembly (pick & place) II
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Multi-view correspondences I

I 3D reconstruction
→ find the correspondences between the left and right view of the
same scene
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Multi-view correspondences II

I Panoramic images: Image alignment for stitching
→ find correspondences between several views of the same scene
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Template Matching & Image Registration Introduction & Applications

Multi-modality correspondences and fusion

I Image alignment and fusion

I Remote sensing: satellite image fusion
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Biomedical (elastic) image registration

Non-rigid (elastic) image registration

From [Modersitzki Jan, “FAIR Flexible Algorithms for Image Registration”, 2009, Figure 1.1]
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Template Matching & Image Registration Introduction & Applications

Template matching vs. Image registration

I Template matching and image registration processes have essentially
the same goal:

They compare two (or more) images, and
look for a transformation/warping of one (or both) image(s),
in order to match/align the images (to make them fit).

I They differ by the way users consider the images;

In template matching, one of the image is special (the template) and is
often (not always) smaller in size.
The other image represents/spans the work space where we would like
to locate the template.
In image registration both images play a similar role.
They are both embedded in a global work space where we would like to
find their relative position.
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Naive solution I

We consider:

I the image I with LI lines and KI columns, represented by the matrix I = (Ilk)
where l ∈ [0, LI [, k ∈ [0,KI [,

I the template T with LT lines and KT columns, represented by the matrix
T = (Tij) where i ∈ [0, LT [, j ∈ [0,KT [.
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Naive solution II

We define all the admissible (sub-)windows W(l,k) completely included within the image I
and of the same size as the template T by the following sub-matrices W (l,k):

W
(l,k)
ij =

{
Il+i,k+j for i ∈ [0, LT − 1] , j ∈ [0,KT − 1]

0 otherwise
(221)

where l ∈ [0, LI − LT ] and k ∈ [0,KI − KT ] are the indices, in the image I, of the upper
left pixel of W(l,k).
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Naive solution III

Compute the Euclidean distance

dist
(

T ,W (l,k)
)

=

LT−1∑

i=0

KT−1∑

j=0

[
Tij −W

(l,k)
ij

]2

(222)

then create the distance map D, represented by the matrix D:

D⌊ KT
2

⌋
+k,
⌊

LT
2

⌋
+l

=

{
dist

(
T ,W (l,k)

)
for l ∈ [0, LI − LT ] , k ∈ [0,KI − KT ]

0 otherwise

(223)
and find the position of the minimum in these map.

Template T Observed image I Distance map D
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Template Matching & Image Registration Some solutions and their corresponding approach

Naive solution in pixel coordinates - Image translation

Previously, in the naive solution, we matched the template T to a part of
the translated version of the image (the sub-image function
Wk,l (x , y) = I (x + k, y + l)).

In pixel coordinates, this may be illustrated by:
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Naive solution in pixel coordinates - Template translation

It is equivalent to match a translated template to the original image:
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Template Matching & Image Registration Some solutions and their corresponding approach

Naive solution - Block diagram I

The block diagram of this pixel based (naive) solution is:
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Naive solution - Block diagram II

The block diagram of this pixel based (naive) solution is:
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Template Matching & Image Registration Some solutions and their corresponding approach

Pixel-based ... ?

Question?

Which “elements” are we going to match in the reference and template images ?

I All pixels of an image/template:

For all warped templates, compare all pairs of corresponding pixels (≡
located at the same place in the images and the warped template).
Then compute a global score based on the individuals comparisons.
And choose the warping for which the score is maximum/minimum
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... or Feature-based ?

Question?

Which “elements” are we going to match in the reference and template images ?

I “Interesting” points of an image/template:

First search for the feature points in the image/template,
Then find the best matching between feature points in the image and the
template
And finally compute the warping based on the best feature points matching
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Pixel-based approach I

Pixel-based approach

Shift or warp the images relatively to each other, then look at how much the pixels agree
and find the warping parameters for which the agreement is maximum.

I So, we first need to decide which kind of warping is eligible between the template
and the image.

I In the previous naive solution, it is only translation.

I The eligible warping defines the parameter space or the search space:

Translation (2D) + rotation (1D) + isotropic scaling (1D)
→ 4D search space
Affine / Projective transform → 6D / 8D search space

I Applying the warping

to the pattern
or the image
or both?

I Image re-sampling and sub-pixel accuracy?
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Pixel-based approach II

Pixel-based approach

Shift or warp the images relatively to each other, then look at how much the pixels agree
and find the warping parameters for which the agreement is maximum.

I Then a suitable similarity or dissimilarity measure must be chosen to compare the
images

I In the previous naive solution, it is the Euclidean distance.

I The similarity or dissimilarity measure depend on the image characteristics to
which it is necessary to be invariant. The insensitivity properties guide the choice
of a score/distance measure.

Lighting conditions (linear gain and offset)
Noise
“Small” rotation or scaling
Thinning
→ Define the similarity/dissimilarity measure
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Pixel-based approach III

Pixel-based approach

Shift or warp the images relatively to each other, then look at how much the pixels agree
and find the warping parameters for which the agreement is maximum.

I In the previous naive solution, we try all possible alignment (an exhaustive search).

I But this solution is often impractical and hierarchical coarse-to-fine techniques
based on image pyramids are often used.

I The search technique must be devised:

Exhaustive search
Coarse to fine hierarchical refinement.
Steepest descent
Conjugate gradient
Quasi-Newton method
Levenberg-Marquardt
Simulated annealing
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General pixel-based solution - Block diagram I

The block diagram of a more general solution could be
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General pixel-based solution - Block diagram II

The block diagram of a more general solution could be
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Feature-based approach

Feature-based approach

In both images, extract feature points and compute their descriptor vector. Then, match
the corresponding feature points and compute the image warping that transforms at
best (maximum agreement) each feature points into its corresponding one.

Let’s consider two images of the same (or similar/related) scene/object taken

I at different moment, or

I from a different point of view, or

I with different sensor (parameters).
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Feature points definition I

Feature-based approach

In both images, extract feature points and compute their descriptor vector. Then, match
the corresponding feature points and compute the image warping that transforms at
best (maximum agreement) each feature points into its corresponding one.

Feature points in each image carry critical information about (local) scene structure.

I Also called critical points, interest points, key points, extremal points, anchor
points, landmarks, control points, tie points.

I For instance corners, vertices, junctions, edges, dark/light blob center, unique
patches, moments, . . .
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Feature points definition II

Feature-based approach

In both images, extract feature points and compute their descriptor vector. Then, match
the corresponding feature points and compute the image warping that transforms at
best (maximum agreement) each feature points into its corresponding one.

Feature points are/should be:

I Independent of noise, blurring, contrast, lightning conditions.

I Dependent or Independent of geometric changes (rotation, scaling, affine
transform).

I Widely used in image analysis (not only for image registration).
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Feature points definition III

Feature-based approach

In both images, extract feature points and compute their descriptor vector. Then, match
the corresponding feature points and compute the image warping that transforms at
best (maximum agreement) each feature points into its corresponding one.

I Defining and computing a “featureness” function
Invariant to some image variation (translation, rotation, scaling, brightness,
contrast, ...)
For instance; central moments, pixel intensity variances, gradient module,
LoG/DoG, entropy, Harris cornerness, ...

I And keeping only the most-significant maxima/minima/zeroes of the “featureness”
function.
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Feature points representation & matching I

Feature-based approach

In both images, extract feature points and compute their descriptor vector. Then, match
the corresponding feature points and compute the image warping that transforms at
best (maximum agreement) each feature points into its corresponding one.

Represent each feature point by a descriptor vector

I Vector of characteristic values describing the feature point in an unique and
discriminatory way.

I Position, gradient, image moment, scale, orientation, Histogram Of Gradients
(HOG), Local Binary Pattern (LPB), ...
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Feature points representation & matching II

Feature-based approach

In both images, extract feature points and compute their descriptor vector. Then, match
the corresponding feature points and compute the image warping that transforms at
best (maximum agreement) each feature points into its corresponding one.

Find/match the corresponding feature points in both images:

I Compare the descriptor vectors to find the best correspondence between feature
points in each images.
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Feature points transformation

Feature-based approach

In both images, extract feature points and compute their descriptor vector. Then, match
the corresponding feature points and compute the image warping that transforms at
best (maximum agreement) each feature points into its corresponding one.

Compute the transformation/warping such that the feature points in the left image fit
their corresponding point in the right image.
I Define which kind of warping is admissible; rigid global warping (homography) or

elastic/local warping.
I Use robust fitting methods:

RANSAC,
Hough Transform,
ICP (Iterative Closest Point)
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Pixel-based vs. feature based approach I

Pixel-based approach

Shift or warp the images relatively to each other, then look at how much the pixels agree
and find the warping parameters for which the agreement is maximum.

Feature-based approach

In both images, extract feature points and compute their descriptor vector. Then, match
the corresponding feature points and compute the image warping that transforms at
best (maximum agreement) each feature points into its corresponding one.

Template matching and/or image registration ARE
optimization problems
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Pixel-based vs. feature based approach II

Pixel based Feature based

Pattern

information

usage

Use all pixels in the pattern in

an uniform way. No need to

analyze or understand the

pattern.

Find and use pattern features

(most informative part of the

pattern). → Sensitive

operation.

Occlusion

or pose

variation

Sensitive Could be design to be

insensitive

Sub-pixel

accuracy

Interpolation of the

similarity/dissimilarity measure

Naturally accurate at the

sub-pixel level.

Admissible

warping

The choice has to be done at

the beginning of the process

(orientation and scaling)

Mostly insensitive to

differences in orientation and

scaling

Noise and

lighting

conditions

Sensitive Naturally much more

insensitive
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Pixel-based vs. feature based approach III

Pixel based Feature based

Rigid

pattern

warping

Mostly limited to rigid pattern

warping

Enable non-rigid warping.

Dimensionality

of the

search

space

Mostly limited to low

dimensionality (the search

time is exponential in the

search space dimensionality)

Higher dimensionality search

space are more easily

reachable

Implementation Easy to implement, natural

implementation on GPUs

Much more difficult to

implement and/or to optimize

Complexity Complexity proportional to the

image size. Need specific

search strategies to reach

real-time.

Complexity roughly

proportional to the number of

feature points (depend more

on the content of the scene

than on the image size)
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Pixel-based approach: Similarity/dissimilarity measures

Similarity / Correlation / Score Dissimilarity / Distance

Pearson correlation coefficient
Tanimoto Measure

Stochastic Sign Change

Deterministic Sign Change

Minimum Ratio
Spearman’s Rho

Kendall’s Tau
Greatest Deviation
Ordinal Measure
Correlation Ratio

Energy of Joint Probability

Distribution Material
Similarity Shannon Mutual Information

Rényi Mutual Information

Tsallis Mutual Information

F-Information Measures

L1 Norm
Median of Absolute Differences

Square L2 Norm

Median of Square Differences

Normalized Square L2 Norm

Incremental Sign Distance

Intensity-Ratio Variance

Intensity-Mapping-Ratio Variance

Rank Distance
Joint Entropy

Exclusive F–Information
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Pixel-based approach: Similarity/dissimilarity measures

Similarity / Correlation / Score Dissimilarity / Distance

Pearson correlation coefficient
Tanimoto Measure

Stochastic Sign Change
Deterministic Sign Change

Minimum Ratio
Spearman’s Rho

Kendall’s Tau
Greatest Deviation
Ordinal Measure
Correlation Ratio

Energy of Joint Probability
Distribution Material

Similarity Shannon Mutual Information
Rényi Mutual Information
Tsallis Mutual Information

F-Information Measures

L1 Norm
Median of Absolute Differences

Square L2 Norm
Median of Square Differences
Normalized Square L2 Norm
Incremental Sign Distance
Intensity-Ratio Variance

Intensity-Mapping-Ratio Variance
Rank Distance
Joint Entropy

Exclusive F–Information
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Pixel-based approach: Similarity/dissimilarity measures

I Given two corresponding sequences of measurement
{ai | i = 1, · · · , n} and {bi | i = 1, · · · , n}, we will represent them by
the following (column) vectors:

A = (ai )i=1,··· ,n ∈ Rn

B = (bi )i=1,··· ,n ∈ Rn

A and B might represent measurements from two objects or
phenomena. Here, in our case, we assume they represent images and ai
and bi are the intensities of the corresponding pixels in the images.

I The similarity (dissimilarity) between them is a measure that
quantifies the dependency (independency) between the sequences.

I In the naive solution, we used the Euclidean distance (the square L2
norm).
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Pearson correlation coefficient

Definition

The Pearson correlation coefficient of two vectors A and B is:

r (A,B) =
covar (A,B)√
var (A) var (B)

(224)

With the usual notations:
I µA = 1

n

∑n

i=1
ai var (A) = σ2

A = 1
n

∑n

i=1
(ai − µA)2 = 1

n

∑n

i=1
a2
i − µ2

A

I µB = 1
n

∑n

i=1
bi var (B) = σ2

B = 1
n

∑n

i=1
(bi − µB)2 = 1

n

∑n

i=1
b2
i − µ2

BI covar (A,B) = 1
n

∑n

i=1
(ai − µA) (bi − µB) = 1

n

∑n

i=1
aibi − µAµB

We may write:

r (A,B) =
1
n

∑n

i=1
(ai − µA) (bi − µB)√

1
n

∑n

i=1
(ai − µA)2

√
1
n

∑n

i=1
(bi − µB)2

r (A,B) =
1
n

∑n

i=1
aibi − µAµB√

1
n

∑n

i=1
a2
i − µ2

A

√
1
n

∑n

i=1
b2
i − µ2

B

The Pearson coefficient r (A,B) is then easily computed with one pass on the images A
and B.
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Pearson correlation coefficient properties I

If we introduce the reduced or normalized vectors:

Ã =
1

σA
(A− µA1) and B̃ =

1

σB
(B − µB1)

We have the following relation:

Theorem

r (A,B) =
1

n
Ã
T

B̃ = r
(

Ã, B̃
)

(225)

Which is obvious from

r (A,B) =
1

n

n∑

i=1

(
ai − µA
σA

)(
bi − µB
σB

)
=

1

n
Ã
T

B̃ = r
(

Ã, B̃
)
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Pearson correlation coefficient properties II

The Pearson coefficient doesn’t depend on the image’s gain and offset.

Theorem (Invariance to affine transformation of pixel values)

For any values α, β, γ, δ such that α 6= 0 and γ 6= 0, we have:

r (αA + β1, γB + δ1) = sign (αγ) r (A,B)

This result comes immediately from

˜(αA + β1) =
1

|α|σA
[(αA + β1)− (αµA + β) 1] =

sign (α)

σA
(A− µA1) = sign (α) Ã

Then

r (αA + β1, γB + δ1) = r
(

˜(αA + β1), ˜(γB + δ1)
)

r (αA + β1, γB + δ1) = r
(

sign (α) Ã, sign (γ) B̃
)

= sign (αγ) r (A,B)
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Pearson correlation coefficient properties III

Due to the usual properties of variance and covariance;

Theorem

The range of values of r (A,B) is [−1,+1]:

r = +1 if and only if B = αA + β1 with α > 0. It is a perfect direct
matching between A and B .

r = −1 if and only if B = αA + β1 with α < 0. It is a perfect inverse
matching between A and B .

r = 0 if and only if there is no linear correlation between A and B.
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Pearson correlation coefficient map

(a) A template T .
(b) An image I containing the
template T .
(c) The correlation image
C [T , I ] with intensity at a pixel
showing the correlation coef-
ficient between the template
and the window centered at the
pixel in the image.
(d) The real part of image
Cp [T , I ], showing the phase
correlation result with the loca-
tion of the spike encircled.

(a) (b)

(c) (d)
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Spearman rank correlation or Spearman’s rho I

I The Spearman rank correlation or Spearman’s Rho (ρ) between
vectors A = (ai )i=1,··· ,n and B = (bi )i=1,··· ,n is given by

ρ = 1− 6
∑n

i=1 [R (ai )− R (bi )]2

n (n2 − 1)
(226)

where R (ai ) and R (bi ) represent ranks of ai and bi in images A and
B.

I Remark: to eliminate possible ties among discrete intensities in
images, the images are smoothed with a Gaussian of a small standard
deviation, such as 1 pixel, to produce unique floating-point intensities.
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Spearman rank correlation or Spearman’s rho II

I Comparison with the Pearson correlation coefficient:

ρ is less sensitive to outliers and, thus, less sensitive to impulse noise
and occlusion.

ρ is less sensitive to nonlinear intensity difference between images than
Pearson correlation coefficient.

Spearman’s ρ consistently produced a higher discrimination power than
Pearson correlation coefficient.

Computationally, ρ is much slower than r primarily due to the need for
ordering intensities in I and J .
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Kendall’s tau I

I If ai and bi , for i = 0, ..., n, show intensities of corresponding pixels
in A and B , then for i 6= j , two possibilities exist:

Either concordance : sign(aj − ai ) = sign(bj − bi )
Or discordance : sign(aj − ai ) = −sign(bj − bi )

I Assuming that out of the C 2
n possible combinations, Nc pairs are

concordant and Nd pairs are discordant, Kendall’s τ is defined by:

τ =
Nc − Nd

n(n−1)
2

(227)

I If bivariate (A,B) is normally distributed, Kendall’s τ is related to
Pearson correlation coefficient r by:

r = sin

(
πτ

2

)
(228)
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Kendall’s tau II

I Comparison with other similarity measures:

Pearson correlation coefficient can more finely distinguish images that
represent different scenes than Kendall’s τ .

Conversely, Kendall’s τ can more finely distinguish similar images from
each other when compared to Pearson correlation coefficient.

Spearman’s ρ and Kendall’s τ have the same discrimination power
when comparing images of different scenes.

Kendall’s τ is one of the costliest similarity measures.
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Spearman’s rho and Kendall’s tau maps

Spearman’s Rho Kendall’s Tau
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Table of content

I Introduction & Applications

I Some solutions and their corresponding approach
I Template matching & image registration components

Pixel-based approach: Similarity/Dissimilarity measures
Feature-based approach: Feature points detection

I Implementation speed-up
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Feature point category

A large number of point detectors have been developed throughout the
years:
I Corner-based detectors

I Edge-based detectors

I Model-based detectors

I Uniqueness-based detectors

I Curvature-based detectors

I Laplacian-based detectors

I Gradient-based detectors

I Hough Transform-based detectors

I Symmetry-based detectors

I Filtering-based detectors

I Transform Domain detectors

I Pattern Recognition-based detectors

I Moment-based detectors

I Entropy-based detectors
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Feature point category

A large number of point detectors have been developed throughout the
years:
I Corner-based detectors

I Edge-based detectors

I Model-based detectors

I Uniqueness-based detectors

I Curvature-based detectors

I Laplacian-based detectors

I Gradient-based detectors

I Hough Transform-based detectors

I Symmetry-based detectors

I Filtering-based detectors

I Transform Domain detectors

I Pattern Recognition-based detectors

I Moment-based detectors

I Entropy-based detectors
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Corner-based detectors I

I The angle between the line connecting pixel (x , y) to the ith pixel on the
smallest circle and the x-axis is θi , and the intensity at the ith pixel is I1(θi )

I If Ĩj(θi ) represents the normalized intensity at θi in the jth circle, then

C (x , y) =
n∑

i=1

m∏

j=1

Ĩj(θi ) (229)

is used to measure the strength of a vertex or a junction at (x , y) .

I In the following formula, if m = 2 (2 circles), C (x , y) is the Pearson
coefficient of the two vectors Ĩ1(θi ) and Ĩ2(θi ).

I Pixel (x , y) is then considered a corner if C (x , y) is locally maximum.
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Corner-based detectors II

Philippe Latour Computer Vision Academic year: 2023-2024 497 / 538

Template Matching & Image Registration Template matching & image registration components

Laplacian-based detectors I

I A number of detectors use either the Laplacian of Gaussian (LoG) or
the difference of Gaussians (DoG) to detect points in an image.

I For the following development, we consider a “continuous” image

I : Ω⊂ R2 → R : (x , y) ∈ Ω→ I (x , y) , (230)

and we define a scaled version of this image

L (x , y ;σ) = g (x , y ;σ)⊗ I (x , y) , (231)

where g (x , y ;σ) = 1
2πσ2 exp

(
− x2+y2

2σ2

)
is the Gaussian kernel of

variance σ2.

I The Laplacian of Gaussian LoG = 4L (x , y ;σ) is defined as

4L (x , y ;σ) = 4 [G (x , y ;σ)⊗ I (x , y)] = [4g (x , y ;σ)]⊗ I (x , y) .
(232)

Philippe Latour Computer Vision Academic year: 2023-2024 498 / 538



Template Matching & Image Registration Template matching & image registration components

Laplacian-based detectors II

I So, we compute the Laplacian of the Gaussian

4g (x , y ;σ) =
x2 + y 2 − 2σ2

2πσ6
exp

(
−x2 + y 2

2σ2

)
(233)

and its partial derivative relatively to σ

∂

∂σ
g (x , y ;σ) =

x2 + y 2 − 2σ2

2πσ5
exp

(
−x2 + y 2

2σ2

)
. (234)

Then, we deduce

σ4L (x , y ;σ) =
∂

∂σ
L (x , y ;σ) ' [L (x , y ; kσ)− L (x , y ;σ)]

kσ − σ (235)

and the DoG operator is an approximation to the LoG operator

L (x , y ; kσ)− L (x , y ;σ) = (k − 1)σ24L (x , y ;σ) . (236)
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Laplacian-based detectors III

I Local extrema of LoG or its approximation DoG detect centers of
bright or dark blobs in an image.

They are less influenced by noise than points representing corners and
junctions
They are stable and discriminative for image matching.

I SIFT (Scale Invariant Feature Transform) used the difference of
Gaussians (DoG) to find points in an image.
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Outline

1 Fundamentals of 2D imaging

2 Motion analysis and background subtraction

3 Performance analysis

4 3D vision: calibration and reconstruction

5 Linear filtering

6 Mathematical morphology

7 Edge detection

8 Non-linear filtering

9 Feature detection and tracking

10 Segmentation
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Template Matching & Image Registration Implementation speed-up

Table of content

I Introduction & Applications

I Some solutions and their corresponding approach

I Template matching & image registration components
I Implementation speed-up

FFT
Multiresolution: Coarse to fine
Hybrid approach: feature extraction in one image only
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Correlation and Fourier Transform I

The 2D Discrete Fourier Transform (2D-DFT) enable the fast computation
of the cross-correlation of images.

Definition

A discrete image of L lines and K columns is first represented by:
the matrix of its pixel values I = (Ilk)
where l = 0, · · · , L− 1 and k = 0, · · · ,K − 1,
and then, we extend the image by defining alk = 0
when l /∈ [0, L− 1] or k /∈ [0,K − 1]
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Correlation and Fourier Transform II

Definition (2D-DFT on a grid of L lines by K columns)

The 2D-DFT of I is the matrix

I = F [I ] = (αuv )

where u = 0, · · · , L− 1 and v = 0, · · · ,K − 1, and

αuv =
L−1∑

l=0

K−1∑

k=0

Ilke−j2π( lu
L

+ kv
K ) =

∑

l ,k∈Z
Ilke−j2π( lu

L
+ kv

K )

And the inverse formulas are

Ilk =
1

LK

L−1∑

u=0

K−1∑

v=0

αuve j2π( lu
L

+ kv
K )
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Correlation and Fourier Transform III

In the previous definition, we extend the range of values of u and v and
obtain a periodic “infinite” array, thanks to the following relation:

αu+L,v+K =
∑

l ,k∈Z
Ilke−j2π

(
l(u+L)

L
+

k(v+K)
K

)

αu+L,v+K =
∑

l ,k∈Z
Ilke−j2π( lu

L
+ kv

K )

=1︷ ︸︸ ︷
e−j2π(l+k)= αuv

So, we define αuv for all integral values of u and v by αu+nL,v+mK = αuv .
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Correlation and Fourier Transform IV

Definition

The cross-correlation of two “extended” images I (initially LI lines by KI

columns) and T (initially LT lines by KT columns) is

Γ (I ,T ) = C = (clk)

where

clk =
LI−1∑

n=0

KI−1∑

m=0

InmTn+l ,m+k =
∑

n,m∈Z
InmTn+l ,m+k

with clk 6= 0 if l ∈ {−LI + 1, · · · , LT − 1} and
k ∈ −{KI + 1, · · · ,KT − 1},
and LC = LI + LT − 1 and KC = KI + KT − 1.
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Correlation and Fourier Transform V

The 2D-DFT of the cross-correlation of these two images is

γuv =
∑

l,k∈Z
clke
−j2π
(

lu
LC

+ kv
KC

)

γuv =
∑

l,k∈Z

[∑

n,m∈Z
InmTn+l,m+k

]
e
−j2π
(

lu
LC

+ kv
KC

)

γuv =
∑

n,m∈Z
Inm
∑

l,k∈Z
Tn+l,m+ke

−j2π
(

lu
LC

+ kv
KC

)

γuv =
∑

n,m∈Z
Inm
∑

l′,k′∈Z

Tl′k′e
−j2π

(
(l′−n)u

LC
+

(k′−m)v
KC

)

γuv =

(∑

n,m∈Z
Inme

+j2π
(

nu
LC

+ mv
KC

))( ∑

l′,k′∈Z

Tl′k′e
−j2π
(

l′u
LC

+ k′v
KC

))

γuv = α∗uvβuv
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Correlation and Fourier Transform VI

I The best-matching template window in the image is located at the
peak of the cross-correlation

C [T , I ] =
1

n
Γ (T , I ) =

1

n
F−1 {F {T}∗F {I}} (237)

I This is different from the Pearson correlation coefficient, where each
sub-window of the image I is first normalized before being correlated.

I Phase correlation: the information about the displacement of one
image with respect to another is included in the phase component of
the cross-power spectrum of the images:

Cp [T , I ] = F−1

{
F {T}∗F {I}
‖F {T}∗F {I}‖

}
(238)
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Multiresolution - Coarse-to-fine approach

I Compute image and pattern down-scaled pyramids.

I Proceed to a full search of the most reduced (coarser) pattern within
the most reduced image.

I Find a number of possible candidates at the coarsest scale by an
exhaustive search.

I For each candidates at a given scale:

Upscale the image and the candidate and look for the best matching
pattern location in a neighborhood of the candidate.
Reduce the number of candidates
If the finer scale has not yet been reached, proceed to the next scale
level
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Hybrid approach: feature extraction in one image only

I Search for some feature points in the template.
I Consider very simple feature points as

the local maxima of the gradient,
regularly spaced patches.

I Scan the warping parameter space following a given strategy:

Transform the feature points of the template following the current
eligible warping parameters.
Superimpose the warped feature points (of the template) on the
observed image.
At each warped feature points location in the observed image, check if
a compatible feature point exists in the observed image and measure its
similarity/dissimilarity score.
Compute a global measure of similarity/dissimilarity by adding all the
individual scores of the feature points.
Find the optimum of this measure on the search space.

I “Detect and track” instead of “detect and match”.
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Introduction to machine learning

A starter: silhouette recognition I

I Can you decide which silhouettes are those of humans?

I Try to write an algorithm to solve this problem!
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Introduction to machine learning

A starter: silhouette recognition II

After binarization of the silhouettes

I Can you decide which silhouettes are those of humans?

I Try to write an algorithm to solve this problem!
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Introduction to machine learning

Very first understanding

Observation

I Most of the tasks related to video scene interpretation are complex.

I A human expert can easily take the right decision, but usually without
being able to explain how he does it.

One possible solution

Use machine learning techniques that have proven to be a powerful tool in
computer science and vision
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Machine learning techniques

Machine learning (ML) techniques2 aim is to

I build a decision rule automatically.

I speed up the decisions.

I be able to generalize to unseen objects. Really?!

Computational cost:

I The model is learned only once.

I The model is used many times.

I [Q] Which operation should be the fastest?

2We consider only “supervised” machine learning techniques.
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Machine learning techniques

Examples of techniques are:

I Naive Bayes classifier

I Nearest neighbor

I Artificial neuronal networks (→ deep learning)

I Support Vector Machines (SVM) [CV95]

I Random forests (ExtRaTrees [GEW06])

A good reference book on this topic is [HTF09].
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Families of machine learning methods

unsupervised learning

classification

supervised learning

machine learning

regression

For supervised learning, we have labeled (annotated) training data.
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Classification vs regression

Example of classification:

yes yes no yes no no

Example of regression:

65.20 −2.00 −71.50 15.40 −47.40 −5.50
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Applications I

ML techniques have proven to be successful for many purposes:

I detecting people in images [DT05];

I recognizing people [BHP05];

I analyzing people’s behavior [SFC+11];

I detecting faces with software embedded in cameras [VJ04];

[image source: Shotton2011RealTime]
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Applications II

I semantic segmentation

I etc
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In practice . . .

= “black boxes”

ML

users

ML

designers

libraries

There exists many machine learning libraries. For example,

I scikit-learn (Python)

I libSVM (Matlab, Java, Python, etc)

I Regression trees (C/Matlab)

I Java-ML (Java)

I Shark (C++)

I . . .

More specifically for deep learning,

I Caffe2, TensorFlow, Theano, Torch, Keras, CNTK (Python)
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Introduction to machine learning Understanding classification

How does it work? What is learned?

Example of learning database:

x1 x2 x3 x4 x5 y

sample 1 7.99 6.77 9.75 1.58 1.00 0

sample 2 2.24 9.51 1.14 8.00 7.66 0

sample 3 2.18 2.83 2.96 5.14 9.73 0

sample 4 8.44 7.39 4.57 4.94 2.70 1

sample 5 9.55 5.92 2.52 0.46 1.53 1

sample 6 3.32 9.13 0.50 5.07 8.22 2

MODEL ≡ y (x1, x2, x3, x4, x5) =?

I y is the output variable (the class)

I Samples are described by attributes (or features) x1, x2, . . .

I The same number of attributes should be used for all samples.

I The meaning of an attribute should not depend on the sample.
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Example of classification task

handwritten character recognition

I size = 100 samples

I choice : attributes = raw pixels
I the size of the images is 32× 32

dimension = 1024 attributes

[image source: P. Geurts, ”An introduction to Machine Learning”]
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Introduction to machine learning Understanding classification

The intrinsic difficulty of machine learning

The theoretical rule to minimize the error rate is

y
(−→x
)

= arg max
yi∈{0,1,...}

(
p(y = yi |−→x )

)
(239)

Let ρ be the probability density function (pdf) of all objects in the
attributes space, and ρi be the pdf of the objects belonging to class y i .
Using Bayes’ rule (that is p(A|B)p(B) = p(B|A)p(A)):

p(y = yi |−→x ) =
ρi
[−→x
]

p(y = yi )

ρ
[−→x
] (240)

Therefore,
y
(−→x
)

= arg max
yi∈{0,1,...}

(
ρi
[−→x
]

p(y = yi )
)

(241)

The intrinsic difficulty is that it is very difficult to estimate ρi from the
learning database because the space is not densely sampled.
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An example of decision rule in 1D

Let us assume that we have to recognize men and women based on a
single attribute: the height. In Australia, there are 100 women for 100
men. But in Russia, there are 114 women for 100 men.

0

0.02

0.04

0.06

0.08

0.1

160 165 170 175 180

height [ cm ]

ρman
ρwoman

australian threshold
ρman * 100 / 214

ρwoman * 114 / 214
russian threshold

y = ( height < 169.34 )? ”woman” : ”man” ;

Sébastien Piérard, Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 528 / 538



Introduction to machine learning Understanding classification

Example of classifier: the nearest neighbors (NN) I

Let us consider a problem in 2 dimensions (2 attributes x1, x2):

?

x1

x2

x1

x2

k-NN1-NN

x1

x2
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Example of classifier: the nearest neighbors (NN) II

Advantages:

I The size of the neighborhood is automatically chosen depending on k.

I The model is the learning set (or a pruned version of it).

Drawbacks

1 The time needed to take a decision is O(n), where n is the learning
set size.

2 Which distance measure should we select? There exists an infinity of
possible choices! [DD09]
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Example of classifier: the decision trees

[image source: P. Geurts, ”An introduction to Machine Learning”]
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Choosing the complexity of the model

Which model is the best?

[image source: P. Geurts, ”An introduction to Machine Learning”]

error(LS) = 3.4 % error(LS) = 1.0 % error(LS) = 0.0 %
error(TS) = 3.5 % error(TS) = 1.5 % error(TS) = 3.5 %

Two questions:

I Does the model explain the learning set (LS)?
→ resubstitution error = error estimated on the learning set

I Is the model able to predict the classes for unknown samples?
→ generalization error = error estimated on the test set (TS)
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Choosing the complexity of the model

[image source: P. Geurts, ”An introduction to Machine Learning”]
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Outline

1 Fundamentals of 2D imaging

2 Motion analysis and background subtraction

3 Performance analysis

4 3D vision: calibration and reconstruction

5 Linear filtering

6 Mathematical morphology

7 Edge detection

8 Non-linear filtering

9 Feature detection and tracking

10 Segmentation

11 Object description and analysis

12 Template Matching & Image Registration

13 Introduction to machine learning
Introduction to machine learning (ML)
Understanding classification
Conclusion
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Conclusion

ML = automatic + generalization + preprocessing

Machine learning techniques are

I powerful methods.

I a complement to traditional methods.

I essential in computer science.

I adequate for real time computation.

I “easy” to use (not to engineer, nor to optimize 3).

3This is why researchers are still working on machine learning methods.
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Sébastien Piérard, Marc Van Droogenbroeck Computer Vision Academic year: 2023-2024 537 / 538

Introduction to machine learning Conclusion

Bibliography III

P. Viola and M. Jones.
Robust real-time face detection.
Int. J. Comput. Vis., 57(2):137–154, 2004.
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