Computer Vision

Marc Van Droogenbroeck

Academic year: 2023-2024

Practical informations I

- Instructor: Marc Van Droogenbroeck
- Assistant: Renaud Vandeghen
- Slides: http://orbi.uliege.be
- Evaluation
(1) personal project (split in several sub-tasks): 3 students, evaluated in December.
The project is compulsory!
If a sub-task is not done, then the student gets a note of $\mathbf{0}$ for the sub-task AND following sub-tasks.
No possibility to resubmit in August!
(2) written exam (also compulsory!), closed book, during the exam session.
(3) [August only] written examination.
(4) Notation:
(1) January: $2 / 3$ for the project, $1 / 3$ for the exam
(2) August/September: $1 / 2$ for the project, $1 / 2$ for the exam

Practical informations II

- Hands on computer vision \Rightarrow "practice" computer vision

Reference book

- Szeliski R., Computer Vision: Algorithms and Applications, second edition, Springer, 2022.

The 4 "pillars" of computer vision I

A Computer Vision (CV) workflow

(1) Acquisition (sensors, camera, representation)
(2) \rightarrow Processing (filtering, signal "shaping")
(3) \rightarrow Computer vision (CV) algorithm (generic algorithms, not application-tuned)
(4) \rightarrow Application

The 4 "pillars" of computer vision III

(1) Acquisition
(1) Human perception (color, reflection)
(2) Sensor, camera
(3) 3D vision, video
(2) Processing
(1) Linear filters
(2) Morphological tools (openings, geodesic distance)
(3) "Generic" CV algorithms
(1) Classical tools for images (edge detection, watershed, granulometry)
(2) Motion detection
(3) Data-driven tools (machine learning / deep learning)
(4) Application
(1) Tasks: counting, segmentation, detection, tracking
(2) Evaluation

- Don' forget the acquisition step
- understanding your data is essential (also for machine learning applications!)
- Linear framework \rightarrow non-linear frameworks
- A world of trade-offs (computational load \leftrightarrow framerate, etc.)
- There is no unique, universal, solution to a computer vision problem
- Lectures in the spirit of a "catalog"

Outline

(1) Fundamentals of 2D imaging
(2) Motion analysis and background subtraction
(3) Performance analysis
(4) 3D vision: calibration and reconstruction
(5) Linear filtering
(6) Mathematical morphology
(7) Edge detection
(8) Non-linear filtering
(9) Feature detection and tracking
(10) Segmentation
(11) Object description and analysis
(12) Template Matching \& Image Registration
(13) Introduction to machine learning

Outline

(1) Fundamentals of 2D imaging

- Color perception and representation
- Data representations
- Applications

3D vision: calibration and reconstruction
(5) Linear filtering
(6) Mathematical morphologyEdge detection
(8) Non-linear filtering
(9) Feature detection and tracking
(10) Segmentation
(11) Object description and analysis
(12) Template Matching \& Image Registration

Introduction to machine learning

Fundamentals of 2D imaging
Topics

- Elements of visual perception
- Colors: representation and colorspaces
- Transparency
- Data structure for images
- Examples of industrial applications:
- Segmentation
- Optical character recognition

Outline

(1) Fundamentals of 2D imaging

- Color perception and representation
- Data representations
- Applications
(2) Motion analysis and background subtraction
(3) Performance analysis

3D vision: calibration and reconstruction
(5) Linear filtering
(6) Mathematical morphology

Edge detection
(8) Non-linear filtering
(9) Feature detection and tracking
(10) Segmentation
(11) Object description and analysis
(12) Template Matching \& Image Registration

Introduction to machine learning

Human visual system, light and colors I

Figure: Lateral view of the eye globe (rods and cones are receptors located on the retina).

color	wavelength interval $\lambda[\mathrm{m}]$	frequency interval $f[\mathrm{~Hz}]$
purple	$\sim 450-400[\mathrm{~nm}]$	$\sim 670-750[\mathrm{THz}]$
blue	$\sim 490-450[\mathrm{~nm}]$	$\sim 610-670[\mathrm{THz}]$
green	$\sim 560-490[\mathrm{~nm}]$	$\sim 540-610[\mathrm{THz}]$
yellow	$\sim 590-560[\mathrm{~nm}]$	$\sim 510-540[\mathrm{THz}]$
orange	$\sim 635-590[\mathrm{~nm}]$	$\sim 480-510[\mathrm{THz}]$
red	$\sim 700-635[\mathrm{~nm}]$	$\sim 430-480[\mathrm{THz}]$

Figure: Visible colors (remember that $\lambda=\frac{3 \times 10^{8}}{f}$).

Figure: Colors on the visible spectrum.

$$
\begin{equation*}
\int_{\lambda} L(\lambda) d \lambda \tag{1}
\end{equation*}
$$

Impossible from a practical perspective because this would require one sensor for each wavelength.
Solution: use colorspaces

Figure: Equalization experiment for colors. The aim is to mix A, B, and C to get as close as possible to X.

Frequency representation of colors

$$
\begin{equation*}
\int_{\lambda} L(\lambda) d \lambda \tag{1}
\end{equation*}
$$

Impossible from a practical perspective because this would require one sensor for each wavelength.
Solution: use colorspaces

Figure: Equalization experiment for colors. The aim is to mix A, B, and C to get as close as possible to X.

The RGB additive colorspace

Three fundamental colors: red $R(700[n m])$, green $G(546,1[n m])$ and blue $B(435,8[n m])$,

Figure: Equalization curves obtained by mixing the three fundamental colors to simulate a given color.

CIE chromatic diagram for RGB

We consider $R+G+B=1$, so positive $R G B$ values are in a triangle

Notion of intensity

$$
R+G+B=\text { intensity } \quad(\text { intensity } \in[0,1])
$$

Figure: Pyramid derived from an RGB color representation.

$$
\begin{align*}
&\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=\left(\begin{array}{ccc}
2,769 & 1,7518 & 1,13 \\
1 & 4,5907 & 0,0601 \\
0 & 0,0565 & 5,5943
\end{array}\right)\left(\begin{array}{c}
R \\
G \\
B
\end{array}\right) \tag{2}\\
& x=\frac{X}{X+Y+Z} \tag{3}\\
& y=\frac{Y}{X+Y+Z} \tag{4}\\
& z=\frac{Z}{X+Y+Z} \tag{5}\\
& x+y+z=1 \tag{6}
\end{align*}
$$

Towards other colorspaces: the XYZ colorspace II

Figure: Approximative chromatic colorspace defined by two chrominance variables x and y.

Luminance

Luminance: $Y=0.2126 \times R+0.7152 \times G+0.0722 \times B$

Figure: $x y$ chromatic diagram and maximal luminance for each color.

The HSI colorspace

Colorspace that has a better physical meaning:

- hue
- saturation
- intensity

Other colorspaces

- a subtractive colorspace: Cyan, Magenta, and Y ellow (CMY)
- Luminance + chrominances $\left(Y I Q, Y U V\right.$ or $\left.Y C_{b} C_{r}\right)$

In practice, we use 8 bits ($\equiv 1$ byte) to describe one color channel (instead of a value between 0 and 1). So, colors $\equiv 24$ bits.

Hexadecimal

00	00	00		0	0	0
00	00	FF		0	0	255
00	FF	00		0	255	0
00	FF	FF		0	255	255
FF	00	00		255	0	0
FF	00	FF		255	0	255
FF	FF	00		255	255	0
FF	FF	FF	\square	255	255	255

Table: Two representations of RGB color values (8 bit per color channel).

Figure: Acquisition of a $Y C_{b} C_{R}$ signal [Wikipedia]

There are variations, such as the $Y \cup V$ colorspace, mainly developed for compression:
(1) information concentrated in the Y channel \Rightarrow better compression.
(2) better decorrelation between channels.

Acquisition: one sensor + Bayer filter I

A Bayer filter mosaic is a color filter array for arranging RGB color filters on a square grid of photo sensors.

Figure: The Bayer arrangement of color filters on the pixel array of an image sensor.

Figure: Profile/cross-section of sensor.

Bayer filter: practical considerations

- Most mono-sensor cameras use the Bayer pattern, except for professional 3CCD cameras (three sensor planes + prism to split the incoming light)
- The filter pattern is 50% green, 25% red and 25% blue. Why?
- We only have one value per pixel. Other values are re-built by interpolation, but they might not even exist... !
- For compression or processing,
- 1 sensor plane \Rightarrow normally only one byte to process. Possible if the processing occurs in the sensor, not anymore if the interpolated image is forwarded.
- 3 sensor planes $\Rightarrow 3$ planes to process or to compress.

Expected compression rate: more or less the same as for a grayscale image.

- It might be wiser, for processing, to have a black-and-white (or a monochromatic, such as red) camera, instead of a color camera.

Bayer filter: practical considerations

- Most mono-sensor cameras use the Bayer pattern, except for professional 3CCD cameras (three sensor planes + prism to split the incoming light)
- The filter pattern is 50% green, 25% red and 25% blue. Why?
- We only have one value per pixel. Other values are re-built by interpolation, but they might not even exist... !
- For compression or processing,
- 1 sensor plane \Rightarrow normally only one byte to process. Possible if the processing occurs in the sensor, not anymore if the interpolated image is forwarded.
- 3 sensor planes $\Rightarrow 3$ planes to process or to compress. Expected compression rate: more or less the same as for a grayscale image.
- It might be wiser, for processing, to have a black-and-white (or a monochromatic, such as red) camera, instead of a color camera.

Visual effects

Figure: Illustration of a masking visual effect.

A machine does not take psycho-visual effects into account. But, for evaluating the subjective quality of a compression algorithm, one has to!

Outline

(1) Fundamentals of 2D imaging

- Color perception and representation
- Data representations
- Applications

Motion analysis and background subtraction
 Performance analysis
 3D vision: calibration and reconstruction

\square

Mathematical morphology

Fdge detection

Non-linear filtering
Feature detection and tracking
Segmentation
Object description and analysis
Template Matching \& Image Registration
Introduction to machine learning

Sampling grid and frame organization

- Each sample located on a grid is named a pixel (which stands for picture element).
- There are two common sampling grids and they induce certain types of connectivity (defined the number of neighbors).

Square grid		Hexagonal grid
-•••		-•••
$\bullet \cdot \bullet \cdot$		
- •••		- •••
4-connectivity	8-connectivity	6-connectivity
- . -	- ${ }^{\text {a }}$	\cdots
\cdots		
! !		-.

Table: Types of grid and associated connectivities.

Data structure for dealing with images

- Typical data structure for representing images: matrices (or 2D tables), vectors, trees, lists, piles, ...
- For matrices, there are several ways to organize the memory:
- 1 channel (for example, luminance):
- upper left corner coordinate correspond to the $(0,0)$ location in the matrix.
- one byte per pixel
- 3 channels, such RGB images. We have two options:
(1) store 3 matrices separately (according to the 1 channel storage scheme)
(2) store the RGB values consecutively (intermixed) for each pixel. For example, if $R_{1} G_{1} B_{1}$ and $R_{2} G_{2} B_{2}$ are the color values of two consecutive pixels, then we could store the values as $R_{1} G_{1} B_{1} R_{2} G_{2} B_{2}$ in a single matrix.

The bitplanes of an image

A grayscale image is an array of bytes like 10110000 .

Table: Image and its 8 bitplanes starting with the Most Significant Bitplane

Typology of images and videos

2D. This types refers to a "classic" image and is usually expressed as a 2 D array of values. It might represent the luminance, a color, depth, etc.
3D. 3D images are obtained with devices that produce 3D images (that is with x, y, z coordinates). Medical imaging devices produce this type of images.
$2 \mathrm{D}+\mathrm{t}$. t refers to time. Therefore, $2 D+t$ denotes a video composed over successive 2D images, indexed by t.
$3 D+\mathrm{t} .3 D+\mathrm{t}$ images are in fact animated $3 D$ images. A typical example is that of animated 3D graphical objects, like that produced by simulations.

Compression I

Compression ratios: ITU-R 601 (ex CCIR 601)

- $Y C_{b} C_{r}$
- 4:4:4 $(720 / 720 / 720)=270[\mathrm{Mb} / \mathrm{s}]$
- 4:2:2 $(720 / 360 / 360)=180[\mathrm{Mb} / \mathrm{s}]$

Two main principles:
(1) remove some redundancies inside the frame (intraframe coding)
(2) remove some redundancies between frames (interframe coding)

MPEG-2 levels and profiles

Profile	Simple	Main	SNR	Spatial	High
Low level $(235 \times 288 \times 30 \mathrm{~Hz})$		X	X		
Main level $(720 \times 576 \times 30 \mathrm{~Hz})$	X	X	X		X
High- 1440 level $(1440 \times 1152 \times$ $60 \mathrm{~Hz})$		X		X	X
High level $(1920 \times 1152 \times$ $60 \mathrm{~Hz})$		X			X

A 50 Hz video stream of size $720 \times 576(\mathrm{PAL})$ corresponds to $270[\mathrm{Mb} / \mathrm{s}]$ uncompressed

- Lossless compression: $\approx 100[\mathrm{Mb} / \mathrm{s}]$
- Lossy compression (but intraframe only): $\approx 27[\mathrm{Mb} / \mathrm{s}]$
- Lossy compression (including interframe coding): MPEG-2 format $\approx 5[\mathrm{Mb} / \mathrm{s}]$ or less

Outline

(1) Fundamentals of 2D imaging

- Color perception and representation
- Data representations
- Applications

Image segmentation

Character recognition

Several successive stages:

- Selection of a Region of Interest (ROI). Processing is limited to that area.
- Detection of edges (contours).
- Identification and classification of characters.

- Goal: learn to recognize handwritten digits (by machine learning)
- Dataset: the MNIST (Mixed National Institute of Standards and Technology) database of handwritten digits has
- a training set of 60,000 examples.
- a test/validation set of 10,000 examples.
- normalization: the digits have been size-normalized and centered in a fixed-size image.

Outline

(2) Motion analysis and background subtraction

- Motion analysis by tracking
- Background subtraction
- Technical details of background subtraction
- Evaluation

There are basically two "pure" approaches for motion analysis/detection in a video sequence:
(1) Motion analysis by tracking (= motion estimation based techniques):

- detects some particular points in a video frame.
- find the corresponding points/objects in the next frame.
- based on a model, interpret the trajectories of the points/objects (usually at the object level).
(2) Motion detection by background subtraction:
- build a reference frame or model with no foreground in it.
- compare a next frame to the reference.
- update the reference.

Outline

(2) Motion analysis and background subtraction

- Motion analysis by tracking
- Background subtraction
- Technical details of background subtraction
- Evaluation

There are several techniques but, usually, they involve the following steps:
(1) detect features in successive frames.
(2) make some correspondences between the features detected in consecutive frames
(3) based on a model, regroup some features to facilitate the tracking of objects.

Feature detection

Some known feature detectors:

- Harris's corner detector
- Scale Invariant Feature Transform (SIFT)
- Speeded Up Robust Features from an image (SURF)
- Features from Accelerated Segment Test (FAST)
- ...

Original image

Features detected by SURF

Typical questions/difficulties for tracking approaches (targeting motion estimation):

- How to filter the features? (remove some useless features)
- How do we regroup features?
- we need a model. But this introduces a bias towards the model.
- How do we ensure continuity over time?
- What happens when occlusions occur?
- How to solve ambiguities (one feature in one image is identical to several in the next frame)?

Outline

(2) Motion analysis and background subtraction

- Motion analysis by tracking
- Background subtraction
- Technical details of background subtraction
- Evaluation

Performance analysis
3D vision: calibration and reconstruction
Linear filtering
Mathematical morphology
Edge detection
Non-linear filtering
Feature detection and tracking
Segmentation
Object description and analysis
Template Matching \& Image Registration

Original image

Features detected by ViBe

Figure: Segmentation (pixels that are "in motion") by background subtraction.

Background subtraction is also referred to as change detection.

- Any application with moving objects
- Video-surveillance

Challenges

- Input related issues
- lighting/illumination changes
- slow (day/night cycles)
- fast (light switch, clouds in the sky, ...)
- unwanted motions
- camera shaking (wind)
- in the background (tree leaves, waving grass, water)
- appearance changes of foreground objects (reflections), shadows, camouflage, ...
- Implementation related issues
- robustness
- real time
- Motion detection (you don't need a precise segmentation map):
- raise an alarm
- start/stop recording
- Foreground/background segmentation:
- counting
- traffic analysis
- human motion interpretation
- sport analysis
- coding
- aerial imaging
- detection of exoplanets
- ...

Outline

(2) Motion analysis and background subtraction

- Motion analysis by tracking
- Background subtraction
- Technical details of background subtraction
- Evaluation

Background subtraction

Common tasks:

- background subtraction \Rightarrow segmentation
- change detection \Rightarrow generate alarms (and reduce rate of false alarms!)

Plethora of methods (2023):

- 'motion detection' on IEEE Xplore: 34,620 papers
- 'background subtraction video' on IEEE Xplore: 3,750 papers

Different spatial contexts:

- pixel-based (pixelwise)
- region-based
- tracking (spatio-temporal neighborhood)

Techniques for background subtraction

Objective of pixel-based background subtraction techniques

Separate the foreground (pixels "in motion") from the background ("static" pixels).
\square

Techniques for background subtraction

Objective of pixel-based background subtraction techniques

Separate the foreground (pixels "in motion") from the background ("static" pixels).

Implementation perspective

A video sequence is like a data cube whose dimension is only fixed in 2 dimensions.

- The data cube extends with time.

Challenges for building a background subtraction algorithm:
(1) need to find a way to accumulate knowledge of increasing size inside of a constant sized memory block.
(2) this knowledge should be updated regularly to deal with changes.

Steps

[1. Initialization] build a reference frame or a statistical model for the background.
[2. Subtraction or segmentation] compare the current frame to the reference frame or model, and "subtract" the frame to get a binary image indicating pixels who have changed.
[3. Updating] update the reference frame or model.

When we develop a technique, we have to detail these three steps!

Principles

- Major assumption: fixed camera
- Otherwise,
(1) we have to compensate for the camera motion
(2) what for new areas (for which we have no past information)?

Reference frame or a model?

One frame in the sequence

Built reference frame

Figure: Building a reference frame (or an unimodal model).
Building a reference frame from a video sequence is the task of background estimation/background generation.
For real-time processing, we need a reference frame as soon as possible.

Elementary method (reference frame)

Naive approach for the step of segmentation (static background)
Foreground is detected, pixel by pixel, as the difference between the current frame and a static reference image (background). Let p be a pixel location. p belongs to the background if

$$
\begin{equation*}
\left|I_{t}(p)-B(p)\right| \leq \text { threshold } \tag{7}
\end{equation*}
$$

where

- $I_{t}(p)$ is the current pixel value (at time t),
- $B(p)$ is the reference background value for that pixel.

Problems:

- How do we choose the reference image?
- The reference image should change over time.
- What is the best threshold?

Simple techniques (for the step of updating)

- One "good" image is chosen (usually a frame empty of foreground objects).
- Exponentially updated reference image (blending)

$$
\begin{equation*}
B_{t}(p)=\alpha I_{t}(p)+(1-\alpha) B_{t-1}(p) \tag{8}
\end{equation*}
$$

Typical value for α : 0.05 (in that case, $B_{t}=0.05 I_{t}+0.95 B_{t-1}$)

- Median of the last N frames (for each pixel separately).
- Initialization
- \Rightarrow fill in the first reference image or initialize the model
- difficulty: problem with the presence of ghosts.
- Segmentation
- \Rightarrow rules + parameters ...
- difficulties:
- homogeneous rule for the whole image?
- how to set the values of the parameters?
- Updating
- \Rightarrow we need strategies
- difficulty: how to adapt the scene dynamics?

update (the most common)

update the reference image or the model for all pixels, regardless of the segmentation result (that is if the pixel is a foreground or a background pixel)

- does it make sense?

update (the most common)

update the reference image or the model for all pixels, regardless of the segmentation result (that is if the pixel is a foreground or a background pixel)

- does it make sense?

update

only update when the pixel belongs to the background

- what if the segmentation was wrong (deadlock)?

Advanced techniques

The background is modeled as a probability density function to be estimated

- One Gaussian distribution per pixel
- Mixture of Gaussians for each pixel
- Kernel-based estimation of the probability density function

One Gaussian per pixel

[Model]

For each pixel, the probability density function of observed values is modeled by a single Gaussian.
Let v be an observed value for a pixel p :

$$
\begin{equation*}
\operatorname{pdf}(v) \sim G(\mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(v-\mu)^{2}}{2 \sigma^{2}}} \tag{9}
\end{equation*}
$$

Once the model is built (here it means that we need to estimate the mean and variance), we evaluate the distance to the mean.

[Segmentation step]

If

$$
\begin{equation*}
\left|v_{t}-\mu\right| \leq \text { parameter } \times \sigma \tag{10}
\end{equation*}
$$

then the pixel p belongs to the background.

Mixture of Gaussians Model

Motivation: the probability density function of the background is multi-modal

[Stauffer, 1999, 2000] [Power, 2002] [Zivkovic, 2006]

For each pixel:

$$
\begin{equation*}
\operatorname{pdf}(v) \sim \sum_{i=1}^{N} \alpha_{i} G\left(\mu_{i}, \sigma_{i}\right) \tag{11}
\end{equation*}
$$

Typical values for n : 3 or 5

Fundamental assumptions

- The background has a low variance.
- The background is more frequently visible than the foreground.

Kernel Density Estimation (KDE) methods

For each pixel:

$$
\begin{equation*}
\operatorname{pdf}(v) \sim \sum_{i=1}^{N} \alpha_{i} K_{\sigma}\left(v-v_{i}\right) \tag{12}
\end{equation*}
$$

where $\left\{v_{i}\right\}_{i=1, \ldots, N}$ are the N last values observed (samples) for that pixel, and $K_{\sigma}()$ is a kernel probability function centered at v_{i}.

Decision rule

The pixel belongs to the background if $\operatorname{pdf}(v) \leq$ threshold.
[Elgammal, 2000] [Zivkovic, 2006]

Parameters of KDE techniques

Typical values $\operatorname{pdf}(v) \sim \sum_{i=1}^{N} \alpha_{i} K_{\sigma}\left(v-v_{i}\right)$ with

- Number of samples: $N=100$
- Weight: $\alpha_{i}=\alpha=\frac{1}{N}$
- Spreading factor: $\sigma=$ Variance $\left(v_{i}\right)$
- Probability density function chosen to be Gaussian:
$K_{\sigma}\left(v-v_{i}\right)=G\left(v_{i}, \sigma^{2}\right)$

- Codebook
- Principal Components Analysis (PCA)
- Relaxation techniques (mainly post-processing of binary segmentation maps)
- Local Binary Patterns
- ViBe: no model, all based on samples
- Deep learning based methods

More details about ViBe: design rules

The design of ViBe was motivated by:
(1) information at the pixel level should be preferred to aggregated features (for speed and efficiency).
(2) collect samples, rather than build a statistical model:
(0) sample values have been observed in the past.
(3) no bias towards a model.
(3) minimize the number of collected samples.
(1) no "planned obsolescence" notion for samples.

- don't use the commonly (and exclusively) adopted substitution rule that consists to replace oldest samples first or to reduce their associated weight.
(3) all samples are equally valid.
(0) foresee a mechanism to ensure spatial consistency.
(0) keep the decision process simple.

Requirements while designing ViBe

(1) No pre- or post-processing!
(2) Be real-time.
(3) A unique set of parameters.
(0) Working as soon as you get the second frame.

Keys of a background subtraction technique

(1) Model. What is a good model for the background?
(2) How to classify pixels in the background/foreground? Need for a classification criterion.
(0) How to update the model?
(9) Initialization?

Model

- Model each background pixel with a set of samples (non-parametric method), instead of with an explicit pixel model. Each background pixel x is modeled by a collection of N background sample values: $M(x)=\left\{v_{1}, v_{2}, \ldots, v_{N}\right\}$
- Avoid the difficult task of estimating the probability density function.
- No statistical notion. Assume a binary image, what is the meaning of the mean? It is even a value that might never be observed..
- How could a model consider values of its immediate neighborhood?
- A pixel belongs to the background if there are at least two matches: $\#\left\{S_{R}(v(x)) \cap\left\{v_{1}, v_{2}, \ldots, v_{N}\right\}\right\} \geq \#_{\text {min }}$
- $N=20$ and $\#_{\text {min }}=2$

Fig. 1. Comparison of a pixel value with a set of samples in a two dimensional Euclidean color space (C_{1}, C_{2}). To classify $v(x)$, we count the number of samples of $\mathcal{M}(x)$ intersecting the sphere of radius R centered on $v(x)$.

Updating the model over time

Principles:

Conservative update: update the model only if a pixel value is considered as a background. If it is foreground, do not update at all.
Mechanisms:
(1) The background model of a pixel is updated randomly! One sample in the model is chosen randomly and replaced. The lifetime of the replaced value is ignored.
(2) Random time subsampling. Not every model is updated. Which one is decided randomly (typically 1 out of 16 , on average).
(3) Randomly select a neighbor and modify the model of it with the value of the local pixel and according to the 1 and 2 mechanisms (spatial diffusion).

From a single frame, populate the pixel models with values found in the spatial neighborhood of each pixel.

- Values randomly taken in their neighborhood
- Values chosen in the close 8-connected neighborhood

Results

(c) ViBe (RGB)

(f) Codebook

(d) ViBe (gray)

(g) EGMM [Zivkovic]

(e) Bayesian histogram

(h) GMM [Li et al.]
(k) Sigma-Delta Z.

(j) $1^{s t}$ order filter

Computer Vision

Deep learning based background subtraction techniques

Traditionally

We choose the best feature set and optimize the background subtraction algorithm. But there are many (sub-optimal) possibilities.

- T. Bouwmans, C. Silva, C. Marghes, M. Zitouni, H. Bhaskar, and C. Frelicot. On the role and the importance of features for background modeling and foreground detection. CoRR, abs/1611.09099:1-131, 2016.

What if we automate the search (quest) for the best features?

What's next? |

More and more machine learning for background subtraction.

Figure: Deep learning for extracting the background in video scenes (M. Braham and M. Van Droogenbroeck. Deep Background Subtraction with Scene-Specific Convolutional Neural Networks. In IEEE IWSSIP, May 2016).

What's next? II

Method	$F_{\text {overall }}$	$F_{\text {Baseline }}$	$F_{\text {Jitter }}$	$F_{\text {Shadows }}$	$F_{\text {LowFramerate }}$
ConvNet-GT	0.9046	0.9813	0.9020	0.9454	0.9612
IUTIS-5	0.8093	0.9683	0.8022	0.8807	0.8515
SuBSENSE	0.8018	0.9603	0.7675	0.8732	0.8441
PAWCS	0.7984	0.9500	0.8473	0.8750	0.8988
PSP-MRF	0.7927	0.9566	0.7690	0.8735	0.8109
ConvNet-IUTIS	0.7897	0.9647	0.8013	0.8590	0.8273
EFIC	0.7883	0.9231	0.8050	0.8270	0.9336
Spectral-360	0.7867	0.9477	0.7511	0.7156	0.8797
SC_SOBS	0.7450	0.9491	0.7073	0.8602	0.7985
GMM	0.7444	0.9478	0.6103	0.8396	0.8182
GraphCut	0.7394	0.9304	0.5183	0.7543	0.8208

Table: Overall and per-category F scores for different methods.

Outline

(2) Motion analysis and background subtraction

- Motion analysis by tracking
- Background subtraction
- Technical details of background subtraction
- Evaluation

Evaluation

Elements

(1) Metric
(2) Ground truth data
(3) Interpretation

Evaluation tasks

- Determine the intrinsic performance of a method
- Compare methods
- Rank methods

Outline

(1) Fundamentals of 2D imaging
(2) Motion analysis and background subtraction
(3) Performance analysis

- General discussion
- Evaluation criteria and metrics
- Illustrations3D vision: calibration and reconstruction
(5) Linear filtering

Mathematical morphologyEdge detection
(8) Non-linear filteringFeature detection and tracking
(10) SegmentationObject description and analysis
(2) Template Matching \& Image Registration

Outline

Fundamentals of 2D imaging
(2) Motion analysis and background subtraction
(3) Performance analysis

- General discussion
- Evaluation criteria and metrics
- Illustrations
(4) 3D vision: calibration and reconstruction
(5) Linear filtering

6. Mathematical morphologyEdge detection
(8) Non-linear filtering
7. Feature detection and tracking
(10) Segmentation
(11) Object description and analysis

12 Template Matching \& Image Registration
Introduction to machine learning

What do we want to evaluate?

Edge detection

It is challenging...

Background subtraction

The process of evaluation might involve:

- The definition of a methodology that comprises experiments (note that it is important to be explicit on experimental conditions).
- Criteria or scores.
- Reference data:
- unlabeled data, which is collected "in the wild".
- labeled or annotated data, sometimes named as ground truth data.

General principles of evaluation II

Typology of evaluation methods:

(1) Subjective. The evaluation process involves a representative group of human viewers.
[+] takes the user's experience into account.
$[-]$ is time-consuming (\rightarrow expensive), provides subjective evaluation scores, depends on the experimental setup.
(2) Objective. Based on objective measurements.

Objective quality measures and distortion measures I

Let f be the input image (whose size is $N \times N$) and \hat{f} be the image after some processing.

Original data

Not always available

Noisy image
Input

Available
f

Cleaned image
Output
Calculated
\hat{f}

Marc Van Droogenbroeck
Computer Vision
Academic year: 2023-2024
$90 / 538$ Performance analysis General discussion
Objective quality measures and distortion measures ||

Definition (Mean Square Error)

$$
\begin{equation*}
\operatorname{MSE}=\frac{1}{N M} \sum_{j=0}^{N-1} \sum_{k=0}^{M-1}(f(j, k)-\hat{f}(j, k))^{2} \tag{13}
\end{equation*}
$$

Definitions (Signal to noise ratios)

[Signal to Noise Ratio]

$$
\begin{equation*}
\mathrm{SNR}=\frac{\sum_{j=0}^{N-1} \sum_{k=0}^{M-1}(f(j, k))^{2}}{\sum_{j=0}^{N-1} \sum_{k=0}^{M-1}(f(j, k)-\hat{f}(j, k))^{2}} \tag{14}
\end{equation*}
$$

[Peak Signal to Noise Ratio]

$$
\begin{equation*}
\operatorname{PSNR}=\frac{N M \times 255^{2}}{\sum_{j=0}^{N-1} \sum_{k=0}^{M-1}(f(j, k)-\hat{f}(j, k))^{2}} \tag{15}
\end{equation*}
$$

On the importance of ground truth data

Depending of the availability of ground truth, we have:

- Standalone evaluation.

When a reference is not available.

- Relative evaluation.

When ground truth data is available for comparison.
\square

On the importance of ground truth data

Depending of the availability of ground truth, we have:

- Standalone evaluation.

When a reference is not available.

- Relative evaluation.

When ground truth data is available for comparison.

Properties of "good" ground truth data

(1) representative for the application.
(2) different conditions for the acquisition (large variety of samples, always directly related to the application).
(3) correctly annotated (\rightarrow there is some agreement on the quality of the reference).

Difficulties specific to ground truth data

Annotation process

- the "annotation" process (which consists to build the ground truth data) is complex and sometimes debatable.
Two "flavors":
- synthetic data (which comes with synthetic annotations)
- real data with manually annotated data.
the annotation process is partly subjective.

ChangeDetection.NET (CDNET) dataset: a dataset for testing background subtraction algorithms

An example of ground truth data II

Main characteristics:

- 11 categories: about 5 videos per category
- long video sequences
- thousands of annotated images (ground truth data)
- 5 labels: static (\equiv background), shadow, non-ROI, unknown, and moving (\equiv foreground)
- 7 performance metrics are computed
- ranking per video, category, and globally

Evaluation tasks

We can distinguish 3 main reasons for evaluation:

(1) Optimization/analysis of a solution. For example, we have different parameter sets, then
\triangleright what are the best parameters?
(2) Comparison between algorithms
\triangleright Is algorithm A better than algorithm B ?
(3) Ranking.
\triangleright Which one is the best?

Ideally, evaluation tools should be different for these tasks. In practice, there is a confusion.

Outline

Fundamentals of 2D imaging
Motion analysis and background subtraction
(3) Performance analysis

- General discussion
- Evaluation criteria and metrics
- Illustrations

A framework for developing evaluation criteria

Terminology from the classification theory.

Definition (Classification)

In machine learning and statistics, classification is the process of identifying the category/class of a new observation, on the basis of a training set of data containing observations (or instances) whose category membership is known.

The categories are named "classes".

Example (In background subtraction, there are two classes:)

(1) Foreground
(2) Background

But there could be more: shadows, sky, road, etc.

The notion of positive and negative

Let us consider a two-class problem and denote the "negative" and "positive" classes by c^{-}and c^{+}, respectively. In background subtraction, background \equiv negative and foreground \equiv positive .

Figure: Background subtraction identifies pixels belonging to the foreground (positive class c^{+}, white pixels) and pixels belonging to the background (negative class c^{-}, black pixels).

Some definitions and notations

A classifier estimates the class of each new sample (pixel in the case of background subtraction).

There are two notions of classes:

[true class or ground truth] it is denoted by $y \in\left\{c^{-}, c^{+}\right\}$.
[estimated class] the class estimated by the classifier is denoted by

$$
\hat{y} \in\left\{c^{-}, c^{+}\right\}
$$

Other notions:

- $\pi^{-}=p\left(y=c^{-}\right)$and $\pi^{+}=p\left(y=c^{+}\right)$are the priors.
- the rates of negative and positive predictions, denoted by $\widehat{\pi^{-}}=p\left(\widehat{y}=c^{-}\right)$and $\widehat{\pi^{+}}=p\left(\hat{y}=c^{+}\right)$respectively (not to be confused with the priors!).

Confusion matrix

Definition (Confusion matrix)

There are four possibilities, described by the confusion matrix:

		prediction \hat{y}	
		c^{+}	c^{-}
real class y	c^{+}	True Positive (TP)	False Negative (FN)
	c^{-}	False Positive (FP)	True Negative (TN)

Remarks:

- There are four quantities: TP, FN, FP, TN.
- It is easy to extend a confusion matrix to more than two classes.
- How do we build metrics/performance indicators?

Evaluation metrics

Definitions (Conditional probabilities)

They involve the true class:

- True Positive Rate, also named sensitivity or recall, is defined as

$$
\begin{equation*}
\mathrm{TPR}=p\left(\hat{y}=c^{+} \mid y=c^{+}\right)=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}} \tag{16}
\end{equation*}
$$

- True Negative Rate (also named specificity) is

$$
\begin{equation*}
\mathrm{TNR}=p\left(\hat{y}=c^{-} \mid y=c^{-}\right)=\frac{\mathrm{TN}}{\mathrm{TN}+\mathrm{FP}} \tag{17}
\end{equation*}
$$

These quantities are linked to the

- False Positive Rate FPR $=(1-\mathrm{TNR})=\frac{\mathrm{FP}}{\mathrm{FP}+\mathrm{TN}}$
- False Negative Rate FNR $=(1-\mathrm{TPR})$

Receiver Operating Characteristic (ROC) evaluation space

Definition (Receiver Operating Characteristic (ROC))

The (FPR, TPR) pair defines the ROC evaluation space.

Marc Van Droogenbroeck
Computer Vision
Academic year: 2023-2024
103 / 538
Performance analysis
Evaluation criteria and metrics
Precision/recall evaluation space

Definition (Precision)

$$
\begin{equation*}
\mathrm{P}=p\left(y=c^{+} \mid \hat{y}=c^{+}\right)=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FP}} \tag{18}
\end{equation*}
$$

Definitions (Recall [\equiv TPR])

$$
\begin{equation*}
\mathrm{R}=p\left(\hat{y}=c^{+} \mid y=c^{+}\right)=\frac{\mathrm{TP}}{\mathrm{TP}+\mathrm{FN}} \tag{19}
\end{equation*}
$$

Particularities of the ROC and Precision/Recall space

- Unachievable zone in the PR space, but only the upper part of the ROC curve makes sense.
- In the ROC space, the diagonal represents the random classifiers.

Figure: Isoperformance lines for the F metric ($\left.F=2 \frac{\mathrm{P} \times \mathrm{R}}{\mathrm{P}+\mathrm{R}}=\frac{2 \mathrm{TP}}{2 \mathrm{TP}+\mathrm{FP}+\mathrm{FN}}\right)$.

Outline

Fundamentals of 2D imaging
(3) Performance analysis

- General discussion
- Evaluation criteria and metrics
- Illustrations

3D vision: calibration and reconstruction
Linear filtering
Mathematical morphology
Edge detection
Non-linear filtering
Feature detection and tracking
(10) Segmentation
(1) Object description and analysis
(12) Template Matching \& Image Registration

Introduction to machine learning

Practice:

- Does not nicely fit into the framework of classification
- Some difficulties:
- individual object segmentation quality vs overall segmentation quality evaluation
- subjectivity for defining the ground truth
- Two major classes of metrics for standalone segmentation quality evaluation
- intra-object homogeneity
- inter-object disparity
- Metrics for relative segmentation quality evaluation
- spatial accuracy
- temporal accuracy

Evaluation of edge detection I

Problem statement

Evaluation of edge detection II

Practice:

- Some evaluation methods rely on the classification theory.
- Use of the Precision/Recall evaluation space.
- The F score is a trade-off (harmonic mean between P and R): $F=\frac{2}{\frac{1}{P}+\frac{1}{R}}=2 \frac{P \times R}{P+R}$

Figure: Maximum Precision and Recall curve obtained by varying the parameter set. Circles indicate where the F measure is maximal.

Problem statement

Evaluation of background subtraction II

Practice:

- Many dataset with ground truth available.
- Background subtraction is often considered as a classification task.
- Many algorithms available \Rightarrow most people try to rank algorithms.
- Many metrics. No agreement over the best one (if it exists).

Therefore, an algorithm is evaluated with respect to multiple metrics.

- It is still hard to evaluate the dynamic (\equiv over time) behavior.

Usually, there is one score for the whole video sequence.

- The role of priors is underestimated or just ignored.

Problems with the ChangeDetection dataset I

Reminder: main characteristics

- 11 categories: about 5 videos per category
- long video sequences
- thousands of annotated images (ground truth data)
- 5 labels: static (\equiv background), shadow, non-ROI, unknown, and moving (\equiv foreground)
- 7 performance metrics are computed
- ranking per video, category, and globally

Are there problems?

Marc Van Droogenbroeck
Computer Vision
Academic year: 2023-2024
113 / 538 Performance analysis Illustrations

Problems with the ChangeDetection dataset II

- About the content:
- Some categories are irrelevant for most targeted applications.
- Some hand-made annotations are debatable. For example, how do you handle ghosts or static objects? How do you define the shadow?
- About the methodology:
- All the data is available \Rightarrow it is possible to fine tune all the parameters.
- Parameters of methods are supposed to be the same for all videos. How do we treat methods that adaptively tune parameters?
- Problem with the ranking methodology.
- The averaging process for the metrics (per category and globally) is incorrect.
- No source code available for some methods \Rightarrow some results are impossible to check.
- Some metrics are redundant

Outline

The physical world is in 3D (but flattened/2D by color cameras)

- Acquire 3D information
- Understand 3D geometry (in the eyes of a camera)
- Exploit 3D information for computer vision tasks
- Change the viewpoint of an observer

Outline

(1) Fundamentals of 2D imaging

(2) Motion analysis and background subtraction

4. 3D vision: calibration and reconstruction

- Camera calibration: the pinhole model
- Calibration procedure
- 3D reconstruction

Mathematical morphology
Ecge detection
(8) Non-linear filtering

Feature detection and tracking
Segmentation
Object description and analysis
12 Template Matching \& Image Registration
Introduction to machine learning

3D vision: calibration and reconstruction

Two common tasks in 3D vision I

Camera calibration

Definition. Camera calibration is defined as the technique of estimating the characteristics of a camera.
Goal. Determine an accurate relationship between (X, Y, Z), a 3D point in the real world, and (x, y), its corresponding 2D projection in the image acquired by a calibrated camera.

3D reconstruction

Definition. 3D reconstruction is the process of capturing the shape and appearance of real objects.

Basic set of 2D planar transformations

Building a mathematical model for cameras I

A camera projects a 3D world onto a 2D image.
\Rightarrow this is the concept of projection.

Remarks:

- when we apply a transformation, some characteristics are preserved. For example, when you translate an object, its dimensions and angles are preserved.
- translations and rotations (which can be expressed as the product of a matrix on the $(X, Y, Z)^{T}$ real world coordinates) preserves distances, angles, etc. These leads to so-called Euclidean transformations.
- But what is preserved in general?
- distances? angles? parallelism? alignment of pixel (三 lines)?

Building a mathematical model for cameras II

The real problem if that we have some ambiguities when we project an 3D object to a 2D plane.

One of the simplest model (and most common): pinhole camera (central projection)

What is preserved?

- distances? angles? "parallelism"? No.
- alignment of pixel (\equiv lines)? Yes

Pinhole camera model

- All the light rays converge to a unique point (camera center) before arriving on the sensor plane.

Vocabulary terms:

- camera center. center of the central projection.
- image plane: plane of the sensor.
- principal axis: line passing through the camera center and orthogonal to the image plane.
- principal point: intersection between the principal axis and the image plane.
- f is called the focal length.

Mathematical model of the pinhole camera I

If $\mathbf{X}=(X, Y, Z)^{T}$ is a point in space ${ }^{1}$ and $\mathbf{x}=(x, y)^{T}$ is its projection on the image plane, then similar triangles gives

$$
\begin{equation*}
\frac{x}{f}=\frac{X}{Z} \quad \text { and } \quad \frac{y}{f}=\frac{Y}{Z} \tag{20}
\end{equation*}
$$

Ambiguity: although f is fixed for a camera, we cannot derive the absolute values of X and Y from the measured pair of values (x, y).
\Rightarrow a convenient representation is that of homogeneous coordinates

[^0]
Homogeneous coordinates I

Homogeneous coordinates

Idea: new representation, by adding a trailing 1: $(x, y, 1)$

$$
\begin{equation*}
(x, y) \equiv(x, y, 1) \tag{21}
\end{equation*}
$$

By definition, we assume that

$$
\begin{equation*}
(x, y) \equiv(\lambda x, \lambda y, \lambda) \tag{22}
\end{equation*}
$$

so that all pixels with varying λ are equivalent. In other words, in homogeneous coordinates, a point may be expressed by an infinite number of homogeneous coordinates.
Note: this is similar to how we define rational numbers, that have many different equivalent representations:

$$
\begin{equation*}
\frac{1}{3}=\frac{2}{6}=\frac{13}{39} \tag{23}
\end{equation*}
$$

Marc Van Droogenbroeck
Computer Vision
3D vision: calibration and reconstruction Camera calibration: the pinhole model

Homogeneous coordinates II

Properties:

- $(x, y, 0)$ is not equivalent to (x, y). It is a special point.
- A point of \mathbb{R}^{n} is represented by a vector of size $n+1$. Example:

$$
\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)^{T} \in \mathbb{R}^{3} \mapsto\left(\frac{x_{1}}{x_{3}}, \frac{x_{2}}{x_{3}}\right)^{T} \in \mathbb{R}^{2}
$$

- A line in a plane is represented by the following equation $a x+b y+c=0$. With homogeneous coordinates, this becomes:

$$
\mathbf{I}=(a, b, c)^{T}
$$

- A point belongs to a line if and only if $\mathbf{x}^{T} \mathbf{I}=0$.
- Intersection between two lines: $\mathbf{x}=\mathbf{I} \times \mathbf{I}^{\prime}$ where \times is the product between vectors. coordinates

Let us consider translations.
non-homog

$$
\begin{aligned}
x^{\prime} & =x+t \\
& =\quad+\frac{\mathrm{tx}}{\mathrm{ty}}
\end{aligned}
$$

homog in, non-h out,

$$
x^{\prime}=\left[\begin{array}{ll}
I & t
\end{array}\right] \bar{x}
$$

homog in, homog out
$\overline{\boldsymbol{x}}^{\prime}=\left[\begin{array}{cc}\boldsymbol{I} & \boldsymbol{t} \\ \boldsymbol{0}^{T} & 1\end{array}\right] \overline{\boldsymbol{x}}$

Camera matrix I

With the help of homogeneous coordinates, the relationships of a pinhole camera model can be expressed in a convenient matrix form:

$$
\lambda\left[\begin{array}{l}
x \tag{24}\\
y \\
1
\end{array}\right]=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

where λ is equal to the depth Z.
Remember that we don't know the depth Z from the observation in the place image (depth ambiguity).

$$
\left(\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right) \mapsto \lambda\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left[\begin{array}{llll}
f & 0 & 0 & 0 \\
0 & f & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)=\mathrm{PX}
$$

Camera matrix II

- P is a camera (projection) matrix
- For convenience, P is decomposed as follows:

$$
\begin{align*}
P & =\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll:l}
1 & 0 & 0 & : \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \tag{25}\\
& =\mathrm{K}\left[I_{3 \times 3} \mid 0_{3 \times 1}\right] \tag{26}
\end{align*}
$$

$\rightarrow \mathrm{K}=\operatorname{diag}(f, f, 1)$ is the calibration matrix.

(1) The central point might not be at $(0,0)$ in the image plane

\Rightarrow two additional parameters in the calibration matrix

- If $\left(x_{0}, y_{0}\right)^{T}$ are the coordinates of the principal point, the projection becomes:

$$
\begin{equation*}
(X, Y, Z)^{T} \mapsto\left(f \frac{X}{Z}+x_{0}, f \frac{Y}{Z}+y_{0}\right)^{T} \tag{27}
\end{equation*}
$$

- The matrix form is

$$
\lambda\left[\begin{array}{c}
x+x_{0} \tag{28}\\
y+y_{0} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
f & 0 & x_{0} & 0 \\
0 & f & y_{0} & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

- The matrix K becomes

$$
K=\left[\begin{array}{lll}
f & & x_{0} \tag{29}\\
& f & y_{0} \\
& & 1
\end{array}\right]
$$

(2) Non rectangular light-elements on the sensor

\rightarrow skew parameter s

(3) Non squared elements

This modifies the aspect ratio $\rightarrow \alpha_{x}$ and α_{y}.
Finally,

$$
\mathrm{K}=\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \tag{30}\\
& \alpha_{y} & y_{0} \\
& & 1
\end{array}\right]
$$

Intrinsic parameters

Intrinsic parameters

In a refined camera model,

$$
\mathrm{K}=\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \tag{31}\\
& \alpha_{y} & y_{0} \\
& & 1
\end{array}\right]
$$

This matrix has 5 parameters. These parameters are called intrinsic parameters.

They characterize a camera and should be estimated for each camera separately. But once they are known, there is no need to estimated them again!

Calibration

Definition

A camera is said to be calibrated if

$$
\mathrm{K}=\left[\begin{array}{ccc}
\alpha_{x} & s & x_{0} \\
& \alpha_{y} & y_{0} \\
& & 1
\end{array}\right]
$$

is known.
In general:

- $\alpha_{x} \simeq \alpha_{y}$
- $s \simeq 0$
- x_{0} and y_{0} close to 0 pixel (typically a few pixels maximum).

But we have a problem: we don't know where the center of camera is located in the real world. So there is no way to measure $(X, Y, Z, 1)^{T}$.

Points in the 3D world need to be expressed in a system coordinate different from that of the camera (which is not known).

- Both coordinate systems are related by a rotation and a translation:

For a translation:

$$
\begin{align*}
{\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c} \\
1
\end{array}\right] } & =\left[\begin{array}{c}
X_{0}-t_{1} \\
Y_{0}-t_{2} \\
Z_{0}-t_{3} \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & -t_{1} \\
0 & 1 & 0 & -t_{2} \\
0 & 0 & 1 & -t_{3} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{0} \\
Y_{0} \\
Z_{0} \\
1
\end{array}\right] \tag{32}\\
& =\left[\begin{array}{cc}
\underline{I} & -t \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{0} \\
Y_{0} \\
Z_{0} \\
1
\end{array}\right] \tag{33}
\end{align*}
$$

More generally (translation + rotation):

$$
\left[\begin{array}{c}
X_{c} \tag{34}\\
Y_{c} \\
Z_{c} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\underline{\mathrm{R}}^{T} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\underline{\mathrm{I}} & -t \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{0} \\
Y_{0} \\
Z_{0} \\
1
\end{array}\right]
$$

In conclusion:

$$
\mathbf{X}_{\mathbf{c}}=\left[\begin{array}{cc}
\underline{\mathrm{R}}^{T} & -\underline{\mathrm{R}}^{T} t \tag{35}\\
0 & 1
\end{array}\right] \mathbf{X}_{0}
$$

where \mathbf{R} is a rotation matrix and t a translation vector. This is not a projection, but an Euclidean transform between coordinate systems.

Extrinsic parameters

There are 6 degrees of freedom/parameters (called extrinsic parameters):

- a translation vector (3 values)
- 3 rotation angles

Conclusions on P I

Pinhole camera model:

$$
\begin{equation*}
\lambda \mathbf{x}=\mathrm{K}\left[\mathrm{I}_{3 \times 3} \mid 0_{\mathbf{3 \times 1}}\right] \mathbf{X}_{\mathbf{c}} \tag{36}
\end{equation*}
$$

Link between the coordinate system of the camera and an arbitrary coordinate system:

$$
\mathbf{X}_{\mathbf{c}}=\left[\begin{array}{cc}
\underline{\mathrm{R}}^{T} & -\underline{\mathrm{R}}^{T} t \tag{37}\\
0 & 1
\end{array}\right] \mathbf{X}
$$

By combination:

$$
\begin{equation*}
\lambda \mathbf{x}=\mathrm{KR}^{T}[\mathrm{I} \mid-t] \mathbf{X}=\mathrm{P} \mathbf{X} \tag{38}
\end{equation*}
$$

where $P=K R^{T}[\mathrm{I} \mid-t]$.

Conclusions on P II

Definition

A camera represented with a camera matrix of the form $\mathrm{P}=\operatorname{KR}^{T}[\mathrm{I} \mid-t]$ is called normalized camera.

P is a 3×4 matrix, which is subject to scale ambiguity. Therefore, P has 11 degrees of freedom (unknown parameters):

- 5 intrinsic parameters (related to camera itself, the manufacturer can computed them and give them to the user who buys the camera).
- 6 extrinsic parameters (related to the choice of an external coordinate system).

Outline

Fundamentals of 2D imaging
Motion analysis and background subtraction
(4) 3D vision: calibration and reconstruction

- Camera calibration: the pinhole model
- Calibration procedure
- 3D reconstruction

Calibration procedure I

How do we find the parameters of P?

- We need correspondences between some 3D positions on their location on the projected 2D image $\mathbf{X}_{i} \leftrightarrow \mathbf{x}_{i}=\left(x_{i}, y_{i}, z_{i}\right)$.
- As a result

$$
\mathbf{x}_{i}=\mathrm{P} \mathbf{X}_{i} \Rightarrow \mathbf{x}_{i} \times \mathrm{P} \mathbf{X}_{i}=0
$$

Let \mathbf{P}^{j} be the vector with the j th line of P ,

$$
\left[\begin{array}{ccc}
\mathbf{0}^{T} & -z_{i} \mathbf{X}_{i}^{T} & y_{i} \mathbf{X}_{i}^{T} \\
z_{i} \mathbf{X}_{i}^{T} & \mathbf{0}^{T} & -x_{i} \mathbf{X}_{i}^{T} \\
-y_{i} \mathbf{X}_{i}^{T} & x_{i} \mathbf{X}_{i}^{T} & \mathbf{0}^{T}
\end{array}\right]\left(\begin{array}{l}
\mathbf{P}^{1} \\
\mathbf{P}^{2} \\
\mathbf{P}^{3}
\end{array}\right)=\mathbf{0}
$$

- Two of these equations are linearly independent. But how many correspondences do we need to solve this linear systems?

At least 6

Calibration procedure II

- In practice, we have an over-determined system of linear equations $\mathrm{Ap}=\mathbf{0}$ if there is no noise. But, due to noise, we use an optimization procedure, such as the minimum square optimization
- Use of a precise and well-known 3D calibration pattern

Outline

Fundamentals of 2D imaging

(2) Motion analysis and background subtraction

(4) 3D vision: calibration and reconstruction

- Camera calibration: the pinhole model
- Calibration procedure
- 3D reconstruction

(5) Linear filtering
 Mathematical morphology
 Edge detection
 Non-linear filtering
 Feature detection and tracking
 Segmentation
 Object description and analysis
 Template Matching \& Image Registration

Introduction to machine learning

3D reconstruction

Reconstruction involves several aspects:

- 3D reconstruction of the scene
- dense reconstruction (we have to find the depth for every pixels of the scene)
- non-dense reconstruction
- detection of features. Usually, these are special points of objects (corners, centers, etc)
- the scene content might be moving

Feature detection and motion are often related to each other!

Technologies for dealing with 3D information

Acquisition

- Single monochromatic/color camera
- Multiple cameras (stereoscopy, network of cameras)
- Depth (range) cameras

Rendering

- Glasses
- Color anaglyph systems

- Polarization systems

Display

- Autostereoscopic display technologies

3D reconstruction

There are several ways to reconstruct the 3D geometry of a scene (typology of methods)

- Direct methods:
- depth cameras (also named range or 3D cameras)
- stereoscopic vision or multiview camera systems
- Indirect methods (more or less out of fashion due the existence of 3D cameras):
- "depth from motion"
- "depth from focus"
- "depth from shadow"
- ...

Depth cameras I

There are two acquisition technologies for depth-cameras, also called range- or 3D-cameras:
[1] estimation of the deformations of a pattern sent on the scene (structured light).

Depth cameras II

First generation of the Kinects

Depth cameras III

[2] measurements by time-of-flight (ToF). Time to travel forth and back between the source led (camera) and the sensor (camera).

If d is the distance to a point in the scene and t is the time for the signal to travel from and back to the sensors, then

$$
d=\frac{c}{2 t}
$$

where $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ is the speed of light.
Mesa Imaging, Kinect (second generation), PMD cameras

Depth cameras IV

Two informations are provided by a range camera: depth and intensity

Systems composed of multiple cameras

Three elements interact:

- calibration
- possible motion of the cameras
- 3D structure of the scene

Theorem

Assume a series of images taken with an uncalibrated moving camera for which we have establish correspondences between pairs of points, then it is only possible to reconstruct the 3D scene up to a projective transform.

In the following, we only consider fixed cameras.

(stereoscopic system)

Generally, we have to find correspondences between points of the views of two color cameras.
There are several possibilities:
(1) cameras are aligned (mechanically of numerically, after a transformation) \rightarrow computation of the disparity map.
(2) cameras are not aligned \rightarrow corresponding points in the two camera planes are related to each other via the fundamental matrix.
The fundamental matrix imposes a constraint; it is not sufficient to reconstruct a scene (calibration is needed, etc). This is studied under the name of epipolar geometry.
(3) all the points are in the same plane \rightarrow this constraint (knowledge) facilitates the correspondence finding between two views. The transformation is named an homography.

3D vision: calibration and reconstruction
3D reconstruction
Stereoscopic cameras (aligned cameras)

If cameras are aligned, the disparity is the inverse of depth.

If two cameras only differ in the horizontal direction, the horizontal difference between two locations provides an information about the depth.

Attention:

- cameras and alignments are not perfect!
- disparity only estimates Z !

left view

right view

disparity

contours

The computation is disparity is difficult:

- close to borders (diffraction effects)
- in texture-less zones

Discussion

Advantages (+) or drawbacks (-) of a reconstruction (\equiv depth computation) by the technique of disparity maps:

- $(+)$ the process is simple. One only has to estimate the distance between two corresponding points along a line.
- (-) cameras must be aligned,
- either mechanically,
- or by software. This usually involves re-sampling the image, leading to precision losses.

We need an alternative when the cameras are not aligned.

Unaligned cameras: epipolar geometry and fundamental

 matrix

C and C^{\prime} are the center of the two cameras.

Unaligned cameras: epipolar geometry and fundamental

 matrix II

The use of a second camera is supposed to help determining the location of a point \mathbf{X} along the projection line of the other camera.

Major challenges I

Objective: find a way to use the correspondences between points in a pair of views to be able to find (X, Y, Z) for every point in the scene.

- Calibration:
- each camera has its own calibration matrix:
- solution: find the intrinsic and extrinsic parameters
- when there are two cameras
- solution: there exists a way to build the relationship between the projections in the camera planes that is expressed by the fundamental matrix or the essential matrix.
- Camera placement:
- fixed: the manufacturer can calibrate the camera.
- changing or unknown: one can isolate the intrinsic parameters, but this requires a calibration procedure.
Object structures: they might lead to ambiguities (holes, shadows, etc).

Major challenges II

- "realistic" solution: do some prior assumptions about the objects. It is impossible to solve all the ambiguities, even with an infinite number of cameras.

Towards the fundamental matrix

Consider a point \mathbf{X} in space. It is viewed by the two cameras as:

$$
\begin{align*}
\lambda_{1} \mathbf{x}_{1} & =\mathrm{P}_{1} \mathbf{X}=\left[\mathrm{A}_{1} \mid b_{1}\right] \mathbf{X} \tag{39}\\
\lambda_{2} \mathbf{x}_{2} & =\mathrm{P}_{2} \mathbf{X}=\left[\mathrm{A}_{2} \mid b_{2}\right] \mathbf{X} \tag{40}
\end{align*}
$$

We find X, Y, Z with the help of the equations of the first camera:

$$
\lambda_{1} \mathbf{x}_{1}=\mathrm{P}_{1} \mathbf{X}=\left[\mathrm{A}_{1} \mid b_{1}\right] \mathbf{X}=\mathrm{A}_{1}\left[\begin{array}{c}
X \tag{41}\\
Y \\
Z
\end{array}\right]+b_{1}
$$

therefore,

$$
\left[\begin{array}{l}
X \tag{42}\\
Y \\
Z
\end{array}\right]=\mathrm{A}_{1}^{-1}\left(\lambda_{1} \mathbf{x}_{1}-b_{1}\right)
$$

By substitution, in the second equation, we get

$$
\begin{equation*}
\lambda_{2} \mathbf{x}_{2}=\mathrm{A}_{2} \mathrm{~A}_{1}^{-1}\left(\lambda_{1} \mathbf{x}_{1}-b_{1}\right)+b_{2}=\lambda_{1} \mathrm{~A}_{12} \mathbf{x}_{1}+\left(-\mathrm{A}_{12} b_{1}+b_{2}\right) \tag{43}
\end{equation*}
$$

Consequently, \mathbf{x}_{1} and \mathbf{x}_{2} are linearly independent.

Fundamental matrix

Epipolar constraint

$$
\left[\begin{array}{c}
x^{\prime} \tag{44}\\
y^{\prime} \\
1
\end{array}\right]^{T} \mathrm{~F}\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]=0
$$

- The fundamental matrix F is a 3×3 matrix that constraints the values of the coordinates in the image planes of two cameras.
- $\mathbf{x}^{\prime} \mathbf{F x}=0$ for all the corresponding pairs $\mathbf{x} \leftrightarrow \mathbf{x}^{\prime}$.

Characteristics:

- 7 degrees of freedom (rank 2 matrix)
- the determinant is null
- it is defined up to a scaling factor

Link between the fundamental matrix and the calibration matrices of the cameras |

We can derive the fundamental matrix, starting from the two camera models. Assume that:
(1) we are able to isolate the intrinsic and extrinsic parameters of both cameras.
(2) the absolute 3D coordinate systems is placed on the internal coordinate of one camera. Then, we have

$$
\begin{equation*}
\mathrm{P}=\mathrm{K}[\mathrm{I} \mid 0] \quad \text { and } \quad \mathrm{P}^{\prime}=\mathrm{K}^{\prime}[\mathrm{R} \mid t] \tag{45}
\end{equation*}
$$

3D reconstruction

Link between the fundamental matrix and the calibration matrices of the cameras II

Then, it can be shown that the fundamental matrix is given by

$$
\begin{equation*}
\mathrm{F}=\mathrm{K}^{\prime-T}[t]_{\times} \mathrm{RK}^{-1}=\mathrm{K}^{\prime-T} \mathrm{R}\left[\mathrm{R}^{T} t\right]_{\times} \mathrm{K}^{-1} \tag{46}
\end{equation*}
$$

where

$$
[a]_{\times}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \tag{47}\\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]
$$

If the intrinsic parameters are known, the coordinates can be normalized to remove the effect of the intrinsic parameters (according to transformation such as $\hat{u}=K^{-1} u$ and $\hat{u^{\prime}}=K^{\prime-1} u^{\prime}$), leading to

$$
\begin{equation*}
\mathrm{P}=[\mathrm{I} \mid 0] \quad \text { and } \quad \mathrm{P}^{\prime}=[\mathrm{R} \mid t] \tag{48}
\end{equation*}
$$

Link between the fundamental matrix and the calibration matrices of the cameras III

The fundamental matrix simplifies, which results in the essential matrix.

$$
\begin{equation*}
\mathrm{E}=[t]_{\times \mathrm{R}}=\mathrm{R}\left[\mathrm{R}^{T} t\right]_{\times} \tag{49}
\end{equation*}
$$

The major advantage of this matrix is that only the extrinsic parameters play a role (the essential matrix has 5 degrees of freedom).

- We have to find a number of pairwise correspondences $\mathbf{x}_{i} \leftrightarrow \mathbf{x}_{i}^{\prime}$ (minimum of 4)
- We build a system of linear equations by means of $\mathbf{x}_{i}^{\prime} \mathrm{Fx}_{i}=0$
- The resolution of the system leads to F

There exist several algorithms to proceed to the determination of F .

Remember that, if the fundamental matrix links the points between two planes, it does not suffice to reconstruct a scene.

Reconstruction of a 3D: steps I

(1) Find correspondences between pairs of points in the two views
(2) Calculate the fundamental/essential matrix
(3) Find the camera parameters, with the help of the essential matrix:

$$
\mathrm{P}=[\mathrm{I} \mid \mathbf{O}] \quad \mathrm{P}^{\prime}=\left[\left[\mathbf{e}^{\prime}\right]_{\times} \mathrm{F} \mid \mathbf{e}^{\prime}\right]
$$

where

$$
[\mathbf{a}]_{\times}=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right]
$$

and

$$
\mathrm{F}^{T} \mathbf{e}^{\prime}=\mathbf{0}
$$

Reconstruction of a 3D: steps II

(4) For each pixel $\mathbf{x}_{i} \leftrightarrow \mathbf{x}_{i}^{\prime}$, triangulate \mathbf{X}_{i} :

$$
\mathrm{P} \mathbf{X}_{i} \times \mathbf{x}_{i}=0 \quad \text { et } \mathrm{P}^{\prime} \mathbf{X}_{i} \times \mathbf{x}_{i}^{\prime}=0
$$

We have 4 equations for 3 unknowns.
Attention! Remember that this reconstruction is valid up to a projective transform.

Outline

2) Motion analysis and background subtraction

3 Performance analysis
(4) 3D vision: calibration and reconstruction
(5) Linear filtering

- Linear filtering
(6) Mathematical morphology
(7) Edge detection
(8) Non-linear filtering
(9) Feature detection and tracking
(10) Segmentation
(11) Object description and analysis
(12) Template Matching \& Image Registration
(13) Introduction to machine learning

What is filtering?

$f(x)$	25	27	30	24	17	15	22	23	25
x	0	1	2	3	4	5	6	7	8
$\min \{f(x+1), f(x), f(x-1)\}$		25	24	17	15	15	15	22	
$\max \{f(x+1), f(x), f(x-1)\}$		30	30	30	24	22	23	25	
"better" version of $f(x) ?$									

But, why do we filter an image?

Outline

(1) Fundamentals of 2D imaging

(2) Motion analysis and background subtraction
(3) Performance analysis
(4) 3D vision: calibration and reconstruction
(5) Linear filtering

- Linear filtering
(6) Mathematical morphology
(7) Edge detection
(8) Non-linear filtering
(9) Feature detection and trackingSegmentation
(11) Object description and analysis
(12) Template Matching \& Image Registration
(13) Introduction to machine learning

Linear filtering

- Fourier transform and filtering operation
- The notion of "ideal" filter
- Categories of ideal filters
- Typical filters:
- Low-pass filters
- High-pass filters
- Gabor filters

Let us take $f(x, y)$ as the values of a single channel image (for example, the grayscale component):

- (x, y) are the coordinates
- $f(x, y)$ is the single-valued image of the pixel located at (x, y)

Definition ((Continuous) Fourier transform)

The (continuous) Fourier transform $\mathcal{F}(u, v)$ of $f(x, y)$ is defined by

$$
\begin{equation*}
\mathcal{F}(u, v)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) e^{-2 \pi j(u x+v y)} d x d y \tag{50}
\end{equation*}
$$

Example

The Fourier transform is a complex image (it has a real component and an imaginary component). Often, we are interested in the amplitude.

(a)

(b)

Figure: (a) original image and (b) centered Fourier transform of its amplitude.

What is a spatial frequency?

Simple waveforms and profiles

Complex waveform

Fourier transform: definition and interpretation IV

The Fourier transform is a representation of $f(x, y)$ in terms of spatial frequencies:

How the Image information is stored in the Fourier Transform

How the Image information is stored in the Fourier Transform

Orientation

Definition ((Continuous) inverse Fourier transform)

The inverse (continuous) Fourier transform is defined by

$$
\begin{equation*}
f(x, y)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \mathcal{F}(u, v) e^{2 \pi j(u x+v y)} d u d v \tag{51}
\end{equation*}
$$

There is a one-to-one relationship between a $f(x, y)$ and $\mathcal{F}(u, v)$:

$$
\begin{equation*}
f(x, y) \rightleftharpoons \mathcal{F}(u, v) \tag{52}
\end{equation*}
$$

Definition (Filtering)

Applying a filter $\mathcal{H}(u, v)$ corresponds to modify the Fourier coefficient of some frequencies

$$
\begin{equation*}
\mathcal{F}(u, v) \longrightarrow \mathcal{F}(u, v) \mathcal{H}(u, v) \tag{53}
\end{equation*}
$$

Notion of "ideal" filter

A filter is said to be "ideal" if every transform coefficient is multiplied by 0 or 1 .

Definition (Ideal filter)

An ideal filter is such that its transfer function is given by

$$
\begin{equation*}
\forall(u, v), \mathcal{H}(u, v)=0 \text { or } 1 \tag{54}
\end{equation*}
$$

The notion of ideal filter is closely related to that of idempotence. The idempotence for a filter is to be understood such that, for an image $f(x, y)$,

$$
\begin{equation*}
\mathcal{F}(u, v) \mathcal{H}(u, v)=\mathcal{F}(u, v) \mathcal{H}(u, v) \mathcal{H}(u, v) \tag{55}
\end{equation*}
$$

Typology of ideal filters I

For one-dimensional signals (such as the image function along an image line):

Figure: One-dimensional filters.

Typology of ideal filters II
There are three types of circular ideal filters:

- Low-pass filters:

$$
\mathcal{H}(u, v)= \begin{cases}1 & \sqrt{u^{2}+v^{2}} \leq R_{0} \tag{56}\\ 0 & \sqrt{u^{2}+v^{2}}>R_{0}\end{cases}
$$

(a) Original image
(b) Low-pass filtered image

- High-pass filters:

$$
\mathcal{H}(u, v)= \begin{cases}1 & \sqrt{u^{2}+v^{2}} \geq R_{0} \tag{57}\\ 0 & \sqrt{u^{2}+v^{2}}<R_{0}\end{cases}
$$

- Band-pass filters. There are equivalent to the complementary of a low-pass filter and a high-pass filter:

$$
\mathcal{H}(u, v)=\left\{\begin{array}{cc}
1 & R_{0} \leq \sqrt{u^{2}+v^{2}} \leq R_{1} \tag{58}\\
0 & \text { otherwise }
\end{array}\right.
$$

Typology of ideal filters IV

Figure: Transfer function of pass-band filters.

Figure: Fourier spectra of images filtered by three types of circular filters.

Low-pass filters I

A typical low-pass filter is the Butterworth filter (of order n) defined as

$$
\begin{equation*}
\mathcal{H}(u, v)=\frac{1}{1+\left(\frac{\sqrt{u^{2}+v^{2}}}{R_{0}}\right)^{2 n}} \tag{59}
\end{equation*}
$$

Figure: Transfer function of a low-pass Butterworth filter (with $n=1$).

(a) Input image

(b) Spectrum of the filtered image

Figure: Effects of an order 1 Butterworth filter (cut-off frequency: $f_{c}=30$).

Effect of a low-pass filter (with decreasing cut-off frequencies)

$$
\begin{equation*}
\mathcal{H}(u, v)=\frac{1}{1+\left(\frac{R_{0}}{\sqrt{u^{2}+v^{2}}}\right)^{2 n}} \tag{60}
\end{equation*}
$$

(a) Filtered image

(b) Spectrum of (a)

Figure: Effects of an order 1 Butterworth filter 1 (cut-off frequency: $f_{c}=50$).

Effect of a high-pass filter (with increasing cut-off frequencies)

Gabor filters I

Definition

Gabor filters belong to a particular class of linear filters. There are directed filters with a Gaussian-shaped impulse function:

$$
\begin{equation*}
h(x, y)=g\left(x^{\prime}, y^{\prime}\right) e^{2 \pi j(U x+V y)} \tag{61}
\end{equation*}
$$

- $\left(x^{\prime}, y^{\prime}\right)=(x \cos \phi+y \sin \phi,-x \sin \phi+y \cos \phi)$, these are the (x, y) coordinates rotated by an angle ϕ, and
- $g\left(x^{\prime}, y^{\prime}\right)=\frac{1}{2 \pi \sigma^{2}} e^{\left(-\left(x^{\prime} / \lambda\right)^{2}+y^{\prime 2}\right) / 2 \sigma^{2}}$.

The corresponding Fourier transform is given by

$$
\begin{equation*}
\mathcal{H}(u, v)=e^{-2 \pi^{2} \sigma^{2}\left[\left(u^{\prime}-U^{\prime}\right)^{2} \lambda^{2}+\left(v^{\prime}-V^{\prime}\right)^{2}\right]} \tag{62}
\end{equation*}
$$

- $\left(u^{\prime}, v^{\prime}\right)=(u \cos \phi+v \sin \phi,-u \sin \phi+v \cos \phi)$, and
- $\left(U^{\prime}, V^{\prime}\right)$ is obtained by rotating (U, V) with the same angle ϕ.

Gabor filters II

Figure: Transfer function of Gabor filter. The white circle represents the -3 [dB] circle (= half the maximal amplitude).

Gabor filters III

Figure: Input image and filtered image (with an filter oriented at 135°).

Implementation

There are mainly 4 techniques to implement a Gaussian filter:
(1) Convolution with a restricted Gaussian kernel. One often chooses $N_{0}=3 \sigma$ or 5σ

$$
g_{1 D}[n]= \begin{cases}\frac{1}{\sqrt{2 \sigma}} e^{-\left(n^{2} / 2 \sigma^{2}\right)} & |n| \leq N_{0} \tag{63}\\ 0 & |n|>N_{0}\end{cases}
$$

(2) Iterative convolution with a uniform kernel:

$$
\begin{equation*}
g_{1 D}[n] \simeq u[n] \otimes u[n] \otimes u[n] \tag{64}
\end{equation*}
$$

where

$$
u[n]= \begin{cases}\frac{1}{\left(2 N_{0}+1\right)} & |n| \leq N_{0} \tag{65}\\ 0 & |n|>N_{0}\end{cases}
$$

(3) Multiplication in the Fourier domain.

- Implementation as a recursive filter.
(6) Mathematical morphology
- Morphology on sets/objects
- Geodesic operators
- Grayscale morphology

Mathematical morphology

- Reminders of the set theory
- Basic morphological transforms
- Neighboring transformations
- Geodesy and reconstruction
- Grayscale morphology

Reminders of the set theory I

Sets will be denoted with capital letters, such as A, B, \ldots, and elements of these sets by lowercase letters a, b, \ldots

- Set equality

Two sets are equal if they contain the same elements:
$X=Y \Leftrightarrow(x \in X \Rightarrow x \in Y$ and $x \in Y \Rightarrow x \in X)$. The empty set is denoted as \emptyset.

- Inclusion
X is a subset of Y (that is, X is included in Y) if all the elements of X also belong to $Y: X \subseteq Y \Leftrightarrow(x \in X \Rightarrow x \in Y)$.
- Intersection

The intersection between X and Y is the set composed of the elements that belong to both sets:
$X \cap Y=\{x$ such that $x \in X$ and $x \in Y\}$.

Marc Van Droogenbroeck
Computer Vision
Academic year: 2023-2024
197 / 538
Mathematical morphology

Reminders of the set theory II

- Union

The union between two sets is the set that gathers all the elements that belong to at least one set:
$X \cup Y=\{x$ such that $x \in X$ or $x \in Y\}$.

Difference

The set difference between X and Y, denoted by $X-Y$ or $X \backslash Y$ is the set that contains the elements of X that are not in Y : $X-Y=\{x \mid x \in X$ and $x \notin Y\}$.

Reminders of the set theory III

- Complementary

Assume that X is a subset of a \mathcal{E} space, the complementary set of X with respect to \mathcal{E} is the set, denoted X^{c}, given by $X^{c}=\{x$ such that $x \in \mathcal{E}$ and $x \notin X\}$.

X

X^{c}

- Symmetric

The symmetric set, \check{X}, of X is defined as $\check{X}=\{-x \mid x \in X\}$.

Reminders of the set theory IV

- Translated set

The translate of X by b is given by $\{z \in \mathcal{E} \mid z=x+b, x \in X\}$. $0 \quad b$

Outline

Fundamentals of 2D imaging
Motion analysis and background subtraction
Performance analysis
3D vision: calibration and reconstruction
(6) Mathematical morphology

- Morphology on sets/objects
- Geodesic operators
- Grayscale morphology

Erosion

Definition (Morphological erosion)

$$
\begin{equation*}
X \ominus B=\left\{z \in \mathcal{E} \mid B_{z} \subseteq X\right\} \tag{66}
\end{equation*}
$$

The following algebraic expression is equivalent to the previous definition:

Definition (Alternative definition for the morphological erosion)

$$
\begin{equation*}
X \ominus B=\bigcap_{b \in B} X_{-b} \tag{67}
\end{equation*}
$$

[^1]
Basic morphological operators II

Figure: Algebraic interpretation of the erosion.

Erosion with a disk

Figure: Erosion of X with a disk B. The origin of the structuring element is drawn at the center of the disk (with a black dot).

Definition (Dilation)

From an algebraic perspective, the dilation (dilatation in French!), is the union of translated version of X :

$$
\begin{equation*}
X \oplus B=\bigcup_{b \in B} X_{b}=\bigcup_{x \in X} B_{x}=\{x+b \mid x \in X, b \in B\} \tag{68}
\end{equation*}
$$

Dilation II

Figure: Illustration of the algebraic interpretation of the dilation operator.

Figure: Dilation of X with a disk B.

Properties of the erosion and the dilation

Duality

Erosion and dilation are two dual operators with respect to complementation:

$$
\begin{align*}
& X \ominus \check{B}=\left(X^{c} \oplus B\right)^{c} \tag{69}\\
& X \ominus B=\left(X^{c} \oplus \check{B}\right)^{c} \tag{70}
\end{align*}
$$

Erosion and dilation obey the principles of "ideal" morphological operators:
(1) erosion and dilation are invariant to translations: $X_{z} \ominus B=(X \ominus B)_{z}$. Likewise, $X_{z} \oplus B=(X \oplus B)_{z}$;
(2) erosion and dilation are compatible with scaling:

$$
\lambda X \ominus \lambda B=\lambda(X \ominus B) \text { and } \lambda X \oplus \lambda B=\lambda(X \oplus B) ;
$$

(3) erosion and dilation are local operators (if B is bounded);
(0) it can be shown that erosion and dilation are continuous transforms.

Algebraic properties

(1) erosion and dilation are increasing operators: if $X \subseteq Y$, then $(X \ominus B) \subseteq(Y \ominus B)$ and $(X \oplus B) \subseteq(Y \oplus B)$;
(2) if the structuring element contains the origin, then the erosion is anti-extensive and the dilation is extensive, that is $X \ominus B \subseteq X$ and $X \subseteq X \oplus B$.

Morphological opening I

Definition (Opening)

The opening results from cascading an erosion and a dilation with the same structuring element:

$$
\begin{equation*}
X \circ B=(X \ominus B) \oplus B \tag{71}
\end{equation*}
$$

The interpretation of the opening operator (which can be seen as an alternative definition) is based on

$$
\begin{equation*}
X \circ B=\bigcup\left\{B_{z} \mid z \in \mathcal{E} \text { and } B_{z} \subseteq X\right\} \tag{72}
\end{equation*}
$$

In other words, the opening of a set by structuring element B is the set of all the elements of X that are covered by a translated copy of B when it moves inside of X.

Morphological closing

Definition (Closing)

A closing is obtained by cascading a dilation and an erosion with a unique structuring element:

$$
\begin{equation*}
X \bullet B=(X \oplus B) \ominus B \tag{73}
\end{equation*}
$$

Opening and closing are dual operators with respect to set complementation: indeed,

$$
\begin{equation*}
(X \circ B)^{c}=X^{c} \bullet \check{B} \tag{74}
\end{equation*}
$$

and

$$
\begin{equation*}
(X \bullet B)^{c}=X^{c} \circ \check{B} \tag{75}
\end{equation*}
$$

Opening and closing properties

By construction, the opening and closing follow the "ideal" principles of morphological operators.
The most important algebraic properties of $X \circ B$ and $X \bullet B$ are
(1) opening and closing are increasing. If $X \subseteq Y$, then

$$
\begin{equation*}
(X \circ B) \subseteq(Y \circ B) \text { and }(X \bullet B) \subseteq(Y \bullet B) \tag{76}
\end{equation*}
$$

(2) opening is anti-extensive, and closing is extensive (no condition related on the origin here!)

$$
\begin{equation*}
X \circ B \subseteq X, \quad X \subseteq X \bullet B \tag{77}
\end{equation*}
$$

© opening and closing are idempotent operators (projective operators). This means that

$$
\begin{equation*}
(A \circ B) \circ B=A \circ B \text { and }(A \bullet B) \bullet B=A \bullet B \tag{78}
\end{equation*}
$$

General properties I

Dilation is commutative and associative

$$
\begin{gather*}
X \oplus B=B \oplus X \tag{79}\\
(X \oplus Y) \oplus C=X \oplus(Y \oplus C) \tag{80}
\end{gather*}
$$

- Dilation distributes the union

$$
\begin{equation*}
\left(\bigcup_{j} X_{j}\right) \oplus B=\bigcup_{j}\left(X_{j} \oplus B\right) \tag{81}
\end{equation*}
$$

- The erosion distributes the intersection

$$
\begin{equation*}
\left(\bigcap_{j} X_{j}\right) \ominus B=\bigcap_{j}\left(X_{j} \ominus B\right) \tag{82}
\end{equation*}
$$

General properties II

- Chain rule (\equiv cascading rule):

$$
\begin{equation*}
X \ominus(B \oplus C)=(X \ominus B) \ominus C \tag{83}
\end{equation*}
$$

- The opening and closing are not related to the exact location of the origin (so they do not depend on the location of the origin when defining B). Let $z \in \mathcal{E}$

$$
\begin{align*}
& X \circ B_{z}=X \circ B \tag{84}\\
& X \bullet B_{z}=X \bullet B \tag{85}
\end{align*}
$$

A practical problem: dealing with borders

Physical assumption 1

Physical assumption 2

Figure: Two possible physical assumptions for borders.

A practical problem: dealing with borders II

Physical assumption 1

Physical assumption 2

Figure: Comparison of the effects of two physical assumptions on the computation of the erosion of X.

Outline

Fundamentals of 2D imaging
(2) Motion analysis and background subtraction

Performance analysis
3D vision: calibration and reconstruction
(6) Mathematical morphology

- Morphology on sets/objects
- Geodesic operators
- Grayscale morphology

Neighboring transforms

Definition

The Hit or Miss transform $X \Uparrow(B, C)$ is defined as

$$
\begin{equation*}
X \Uparrow(B, C)=\left\{x \mid B_{x} \subseteq X, C_{x} \subseteq X^{c}\right\} \tag{86}
\end{equation*}
$$

If $C=\emptyset$ the transform reduces to an erosion of X by B.

Geodesy and reconstruction I

Geodesic dilation

A geodesic dilation is always based on two sets (images).

Definition

The geodesic dilation of size 1 of X conditionally to Y, denoted $D_{Y}^{(1)}(X)$, is defined as the intersection of the dilation of X and Y :

$$
\begin{equation*}
\forall X \subseteq Y, \quad D_{Y}^{(1)}(X)=(X \oplus B) \cap Y \tag{87}
\end{equation*}
$$

where B is usually chosen according to the frame connectivity (a 3×3 square for a 8 -connected grid).

Geodesy and reconstruction II

Figure: Geodesic dilation of size 1.

Morphological reconstruction

Definition

The reconstruction of X conditionally to Y is the geodesic dilation of X until idempotence. Let i be the iteration during which idempotence is reached, then the reconstruction of X is given by

$$
\begin{equation*}
R_{Y}(X)=D_{Y}^{(i)}(X) \text { with } D_{Y}^{(i+1)}(X)=D_{Y}^{(i)}(X) . \tag{89}
\end{equation*}
$$

Figure: Blob extraction by marking and reconstruction.

Outline

Fundamentals of 2D imaging
Motion analysis and background subtraction
Performance analysis

6 Mathematical morphology

- Morphology on sets/objects
- Geodesic operators
- Grayscale morphology

Grayscale morphology I

Notion of a function

Let \mathcal{G} be the range of possible grayscale values. An image is represented by a function $f: \mathcal{E} \rightarrow \mathcal{G}$, which projects a location of a value of \mathcal{G}. In practice, an image is not defined over the entire space \mathcal{E}, but on a limited portion of it, a compact D.

We need to define an order between functions.

Definition (Partial ordering between functions)

Let f and g be functions. f is inferior to g,

$$
\begin{equation*}
f \leq g \text { if } f(x) \leq g(x), \forall x \in \mathcal{E} \tag{90}
\end{equation*}
$$

Grayscale morphology II

Definition (Infimum and supremum)

Let f_{i} be a family of functions, $i \in I$. The infimum (respectively the supremum) of this family, denoted $\wedge_{i \in I} f_{i}\left(\right.$ resp. $\left.\vee_{i \in I} f_{i}\right)$ is the largest lower bound (resp. the lowest upper bound).

In the practical case of a finite family I, the supremum and the infimum correspond to the maximum and the minimum respectively. In that case,

$$
\forall x \in \mathcal{E},\left\{\begin{array}{l}
(f \vee g)(x)=\max (f(x), g(x)) \tag{91}\\
(f \wedge g)(x)=\min (f(x), g(x))
\end{array}\right.
$$

Definition (Translate of a function)

The translate of a function f by b, denoted by f_{b}, is defined as

$$
\begin{equation*}
\forall x \in \mathcal{E}, \quad f_{b}(x)=f(x-b) \tag{92}
\end{equation*}
$$

Additional definitions related to operators I

Definition (Idempotence)

An operator ψ is idempotent if, for each function, a further application of it does not change the final result. That is, if

$$
\begin{equation*}
\forall f, \psi(\psi(f))=\psi(f) \tag{93}
\end{equation*}
$$

Definition (Extensivity)

An operator is extensive if the result of applying the operator is larger that the original function

$$
\begin{equation*}
\forall f, f \leq \psi(f) \tag{94}
\end{equation*}
$$

Additional definitions related to operators II

Definition (Anti-extensivity)

An operator is anti-extensive if the result of applying the operator is lower that the original function

$$
\begin{equation*}
\forall f, f \geq \psi(f) \tag{95}
\end{equation*}
$$

Definition (Increasingness)

An increasing operator is such that it does not modify the ordering between functions:

$$
\begin{equation*}
\forall f, g, f \leq g \Rightarrow \psi(f) \leq \psi(g) \tag{96}
\end{equation*}
$$

By extension, an operator ψ_{1} is lower that an operator ψ_{2} if, for every function $f, \psi_{1}(f)$ is lower to $\psi_{2}(f)$:

$$
\begin{equation*}
\psi_{1} \leq \psi_{2} \Leftrightarrow \forall f, \psi_{1}(f) \leq \psi_{2}(f) \tag{97}
\end{equation*}
$$

Erosion and dilation

Definition (Grayscale dilation and erosion)

Let B be the domain of definition of a structuring element. The grayscale dilation and erosion (with a flat structuring element) are defined, respectively as,

$$
\begin{align*}
& f \oplus B=\bigvee_{b \in B} f_{b}(x) \tag{98}\\
& f \ominus B=\bigwedge_{b \in B} f_{-b}(x) \tag{99}
\end{align*}
$$

Numerical example $(B=\{-1,0,1\})$

x	0	1	2	3	4	5	6	7	8	9	10
$f(x)$	25	27	30	24	17	15	22	23	25	18	20
$f(x-1)$		25	27	30	24	17	15	22	23	25	18
$f(x)$	25	27	30	24	17	15	22	23	25	18	20
$f(x+1)$	27	30	24	17	15	22	23	25	18	20	
$f \ominus B(x)=\min$		25	24	17	15	15	15	22	18	18	
$f \oplus B(x)=\max$		30	30	30	24	22	23	25	25	25	

Typical questions:

- best algorithms? (note that there is some redundancy between neighboring pixels)
- how do we handle borders?

Algorithms

- Based on the decomposition of the structuring element:
- $f \ominus(H \oplus V)=(f \ominus H) \ominus V$
- $f \ominus(B \oplus B)=(f \ominus B) \ominus \partial(B)$
- Appropriate structure for storing and propagating the local min and max
- queues
- histogram

Illustration I

Figure: Erosion and dilation of a function.

Figure: Erosions with squares of increasing sizes.

Figure: Dilations with squares of increasing sizes.

Morphological opening and closing I

The opening $f \circ B$ is obtained by cascading an erosion followed by a dilation. The closing $f \bullet B$ is the result of a dilation followed by an erosion.

Definition (Morphological opening and closing)

$$
\begin{align*}
& f \circ B=(f \ominus B) \oplus B \tag{100}\\
& f \bullet B=(f \oplus B) \ominus B \tag{101}
\end{align*}
$$

Morphological opening and closing ||

Figure: Opening of a function.

Properties of grayscale morphological operators

Erosion and dilation are increasing operators

$$
f \leq g \Rightarrow\left\{\begin{array}{l}
f \ominus B \leq g \ominus B \tag{102}\\
f \oplus B \leq g \oplus B
\end{array}\right.
$$

Erosion distributes the infimum and dilation distributes the supremum

$$
\begin{align*}
& (f \wedge g) \ominus B=(f \ominus B) \wedge(g \ominus B) \tag{103}\\
& (f \vee g) \oplus B=(f \oplus B) \vee(g \oplus B) \tag{104}
\end{align*}
$$

Opening and closing are idempotent operators

$$
\begin{align*}
& (f \circ B) \circ B=f \circ B \tag{105}\\
& (f \bullet B) \bullet B=f \bullet B \tag{106}
\end{align*}
$$

Opening and closing are anti-extensive and extensive operators respectively

$$
\begin{align*}
f \circ B & \leq f \tag{107}\\
f & \leq f \bullet B \tag{108}
\end{align*}
$$

Reconstruction of grayscale images I

Definition

The reconstruction of f, conditionally to g, is the geodesic dilation of f until idempotence is reached. Let i, be the index at which idempotence is reached, the reconstruction of f is then defined as

$$
\begin{equation*}
R_{g}(f)=D_{g}^{(i)}(f) \text { with } D_{g}^{(i+1)}(f)=D_{g}^{(i)}(f) \tag{109}
\end{equation*}
$$

Reconstruction of grayscale images II

Figure: Original image, eroded image, and several successive geodesic dilations.

Figure: Original image, eroded image, reconstructed image starting from the eroded image, and difference image (reverse video).

Figure: Original image, dilated image, reconstructed image starting from the dilated image (dual reconstruction), and difference image (reverse video).

(1) Fundamentals of 2D imaging
(2) Motion analysis and background subtractionPerformance analysis
$3 D$ vision: calibration and reconstruction
Linear filtering
(6) Mathematical morphology
(7) Edge detection

- Linear operators
- Non-linear operators
- Hough's transform

Non-linear filteringFeature detection and tracking
SegmentationObject description and analysis

What's a border/contour/edge? Towards a definition

Figure: An image (diagonal gradient) and its contours (in black).

(physical) Edges in depth images

Range image

Ground truth

PED-2 (Lejeune)

Figure: Problem encountered in locating an edge point.

Border/contour/edge detection

Outline

(1) Linear operators

- First derivate operators
- Second derivate operators
- Sampling the derivate
- Residual error
- Synthesis of operators for a fixed error
- Practical expressions of gradient operators and convolution masks
(2) Non-linear operators
- Morphological gradients
(3) Hough's transform

Outline

(1) Fundamentals of 2D imaging

(2) Motion analysis and background subtraction

Performance analysis
(4) 3D vision: calibration and reconstruction
(5) Linear filtering
(6) Mathematical morphology
(7) Edge detection

- Linear operators
- Non-linear operators
- Hough's transform

Non-linear filtering

Feature detection and tracking

Segmentation
Object description and analysis
Template Matching \& Image Registration
Introduction to machine learning
Marc Van Droogenbroeck
Linear operators I

For derivate operators, we have to address two problems simultaneously:
(1) find the best approximate for the derivate.
(2) avoid an excessive amplification of the noise.

These are two apparent contradictory requirements \Rightarrow trade-offs

Figure: Images (left-hand side) and gradient images (right-hand side)

Fourier transform (quick reminder) I

(A)

(B)

(H)

(C)

(I)

(D)

(J)

(E)

(K)

(F)

(L)

Fourier transform (quick reminder) III

First derivate operator I

Let us consider the partial derivate of a function $f(x, y)$ with respect to x. Its Fourier transform $\mathcal{F}(u, v)$ becomes

$$
\begin{equation*}
\frac{\partial}{\partial x} f(x, y) \rightleftharpoons 2 \pi j u \mathcal{F}(u, v) \tag{110}
\end{equation*}
$$

In other words, deriving with respect to x consists of multiplying the
Fourier transform of $f(x, y)$ by the following transfer function $\mathcal{H}_{x}(u, v)=2 \pi j u$, or of filtering $f(x, y)$ with the following impulse function:

$$
\begin{equation*}
h_{x}(x, y)=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}(2 \pi j u) e^{2 \pi j(x u+y v)} d u d v \tag{111}
\end{equation*}
$$

If we adopt a vectorial notation of the derivate, we define the gradient ∇f of image f by

$$
\begin{equation*}
\nabla f=\frac{\partial f}{\partial x} \overrightarrow{e_{x}}+\frac{\partial f}{\partial y} \overrightarrow{e_{y}}=\left(h_{x} \otimes f\right) \overrightarrow{e_{x}}+\left(h_{y} \otimes f\right) \overrightarrow{e_{y}} \tag{112}
\end{equation*}
$$

Marc Van Droogenbroeck
253 / 538

First derivate operator II

Definition (Gradient amplitude)

$$
\begin{equation*}
|\nabla f|=\sqrt{\left(h_{x} \otimes f\right)^{2}+\left(h_{y} \otimes f\right)^{2}} \tag{113}
\end{equation*}
$$

The amplitude of the gradient is sometimes approximated by

$$
\begin{equation*}
|\nabla f| \simeq\left|h_{x} \otimes f\right|+\left|h_{y} \otimes f\right| \tag{114}
\end{equation*}
$$

which introduces a still acceptable error (in most cases) of 41% ! But we still have to find a way to calculate $h_{x} \otimes f$ and $h_{y} \otimes f \ldots$

Definition (Gradient orientation)

$$
\begin{equation*}
\varphi_{\nabla f}=\tan ^{-1}\left(\frac{h_{y} \otimes f}{h_{x} \otimes f}\right) \tag{115}
\end{equation*}
$$

Second derivate operator

Definition (Laplacian $\nabla^{2} f$)

The Laplacian is the scalar defined as

$$
\begin{equation*}
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=\left(h_{x x} \otimes f\right)+\left(h_{y y} \otimes f\right) \tag{116}
\end{equation*}
$$

As the first derivate, it can be shown that in the Fourier domain, the Laplacian consists to apply the following filter

$$
\begin{align*}
\nabla^{2} f & \rightleftharpoons\left((2 \pi j u)^{2}+(2 \pi j v)^{2}\right) \mathcal{F}(u, v) \tag{117}\\
& \rightleftharpoons-4 \pi^{2}\left(u^{2}+v^{2}\right) \mathcal{F}(u, v) \tag{118}
\end{align*}
$$

As can be seen, high frequencies tend to be amplified. Is this suitable?

Sampling the gradient and residual error I

In order to derive practical expressions for the computation of a derivate, we adopt the following approach:
(1) develop some approximations and derive the error due to the approximation,
(2) study the spectral behavior of these approximations, and
(3) discuss some practical approximations expressed in the terms of convolution masks.

Sampling the gradient and residual error II

Centered approximations (along a single axis!, for example a line of the image)?
First derivate: an approximation is

$$
\begin{equation*}
f_{a}^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}=\frac{(+1) f(x+h)+(-1) f(x-h)}{2 h} \tag{119}
\end{equation*}
$$

where h is the distance between two samples and index a denotes that it is an approximation. Note that this approximation consists to filter $f(x)$ by the following "multiplicative" mask

$$
\frac{1}{2 h}\left[\begin{array}{lll}
-1 & 0 & +1 \tag{120}
\end{array}\right]
$$

or the convolution mask

$$
\frac{1}{2 h}\left[\begin{array}{lll}
+1 & 0 & -1 \tag{121}
\end{array}\right]
$$

Sampling the gradient and residual error III

Second derivate: one possible approximation is

$$
\begin{equation*}
f_{a}^{\prime \prime}(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} \tag{122}
\end{equation*}
$$

Sampling the gradient and residual error IV

We make use of the following representation of a function.

Theorem (Taylor series)

The Taylor series of a real valued function $f(z)$ that is infinitely differentiable at a real number a is the following power series

$$
\begin{equation*}
f(z)=f(a)+\frac{f^{\prime}(a)}{1!}(z-a)+\frac{f^{\prime \prime}(a)}{2!}(z-a)^{2}+\ldots \tag{123}
\end{equation*}
$$

Then, we substitute:

- location a by location x
- location z by either $x+h$ or $x-h$

Sampling the gradient and residual error V

Computation of the residual error. Let's consider the following Taylor series

$$
\begin{align*}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\ldots+\frac{h^{n}}{n!} f^{(n)}(x)+\ldots \tag{124}\\
& f(x-h)=f(x)-h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\ldots+(-1)^{n} \frac{h^{n}}{n!} f^{(n)}(x)+\ldots
\end{align*}
$$

First derivate. By subtraction, member by member, these two equalities, one obtains

$$
\begin{equation*}
f(x+h)-f(x-h)=2 h f^{\prime}(x)+\frac{2}{3!} h^{3} f^{(3)}(x)+\ldots=2 h f^{\prime}(x)+O\left(h^{3}\right) \tag{125}
\end{equation*}
$$

After re-ordering,

$$
\begin{equation*}
f^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h}+O\left(h^{2}\right) \tag{126}
\end{equation*}
$$

Sampling the gradient and residual error VI

Second derivate.

$$
\begin{align*}
& f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\ldots+\frac{h^{n}}{n!} f^{(n)}(x)+\ldots \tag{127}\\
& f(x-h)=f(x)-h f^{\prime}(x)+\frac{h^{2}}{2} f^{\prime \prime}(x)+\ldots+(-1)^{n} \frac{h^{n}}{n!} f^{(n)}(x)+(128) \tag{128}
\end{align*}
$$

Like for the first derivate, we use the Taylor extension by add them this time,

$$
\begin{equation*}
f(x+h)+f(x-h)=2 f(x)+h^{2} f^{\prime \prime}(x)+\frac{2}{4!} h^{4} f^{(4)}(x)+\ldots \tag{129}
\end{equation*}
$$

As a result:

$$
\begin{equation*}
f^{\prime \prime}(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}+O\left(h^{2}\right) \tag{130}
\end{equation*}
$$

The $f_{a}^{\prime \prime}(x)$ approximation is also of the second order in h.

Sampling the gradient and residual error VII

Synthesis of expressions with a pre-defined error.
Another approximation, of order $O\left(h^{4}\right)$, can be built.
It corresponds to

$$
\begin{equation*}
f_{a}^{\prime}(x)=\frac{-f(x+2 h)+8 f(x+h)-8 f(x-h)+f(x-2 h)}{12 h} \tag{131}
\end{equation*}
$$

Spectral behavior of discrete gradient operators I

Consider the one-dimensional continuous function $f(x)$ and the following first derivate:

$$
\begin{equation*}
f_{a}^{\prime}(x)=\frac{f(x+h)-f(x-h)}{2 h} \tag{132}
\end{equation*}
$$

Its Fourier is given by

$$
\begin{equation*}
\frac{f(x+h)-f(x-h)}{2 h} \rightleftharpoons \frac{e^{2 \pi j u h}-e^{-2 \pi j u h}}{2 h} \mathcal{F}(u) \tag{133}
\end{equation*}
$$

which is, given that $\sin (a)=\frac{e^{j a}-e^{-j a}}{2 j} \Leftrightarrow e^{2 \pi j u h}-e^{-2 \pi j u h}=2 j \sin (2 \pi h u)$,

$$
\begin{equation*}
\frac{f(x+h)-f(x-h)}{2 h} \rightleftharpoons(2 \pi j u) \frac{\sin (2 \pi h u)}{2 \pi h u} \mathcal{F}(u) \tag{134}
\end{equation*}
$$

where the $(2 \pi j u)$ factor corresponds to the ideal (continuous) expression of the first derivate.

Let us now consider the approximation of the second derivate

$$
\begin{equation*}
f_{a}^{\prime \prime}(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} \tag{135}
\end{equation*}
$$

Its Fourier transform is given by

$$
\begin{equation*}
\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} \rightleftharpoons\left(-4 \pi^{2} u^{2}\right)\left(\frac{\sin (\pi h u)}{(\pi h u)}\right)^{2} \mathcal{F}(u) \tag{136}
\end{equation*}
$$

Figure: Spectral behavior of the derivate approximations (for $h=1$).

first derivate
ideal
approx.

second derivate

$$
-4 \pi^{2} u^{2}
$$

$\left(-4 \pi^{2} u^{2}\right)\left(\frac{\sin (\pi h u)}{(\pi h u)}\right)^{2}$

Practical expressions of gradient operators and

 convolution/multiplication masks IPractical expression are based on the notion of convolution masks

$$
\left[\begin{array}{ll}
+1 & -1 \tag{137}
\end{array}\right]
$$

corresponds to the following non-centered approximation of the first derivate:

$$
\begin{equation*}
\frac{(-1) \times f(x, y)+(+1) \times f(x+h, y)}{h} \tag{138}
\end{equation*}
$$

This "convolution mask" has an important drawback. Because it is not centered, the result is shifted by half a pixel. One usually prefers to use a centered (larger) convolution mask such as

$$
\left[\begin{array}{lll}
+1 & 0 & -1 \tag{139}
\end{array}\right]
$$

Practical expressions of gradient operators and convolution/multiplication masks II

In the y (vertical) direction, this becomes

$$
\left[\begin{array}{r}
+1 \tag{140}\\
0 \\
-1
\end{array}\right]
$$

But then, it is also possible to use a diagonal derivate:

$$
\left[\begin{array}{ccc}
+1 & \cdot & \cdot \tag{141}\\
\cdot & 0 & \cdot \\
\cdot & \cdot & -1
\end{array}\right]
$$

Figure: (a) original image, (b) after the application of a horizontal mask, (c) after the application of a vertical mask, and (d) mask oriented at 135°.

Practical problems

The use of (centered) convolution masks still has some drawbacks:

- Border effects. Solutions:
- (i) put a default value outside the image;
- (ii) mirroring extension: copy inside values starting from the border;
- (iii) periodization of the image -pixels locate on the left are copied on the right of the image,
- (iv) copy border values to fill an artificial added border.
- The range (dynamic) of the possible values is modified.
- It might be needed to apply a normalization factor.

Prewitt gradient filters

$$
\begin{gather*}
{\left[h_{x}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 0 & -1 \\
1 & 0 & -1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & -1
\end{array}\right]} \tag{142}\\
{\left[h_{y}\right]=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & -1 & -1
\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]} \tag{143}
\end{gather*}
$$

Figure: Original image, and images filtered with a horizontal and vertical Prewitt filter respectively.

Sobel gradient filters

$$
\left[h_{x}\right]=\frac{1}{4}\left[\begin{array}{lll}
1 & 0 & -1 \tag{144}\\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & -1
\end{array}\right]
$$

Figure: Original image, and images filtered with a horizontal and vertical Sobel filter respectively.

$$
\left[\begin{array}{lll}
1 & -2 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \quad\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -4 & 1 \\
0 & 1 & 0
\end{array}\right] \quad\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -8 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Fundamentals of 2D imaging
Motion analysis and background subtraction
Performance analysis
(4) 3D vision: calibration and reconstruction

7 Edge detection

- Linear operators
- Non-linear operators
- Hough's transform

Feature detection and tracking

semenstran

Object description and analysis
Template Matching \& Image Registration
Introduction to machine learning

Non-linear operators I

Morphological gradients

- Erosion gradient operator:

$$
\begin{equation*}
G E(f)=f-(f \ominus B) \tag{145}
\end{equation*}
$$

- Dilation gradient operator:

$$
\begin{equation*}
G D(f)=(f \oplus B)-f \tag{146}
\end{equation*}
$$

- Morphological gradient of Beucher: $G E(f)+G D(f)$.
- Top-hat operator: $f-f \circ B$;
- min/max gradient operators:
$\min (G E(f), G D(f)), \max (G E(f), G D(f))$
- Non-linear Laplacian: $G D(f)-G E(f)$.

(a) Original image f

(c) $f \ominus B$

(b) $f \oplus B$

(d) $(f \oplus B)-(f \ominus B)$ (inverse video)

Different non-linear border detectors

(a) $(f \oplus B)-(f \ominus B)$
(b) $f-f \circ B$ (top-hat)

(c) $\max (G E(f), G D(f))$

(d) $G D(f)-G E(f)$

Outline

(1) Fundamentals of 2D imaging
(2) Motion analysis and background subtraction

Performance analysis
(4) 3 D
vision: calibration and reconstruction
Linear filtering
(6) Mathematical morphology
(7) Edge detection

- Linear operators
- Non-linear operators
- Hough's transform
(8) Non-linear filteringFeature detection and tracking
(10) SegmentationObject description and analysis
(12) Template Matching \& Image Registration

Introduction to machine learning

Detecting lines

Challenge: detect lines in an image

- Difficulty: matching a set of points arranged as a line
- Idea: instead of considering the family of points (x, y) that belong to a line $y=a x+b$, consider the two parameters
(1) the slope parameter a (but a is unbounded for vertical lines)
(2) the intercept parameter b (that is for $x=0$)

Definition of the Hough transform I

With the Hough transform, we consider the (r, θ) pair where

- the parameter r represents the distance between the line and the origin,
- while θ is the angle of the vector from the origin to the line closest point

Definition of the Hough transform II

We have several ways to characterize a line:

(1) Slope a and b, such that $y=a x+b$.
(2) The two parameters (r, θ), with $\theta \in[0,2 \pi[$ and $r \geq 0$.

Link between these characterizations:

The equation of the line becomes

$$
\begin{equation*}
y=\left(-\frac{\cos \theta}{\sin \theta}\right) x+\left(\frac{r}{\sin \theta}\right) \tag{147}
\end{equation*}
$$

Check:

- For $x=0, r=y \sin \theta \rightarrow$ ok.
- For $x=r \cos \theta, y=r \sin \theta \rightarrow$ ok.

By re-arranging terms of $y=\left(-\frac{\cos \theta}{\sin \theta}\right) x+\left(\frac{r}{\sin \theta}\right)$, we get that, for an arbitrary point on the image plane with coordinates, e.g., $\left(x_{0}, y_{0}\right)$, the family of lines passing through it are given by

$$
\begin{equation*}
r=x_{0} \cos \theta+y_{0} \sin \theta \tag{148}
\end{equation*}
$$

Example

For three points $\left(x_{0}, y_{0}\right)$, we explore the Hough space.
That is, we compute r for a given set of orientations θ :

θ	r
0	40
30	69.6
60	81.2
90	70
120	40.6
150	0.4

Marc Van Droogenbroeck

θ	r
0	57.1
30	79.5
60	80.5
90	60
120	23.4
150	19.5

Computer Vision

θ	r
0	74.6
30	89.6
60	80.6
90	50
120	6.0
150	39.6

Edge detection Hough's transform

Hough space

Thus, the problem of detecting colinear points can be converted to the problem of finding concurrent curves.

Algorithm for detecting lines

Algorithm

(1) Detect edges in the original image.
(2) Select only some pixels corresponding to "strong edges" for which there is enough evidence that they belong to lines.
(3) For each selected pixel, accumulate values in the corresponding bins of the Hough space:
(1) For example, we take each θ in $\left[0^{0}, 360^{\circ}\right]$ with a step of 1^{0}.
(2) We calculate the corresponding r by $r=x_{0} \cos \theta+y_{0} \sin \theta$.
(3) If Hough (r, θ) is one bin of the Hough space, then we do

$$
\begin{equation*}
\operatorname{Hough}(r, \theta) \longleftarrow \operatorname{Hough}(r, \theta)+1 \tag{149}
\end{equation*}
$$

(0) Threshold the accumulator function $\operatorname{Hough}(r, \theta)$ to select bins that correspond to lines in the original image.
(0) Draw the corresponding lines in the original image.

"Toy" example

Real example

Outline

(1) Fundamentals of 2D imaging

(2) Motion analysis and background subtraction
(3) Performance analysis
(4) 3D vision: calibration and reconstruction
(5) Linear filtering
(6) Mathematical morphology
(7) Edge detection
(8) Non-linear filtering
(9) Feature detection and tracking
(10) Segmentation
(11) Object description and analysis
(12) Template Matching \& Image Registration
(13) Introduction to machine learning

Non-linear filtering

- Rank filters
- Median
- Morphological filters
- Algebraic definition
- How to build a filter?
- Examples of filters
- Alternate sequential filters
- Morphological filter

Introduction to rank filters

$f(x)$	25	27	30	24	17	15	22	23	25	18	20
$f(x-1)$	$?$	25	27	30	24	17	15	22	23	25	18
$f(x)$	25	27	30	24	17	15	22	23	25	18	20
$f(x+1)$	27	30	24	17	15	22	23	25	18	20	$?$
$f \ominus B(x)=\min$		25	24	17	15	15	15	22	18	18	
$f \oplus B(x)=\max$		30	30	30	24	22	23	25	25	25	

We could also order the values:

$f(x)$	25	27	30	24	17	15	22	23	25	18	20
1		25	24	17	15	15	15	22	18	18	18
2	25	27	27	24	17	17	22	23	23	20	20
3	27	30	30	30	24	22	23	25	25	25	
$f \ominus B(x)=\min$		25	24	17	15	15	15	22	18	18	
$f \oplus B(x)=\max$		30	30	30	24	22	23	25	25	25	

Marc Van Droogenbroeck
Non-linear filtering

Definition of rank filters

Let $k \in \mathbb{N}$ be a threshold.

Definition (Rank filter)

The operator or k-order rank filter, denoted as $\rho_{B, k}(f)(x)$, defined with respect to the B structuring element, is

$$
\begin{equation*}
\rho_{B, k}(f)(x)=\bigvee\left\{t \in \mathcal{G} \mid \sum_{b \in B}[f(x+b) \geq t] \geq k\right\} \tag{150}
\end{equation*}
$$

The simplest interpretation is that $\rho_{B, k}(f)(x)$ is the k-est value when all the $f(x+b)$ values are ranked in decreasing (increasing) order.
Rank filters are ordered. Let $\sharp(B)$, be the surface of B, then

$$
\begin{equation*}
\rho_{B, \sharp(B)}(f)(x) \leq \rho_{B, \sharp(B)-1}(f)(x) \leq \ldots \leq \rho_{B, 1}(f)(x) \tag{151}
\end{equation*}
$$

Median filter I

If n is odd, the $k=\frac{1}{2}(\sharp(B)+1)$ choice leads to the definition of a self-dual operator, that is a filter that produces the same result as if applied on the dual function. This operator, denoted med_{B}, is the median filter.

$f(x)$	25	27	30	24	17	15	22	23	25	18	20
1		25	24	17	15	15	15	22	18	18	18
med_{B}	25	27	27	24	17	17	22	23	23	20	20
3	27	30	30	30	24	22	23	25	25	25	
$f \ominus B(x)=\min$		25	24	17	15	15	15	22	18	18	
$f \oplus B(x)=\max$		30	30	30	24	22	23	25	25	25	

Median filter II

(a) Original image $f+$ noise

(c) Low-pass Butterworth $\left(f_{c}=50\right)$

(b) Opening with a 5×5 square

(d) Median with a 5×5 square

(a) Image f

(b) 3×3 median

(c) 5×5 median

Notes about the implementation

The median filter is not idempotent. Successive applications can result in oscillations (theoretically if the domain of the function is infinite)

Figure: Repeated application of a median filter.
Also,

$$
\begin{equation*}
\operatorname{med}_{5 \times 5}(f) \neq \operatorname{med}_{1 \times 5}\left(\operatorname{med}_{5 \times 1}(f)\right) \tag{152}
\end{equation*}
$$

but it is an acceptable approximation!

Morphological filters

Definition (Algebraic filter)

By definition, a filter is an algebraic filter if and only if the operator is increasing and idempotent:

$$
\psi \text { is an algebraic filter } \Leftrightarrow \forall f, g\left\{\begin{array}{l}
f \leq g \Rightarrow \psi(f) \leq \psi(g) \tag{153}\\
\psi(\psi(f))=\psi(f)
\end{array}\right.
$$

Definition (Algebraic opening)

An algebraic opening is an operator that is increasing, idempotent, and anti-extensive. Formally,

$$
\begin{gather*}
\forall f, g, f \leq g \Rightarrow \psi(f) \leq \psi(g) \tag{154}\\
\forall f, \psi(\psi(f))=\psi(f) \tag{155}\\
\forall f, \psi(f) \leq f \tag{156}
\end{gather*}
$$

An algebraic closing is defined similarly, except that the operator is extensive.

By combining know filters!

Figure: The composition (cascading) of two openings is not an opening.

How to build a filter? II

New filters can be built starting from openings, denoted α_{i}, and closings, denoted ϕ_{i}. The rules to follow are:
(1) the supremum of openings is an opening: $\left(\bigvee_{i} \alpha_{i}\right)$ is an opening;
(2) the infimum of closings is a closing: $\left(\bigwedge_{i} \phi_{i}\right)$ is a closing.

Openings: $\gamma_{m H \oplus n v}(f), \gamma_{m H}(f), \gamma_{n v}(f)$, and $\gamma_{m H}(f) \vee \gamma_{n v}(f)$

Composition rules: structural theorem

Let ψ_{1} and ψ_{2} be two filters such that $\psi_{1} \geq I \geq \psi_{2}$ (for example, ψ_{1} is a closing and ψ_{2} an opening).

Theorem (Structural theorem)

Let ψ_{1} and ψ_{2} be two filters such that $\psi_{1} \geq I \geq \psi_{2}$, then

$$
\begin{gather*}
\psi_{1} \geq \psi_{1} \psi_{2} \psi_{1} \geq\left(\psi_{2} \psi_{1} \vee \psi_{1} \psi_{2}\right) \geq\left(\psi_{2} \psi_{1} \wedge \psi_{1} \psi_{2}\right) \geq \psi_{2} \psi_{1} \psi_{2} \geq \psi_{2} \tag{157}\\
\psi_{1} \psi_{2}, \psi_{2} \psi_{1}, \psi_{1} \psi_{2} \psi_{1}, \psi_{2} \psi_{1} \psi_{2} \text { are all filers } \tag{158}
\end{gather*}
$$

Note that there is no ordering between $\psi_{1} \psi_{2}$ and $\psi_{2} \psi_{1}$.

Examples of filters I

Alternate Sequential Filters (ASF)

Let $\gamma_{i}\left(\phi_{i}\right)$ be an opening (resp. a closing) of size i and I be the identity operator (i.e. $I(f)=f$).
We assume that there is the following order:

$$
\begin{equation*}
\forall i, j \in \mathbb{N}, \quad i \leq j, \quad \gamma_{j} \leq \gamma_{i} \leq I \leq \phi_{i} \leq \phi_{j} \tag{159}
\end{equation*}
$$

For each index i, we define these operators:

$$
\begin{array}{rlrl}
m_{i} & =\gamma_{i} \phi_{i}, & r_{i}=\phi_{i} \gamma_{i} \phi_{i} \\
n_{i} & =\phi_{i} \gamma_{i}, & & s_{i}=\gamma_{i} \phi_{i} \gamma_{i}
\end{array}
$$

Definition (Alternate Sequential Filters (ASF))

For each index $i \in \mathbb{N}$, the following operators are the alternate sequential filters of index i

$$
\begin{align*}
M_{i}=m_{i} m_{i-1} \ldots m_{2} m_{1} & R_{i}=r_{i} r_{i-1} \ldots r_{2} r_{1} \tag{160}\\
N_{i}=n_{i} n_{i-1} \ldots n_{2} n_{1} & S_{i}=s_{i} s_{i-1} \ldots s_{2} s_{1} \tag{161}
\end{align*}
$$

Theorem (Absorption law)

$$
\begin{equation*}
i \leq j \Rightarrow M_{j} M_{i}=M_{j} \text { but } M_{i} M_{j} \leq M_{j} \tag{162}
\end{equation*}
$$

Examples of filters III

(a) Image f

(e) 5×5 median

(b) $M_{1}(f)$

(f) $N_{1}(f)$

(c) $M_{2}(f)$

(g) $N_{2}(f)$

(d) $M_{3}(f)$

(h) $N_{3}(f)$

Figure: Use of alternate sequential filters to remove some noise.

Toggle mappings I

The morphological center is a typical example of toggle mapping.

Definition (Morphological center)

Let ψ_{i} be a family of operators. The morphological center β of a function f with respect to the ψ_{i} family is defined, for each location x of the domain of f as follows:

$$
\begin{equation*}
\beta(f)(x)=\left(f(x) \vee\left(\bigwedge_{i} \psi_{i}(x)\right)\right) \wedge\left(\bigvee_{i} \psi_{i}(x)\right) \tag{163}
\end{equation*}
$$

Toggle mappings II

Figure: Morphological center of a one-dimensional signal.

Outline

(1) Fundamentals of 2D imaging
(2) Motion analysis and background subtraction

-

Performance analysis
(4)

3D vision: calibration and reconstructionLinear filtering
(5) Mathematical morphology
(7) Edge detection
(8) Non-linear filtering
(9) Feature detection and tracking

- Introduction
- Feature detection
- Tracking: Kalman filtering
(10) Segmentation

11 Object description and analysis
(12) Template Matching \& Image Registration
(13) Introduction to machine learning

Outline

(1) Fundamentals of 2D imaging
(2) Motion analysis and background subtractionPerformance analysis
(4)

3D vision: calibration and reconstructionLinear filtering
(5) Mathematical morphology

Edge detection
(8) Non-linear filtering
(9) Feature detection and tracking

- Introduction
- Feature detection
- Tracking: Kalman filtering
(10) Segmentation
(11) Object description and analysis
(12) Template Matching \& Image Registration
(3)

Introduction to machine learning

- Features are edges, corners, etc.

Most of them are based on derivatives.

- The choice of features is application-dependent!
- For tracking:
- We need matching measures and metrics to find the best matching locations between frames.
- Features need to be "strong": resilient to illumination changes, to local deformations, etc.

Historical example: the Laplacian of Gaussians I

Principle:

- first apply a Gaussian filter (with the purpose of reducing noise).
- compute the Laplacian of the filtered image.
- detect the locations of zero-crossings in the image.

Parameters:

- variance of the Gaussian filter

Result:

- collection of images with features detected at different scales.
- not suitable for tracking.

Feature-based matching

Steps:

(1) select a set of robust features in the reference frame (or sub-frame/Region of Interest [ROI])
(2) compute the same set of features in the target image
(3) establish the relationship between the two sets of features.

Many strategies are possible:

- global optimization
- local optimization
- RANSAC algorithm

Feature detectors I

Classification [source: wikipedia]

Feature	Edge	Corner	Blob
Sobel	X		
Canny	X		
Harris	X	X	
Laplacian of Gaussians		X	X
Difference of Gaussians		X	X
FAST		X	X
MSER			X

MSER: 5 matches

ASIFT: 202 matches

Outline

Fundamentals of 2D imaging
Motion analysis and background subtraction
Performance analysis
3D vision: calibration and reconstruction
Linear filtering
Mathematical morphology
Edge detection
(8) Non-linear filtering
(9) Feature detection and tracking

- Introduction
- Feature detection
- Tracking: Kalman filtering

Segmentation
Object description and analysis
Template Matching \& Image Registration
Introduction to machine learning

Harris detector (for detecting corners) I

Let p be a pixel with the (x, y) coordinates. We compute

$$
M=\sigma_{D}^{2} g\left(\sigma_{I}\right) \otimes\left[\begin{array}{cc}
I_{x}^{2}\left(p, \sigma_{D}\right) & I_{x}\left(p, \sigma_{D}\right) I_{y}\left(p, \sigma_{D}\right) \tag{164}\\
I_{x}\left(p, \sigma_{D}\right) I_{y}\left(p, \sigma_{D}\right) & I_{y}^{2}\left(p, \sigma_{D}\right)
\end{array}\right]
$$

where

$$
\begin{align*}
I_{x}\left(p, \sigma_{D}\right) & =\frac{\partial}{\partial x} g\left(\sigma_{D}\right) \otimes I(p) \tag{165}\\
g(\sigma) & =\frac{1}{2 \pi \sigma^{2}} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}} \tag{166}
\end{align*}
$$

Definition (Cornerness)

Cornerness is defined as

$$
\begin{equation*}
\operatorname{det}(M)-\lambda \operatorname{trace}^{2}(M) \tag{167}
\end{equation*}
$$

where λ is a tunable sensitivity parameter.

Harris detector (for detecting corners) II

Other feature detectors I

The calculation of features combines several steps and usually includes a scale space and derivates.
Some variants:

- MSER: Maximally Stable Extremal Region extractor (2002)
- SIFT: Scale-Invariant Feature Transform (2004)
- SURF: Speeded Up Robust Features (2006)
- FAST (2006)
- BRISK: Binary Robust Invariant Scalable Keypoints (2011)
- ORB: Oriented BRIEF (2011)
- FREAK: Fast Retina Keypoint (2012)
- Learned features (by deep learning): Superpoint (2018), ...

Don't forget that these methods have some parameters.

Original

FAST

MSER

ORB

Outline

Fundamentals of 2D imaging
Motion analysis and background subtraction
Performance analysis
\qquad vision: calibration and reconstruction
Linear filtering
(6) Mathematical morphology

Edge detection
(8) Non-linear filtering
(9) Feature detection and tracking

- Introduction
- Feature detection
- Tracking: Kalman filtering

SegmentationObject description and analysis
Template Matching \& Image Registration
Introduction to machine learning

- There is an object, characterized by some quantities put in a vector X, that cannot be observed directly.
- We assume that we can trust a dynamic model of the state that allows us to predict how it evolves over time.
- Periodically, we observe the scene and produce a measure Y, that is a function of the state of the system.
- With this observation, we correct our estimate of the system state.

The tracking loop in practice (for one object)

(1) Wait for a new image.
(2) Predict the current state of the tracked object.
(3) Use that prediction to delineate a region of interest.
(4) Extract the tracked object in the new image.
(5) Derive the object state from the previous step and use it to correct the estimate of the object state.

Independence assumptions

- The system state and the observation are considered as random vectors.
- We limit the model to a Markov model.

If X_{i} defines the object state in frame i, then

$$
\begin{equation*}
p\left(X_{i} \mid X_{i-1}, X_{i-2}, \ldots\right)=p\left(X_{i} \mid X_{i-1}\right) \tag{168}
\end{equation*}
$$

In other words, only the immediate past matters.

- The measurement only depends on the current state (no memory):

$$
\begin{equation*}
p\left(Y_{i} \mid X_{i}, \ldots\right)=p\left(Y_{i} \mid X_{i}\right) \tag{169}
\end{equation*}
$$

Assumptions

(1) The dynamic model is linear.
(2) Errors in the modeling of state variables are considered as additive Gaussian noise.
(3) The measurement process is linear.
(4) Noise on the measurement is characterized by an additive Gaussian noise.

Prediction and correction

Prediction

Multiply the state by a matrix D, and add Gaussian noise:

$$
\begin{equation*}
x_{t} \sim p\left(X_{t} \mid X_{t-\Delta t}\right)=\mathcal{N}\left(D_{t} x_{t-\Delta t} ; \Sigma_{D t}\right) \tag{170}
\end{equation*}
$$

where $\Sigma_{D t}$ is the covariance matrix.

Measurement

Multiply the state by a matrix M, and add Gaussian noise:

$$
\begin{equation*}
y_{t} \sim p\left(Y_{t} \mid X_{t}\right)=\mathcal{N}\left(M_{t} x_{t} ; \Sigma_{M t}\right) \tag{171}
\end{equation*}
$$

Feature detection and tracking Tracking: Kalman filtering
Example: first order model for the displacement of an object I

State vector

$$
\begin{equation*}
x=\left[x, y, v_{x}, v_{y}\right]^{T} \tag{172}
\end{equation*}
$$

where (v_{x}, v_{y}) are the components of the speed vector.

Example: first order model for the displacement of an object II

Model

We have that

$$
\begin{align*}
x(t+\Delta t) & =x(t)+v_{x}(t) \Delta t \tag{173}\\
{\left[\begin{array}{c}
x(t+\Delta t) \\
y(t+\Delta t)
\end{array}\right] } & =\left[\begin{array}{cccc}
1 & 0 & \Delta t & 0 \\
0 & 1 & 0 & \Delta t \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y(t) \\
v_{x}(t) \\
v_{y}(t)
\end{array}\right] \tag{174}
\end{align*}
$$

Matrix of the dynamic system (state-transition model):

$$
D=\left[\begin{array}{cccc}
1 & 0 & \Delta t & 0 \tag{175}\\
0 & 1 & 0 & \Delta t \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$ object III

Measurement

$$
\begin{equation*}
y=[x, y]^{T} \tag{176}
\end{equation*}
$$

Observation matrix: $M=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$

A linear, recursive estimator

Compute: x_{t} given $x_{t-\Delta t}$ and y_{t}
Dynamic and measurement models:

$$
\begin{align*}
& x_{t} \sim \mathcal{N}\left(D_{t} x_{t-\Delta t} ; \Sigma_{D t}\right) \tag{177}\\
& y_{t} \sim \mathcal{N}\left(M_{t} x_{t} ; \Sigma_{M t}\right) \tag{178}
\end{align*}
$$

Starting assumptions: \bar{x}_{0}^{-}and Σ_{0}^{-}are known.
Under these assumptions (linear dynamics, linear measurement function, Gaussian noise), the Kalman filter is the optimal recursive estimator.

Kalman filtering equations

Prediction

Predicted state estimate
Predicted estimate covariance

$$
\begin{aligned}
& \bar{x}_{t}^{-}=D_{t} \bar{x}_{t-\Delta t}^{+} \\
& \Sigma_{t}^{-}=\Sigma_{D t}+D_{t} \Sigma_{t-\Delta t}^{+} D_{t}^{T}
\end{aligned}
$$

Correction/update

Measurement residual
Residual covariance

$$
\begin{aligned}
& r_{t}=y_{t}-M_{t} \bar{x}_{t}^{-} \\
& R_{t}=M_{t} \Sigma_{t}^{-} M_{t}^{T}+\Sigma_{M t} \\
& K_{t}=\Sigma_{t}^{-} M_{t}^{T}\left(R_{t}\right)^{-1} \\
& \bar{x}_{t}^{+}=\bar{x}_{t}^{-}+K_{t} r_{t}
\end{aligned}
$$

Optimal Kalman gain
Updated state estimate
Updated estimate covariance

- We are not using future measurements to refine past state estimate. Solution: forwards-backwards Kalman filtering.
- Non-linear dynamic and measurement models. Solutions:
- Extended Kalman Filter (EKF): local linearization representation.
- Unscented Kalman filter: non-linear propagation of the mean and covariance using the unscented transform.

Missing measurements. Skip the correction step.
Multiple measurements. Choose the closest measurement.
Multiple measurements and multiple targets. Find the best global target assignment by computing a distance matrix.

The choice of the (generally probabilistic) distance metric is crucial in this data association problem.

Outline

(1) Fundamentals of 2D imaging
(2) Motion analysis and background subtractionPerformance analysis

3D vision: calibration and reconstruction

Linear filtering
(6) Mathematical morphologyEdge detection
(8) Non-linear filtering
(9) Feature detection and tracking
(10) Segmentation

- Problem statement
- Segmentation by thresholding
- Segmentation by region growing: illustration with the watershed

Object description and analysis
(12) Template Matching \& Image Registration

Introduction to machine learning

Segmentation of a color image

Segmentation of a depth image

- Problem statement
- Segmentation by thresholding
- Segmentation by region detection (region growing)
- Watershed
- Segmentation by classification (semantic classification)

General considerations:

- a very specific problem statement is not always easy.
- chicken-and-egg problem; segmentation is an ill-conditioned problem.

Outline

Fundamentals of 2D imaging
Motion analysis and background subtraction
Performance analysis
3D vision: calibration and reconstruction
Linear filtering
Mathematical morphology
Edge detection
(8) Non-linear filtering
(9) Feature detection and tracking
(10) Segmentation

- Problem statement
- Segmentation by thresholding
- Segmentation by region growing: illustration with the watershed

Object description and analysis
Template Matching \& Image Registration

Marc Van Droogenbroeck

Problem statement I

Definition (Segmentation)

Generally, the problem of segmentation consists in finding a set of non-overlapping regions R_{1}, \ldots, R_{n} such that

$$
\begin{equation*}
\mathcal{E}=\bigcup_{i=1}^{n} R_{n} \quad \text { and } \quad \forall i \neq j, R_{i} \cap R_{j}=\emptyset \tag{179}
\end{equation*}
$$

Definition (Alternative definition)

More formally, the segmentation process is an operator ϕ on an image I that outputs, for example, a binary image $\phi(I)$ that differentiates regions by selecting their borders.
An alternative consists to attribute a different label to each pixel of different regions (this is called scene labeling).

Problem statement II

Segmented image

Labelled image

Problem statement III

Segmentation is a spatial process

As any similar operator, segmentation can be local or global:

- for local segmentation techniques, the results for one given pixel does not impact the segmentation result outside a close neighborhood.
- for global techniques, changing one pixel value can impact the whole result.

A first typology of segmentation techniques and

comparisons

Family of segmentation techniques	input	local/global	markers
Thresholding	image	local (pixel)	no
Watershed	image, gradient, etc	global	yes

Outline

Fundamentals of 2D imaging
Motion analysis and background subtraction
Performance analysis

3D vision: calibration and reconstruction

(6) Mathematical morphology

7 Edge detection

(8) Non-linear filtering

(9) Feature detection and tracking

(10) Segmentation

- Problem statement
- Segmentation by thresholding
- Segmentation by region growing: illustration with the watershed

(a) Original image

(c) Thresholding at 128

(b) Thresholding at 110

(d) Thresholding after background equalization

Rationale

There are two classes of pixels:
(1) background pixels
(2) foreground pixels
[Note that background and foreground do not refer to motion in this case!].
Sometimes, there is a "don't know" class

Assumptions to solve the segmentation problem:

(1) the probability density functions of the two content types are different.
(2) one threshold or two thresholds (Otsu's method) are sufficient.

Segmentation by thresholding III

Background distribution

Figure: Optimal threshold.

Outline

Fundamentals of 2D imaging
\square
Performance analysis
(4) 3D vision: calibration and reconstruction

(6) Mathematical morphology
(7) Edge detection
(8) Non-linear filtering
(9) Feature detection and tracking

(10) Segmentation

- Problem statement

- Segmentation by thresholding
- Segmentation by region growing: illustration with the watershed

Object description and analysis
Template Matching \& Image Registration
Introduction to machine learning

Figure: An image (left-hand side) and a view of its corresponding topographic surface (right-hand side).

In the terms of a topographic surface, a catchment basin $\mathcal{C}(M)$ is associated to every minimum M.

Figure: Minimums, catchment basins, and watershed.

Steps:

(1) identify valleys (minimums)
(2) proceed to flooding
(construct dams between neighboring catchment basins the watershed

Approach: proceed level by level

- An horizontal "slice" is binary image. Therefore, we first study the case of binary images.
- definition of geodesic path and distance.
- description of an algorithm that handles a stack of thresholded images.

Geodesic path

Let X be a binary image.

Definition (Geodesic path)

A geodesic path, of length l, between two points s and t is a series of $I+1$ pixels $x_{0}=s, x_{1}, \ldots, x_{I}=t$ such that

$$
\begin{equation*}
\forall i \in[0, l], x_{i} \in X \text { and } \forall i \in[0, I], x_{i-1}, x_{i} \text { are neighbors } \tag{180}
\end{equation*}
$$

Note that this definition applies to images defined on digital grids.

Figure: The shortest path between x and y.

Definition (Geodesic distance)

The geodesic distance between two points s and t is the length of the shortest geodesic path linking s to t; the distance is infinite if such a path does not exist.

About the geodesic distance

Questions:
(1) is the geodesic distance between x and y unique?
(2) is the geodesic path between x and y unique?

Algorithm for the construction of the geodesic skeleton by

 growing the zone of influence
Notations:

The zone of influence of a set Z_{i}, is denoted by Zl (domain $=\mathrm{X}$, center $\left.=Z_{i}\right)$ and its frontier by $F R\left(\right.$ domain $=\mathrm{X}$, center $\left.=Z_{i}\right)$.
The skeleton by zone of influence (SZI) is obtained via the following algorithm:

- first, one delineates the Z_{i} zones of each region;
- for remaining pixels, an iterative process is performed until stability is reached: if a pixel has a neighbor with an index i, then this pixel gets the same index; pixels with none or two different indices in their neighborhood are left unchanged;
- after all the iterations, all the pixels (except pixels at the interface) are allocated to one region of the starting regions Z_{i}.

Figure: Geodesic skeleton.

Figure: A dam is elevated between two neighboring catchment basins.

The case of grayscale images (a gradient image for example) II

Notations:

- f is the image.
- $h_{\text {min }}$ and $h_{\text {max }}$ are the limits of the range values of f on the function support (typically, $h_{\min }=0$ and $h_{\text {max }}=255$).
- $T_{h}(f)=\{x \in \operatorname{dom} f: f(x) \leq h\}$ is a set obtained by thresholding f with h. For h growing, we have a stack of decreasing sets.
- M_{i} are the minimums and $\mathcal{C}\left(M_{i}\right)$ are the catchment basins.

Step by step construction

Let $\mathcal{C}_{h}\left(M_{i}\right)$ be the subset of the M_{i} basin filled at "time" (or "height") h. Then

$$
\begin{equation*}
\mathcal{C}_{h}\left(M_{i}\right)=\mathcal{C}\left(M_{i}\right) \cap T_{h}(f) \tag{181}
\end{equation*}
$$

In this expression, $\mathcal{C}\left(M_{i}\right)$ is unknown.

Initialization:

- $\mathcal{C}_{h \text { min }}(M)=T_{h \text { min }}(f)$; the initialization considers that all the local minimums are valid catchment basin originators.

Construction

$$
\begin{equation*}
\forall h \in\left[h_{\min }+1, h_{\max }\right]: \mathcal{C}_{h}(M)=Z I_{h} \cup \operatorname{Min}_{h} \tag{182}
\end{equation*}
$$

with

- $Z I_{h}=$ influence zone (with domain $T_{h}(f)$);
- Min_{h} is the set of all the points of $T_{h}(f)$ that have no label after the growing process of influence zones. They correspond to minimums that are introduced at level h.

Microtomograhy image

Labeled image

Markers

Marking is a process that allows to select only some of the local minimums.

Watershed has the following advantages with respect to other techniques (such as thresholding):

- the possibility to be applicable to any sort of input image (original image, gradient, etc).
- the flexibility to put some markers to select only a few local minimums. With markers, the amount of regions is exactly equal to the number of markers put in the image.

- Based on classification techniques and machine learning
- Pixel-based
- A series of semantic notions/objects (persons, cars, bicycles, etc)

Original image (hover to highlight segmented parts)

Semantic segmentation

Objects appearing in the image:
\square
Bicycle

Objects not appearing in the image:

Aeroplane	Bird	Boat	Bottle	Bus	Car	Cat	Chair	Cow
Dining table	Dog	Horse	Motorbike	Potted plant	Sheep	Sofa	Train	TV/Monitor

- Panoptic segmentation \equiv semantic segmentation + instance segmentation

Semantic segmentation

Panoptic segmentation

Outline

Fundamentals of 2D imaging
(2) Motion analysis and background subtraction
\square

3D vision: calibration and reconstruction

(6) Mathematical morphology
(7) Edge detection
(8) Non-linear filtering
(9) Feature detection and tracking
(10) Segmentation
(11) Object description and analysis

- General considerations
- Texture analysis
- Shape description

Introduction to machine learning

Outline

(1) Fundamentals of 2D imaging
(2) Motion analysis and background subtraction

Performance analysis
(4) 3D
vision: calibration and reconstruction

Linear filtering
(3) Mathematical morphology
(7) Edge detection
(8) Non-linear filtering
(9) Feature detection and tracking

10
Segmentation
(11) Object description and analysis

- General considerations
- Texture analysis
- Shape description
(12) Template Matching \& Image Registration

Introduction to machine learning

General considerations

Objects have:

- a texture (inside)
- a shape (border)

(1) Fundamentals of 2D imaging

(2) Motion analysis and background subtraction

Performance analysis
(4) 3D vision: calibration and reconstruction
\squareMathematical morphology
Edge detectionNon-linear filtering
(9) Feature detection and tracking

10
Segmentation
(11) Object description and analysis

- General considerations
- Texture analysis
- Shape description

(12) Template Matching \& Image Registration

Introduction to machine learning

Texture analysis

- Definition?
- Statistical characterization of textures
- Local mean
- Local standard deviation
- Local histogram
- Co-occurrence matrix of a grayscale image
- Geometrical characterization of textures
- Spectral approach
- Texture and energy

The major question related to texture are:

- texture analysis. The purpose is to characterize a texture by a set of parameters called "texture descriptors".
\rightarrow texture recognition.
- image segmentation.

Definition

Definition (Tentative definition)

A texture is a signal than can be extended naturally outside of its domain.

Figure: One possible texture (according to Lantuéjoul).

Simple analysis of a grayscale image

Figure: Example of an image with two textures.

Simple descriptors:

- mean
- variance

But, there is a problem

Figure: Textures with identical means and variances.

Figure: Illustration of texture statistics computed over a circle. (a) grayscale mean (103 and 156 respectively) (b) standard deviation (32 and 66 respectively).

Local statistics

Definition (Local

The local mean over a spatial window W is defined as

$$
\begin{equation*}
\mu_{f}=\frac{1}{\sharp(\mathrm{~W})} \sum_{(x, y) \in \mathrm{W}} f(x, y) \tag{183}
\end{equation*}
$$

where $\sharp(W)$ is the cardinality of W.

Definition (Local

The standard deviation over a spatial window W is defined as

$$
\begin{equation*}
\sigma_{f}=\sqrt{\frac{\sum_{(x, y) \in \mathrm{W}\left[f(x, y)-\mu_{f}\right]^{2}}}{\sharp(\mathrm{~W})}} \tag{184}
\end{equation*}
$$

Global and local histograms I

Definition (Histogram)

The histogram of an image is the curve that displays the frequency of each grayscale level.

Figure: Non normalized histogram of an image.

Figure: An image and its global histogram (here W accounts for the whole image domain).

Global and local histograms III

Definition (Local histogram)

With a smaller window W, it is possible to define a local (normalized) histogram $p(I)$ as

$$
\begin{equation*}
p(I)=\frac{\sharp\{(x, y) \in W \mid f(x, y)=I\}}{\sharp(W)} \tag{185}
\end{equation*}
$$

Histogram statistics

- Mean

$$
\begin{equation*}
\mu_{L}=\sum_{l=0}^{L-1} I p(/) \tag{186}
\end{equation*}
$$

where L denotes the number of possible grayscale levels inside the W window.

- Standard deviation

$$
\begin{equation*}
\sigma_{L}=\sqrt{\sum_{I=0}^{L-1}\left(I-\mu_{L}\right)^{2} p(I)} \tag{187}
\end{equation*}
$$

- Obliquity

$$
\begin{equation*}
S_{s}=\frac{1}{\sigma_{L}^{3}} \sum_{I=0}^{L-1}\left(I-\mu_{L}\right)^{3} p(I) \tag{188}
\end{equation*}
$$

- "Kurtosis"

$$
\begin{equation*}
S_{k}=\frac{1}{\sigma^{4}} \sum_{l=0}^{L-1}\left(I-\mu_{L}\right)^{4} p(I)-3 \tag{189}
\end{equation*}
$$

Co-occurrence matrix of a grayscale image I

Definition (Co-occurrence matrix)

A co-occurrence matrix is defined by means of a geometrical relationship R between two pixel locations $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.
An example of such a geometrical relationship is

$$
\begin{align*}
& x_{2}=x_{1}+1 \tag{190}\\
& y_{2}=y_{1} \tag{191}
\end{align*}
$$

for which $\left(x_{2}, y_{2}\right)$ is at the right of $\left(x_{1}, y_{1}\right)$.
The co-occurrence matrix $C_{R}(i, j)$ is squared, with the $L \times L$ dimensions, where L is the range of all possible grayscale values inside of B. Indices of the co-occurrence matrix then indicates the amount of grayscale level value pairs as defined by R.

Construction of the $C_{R}(i, j)$ matrix:

(1) Matrix initialization: $\forall i, j \in\left[0, L\left[: C_{R}(i, j)=0\right.\right.$.
(2) Filling the matrix. If the relationship/condition R between two pixels $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is followed/met, then

$$
C_{R}\left(f\left(x_{1}, y_{1}\right), f\left(x_{2}, y_{2}\right)\right) \leftarrow C_{R}\left(f\left(x_{1}, y_{1}\right), f\left(x_{2}, y_{2}\right)\right)+1
$$

Example I

Let us consider an image with four grayscale levels ($L=4$, and $I=0,1,2,3)$:

$$
\begin{align*}
& f(x, y)=\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 2 & 2 & 3 \\
2 & 2 & 3 & 3
\end{array} \tag{192}\\
& P_{0^{0}, d}(i, j)=\sharp\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in B\left|y_{1}=y_{2},\left|x_{2}-x_{1}\right|=d,\right.\right. \\
& \left.f\left(x_{1}, y_{1}\right)=i \text { and } f\left(x_{2}, y_{2}\right)=j\right\} \tag{193}
\end{align*}
$$

The $P_{0^{0}, 1}$ and $P_{90^{0}, 1}$ matrices are 4×4 matrices respectively given by

$$
P_{0^{0}, 1}=\left[\begin{array}{cccc}
6 & 2 & 1 & 0 \tag{194}\\
2 & 2 & 0 & 0 \\
1 & 0 & 4 & 2 \\
0 & 0 & 2 & 2
\end{array}\right] \quad P_{90^{0}, 1}=\left[\begin{array}{cccc}
6 & 1 & 2 & 0 \\
1 & 2 & 1 & 1 \\
2 & 1 & 2 & 1 \\
0 & 1 & 1 & 2
\end{array}\right]
$$

About the use of co-occurrence matrices:

[+] Rich information about the texture
[-] Explosion of the number of features in the case of small textures

Geometrical characterization of textures

Use of the Fourier transform

Figure: Spectral characterization of a texture. Right-hand images are the modules of the Fourier transforms (inverse video).

Textures and energy I

Measures are derived from three simple vectors: (1) $L_{3}=(1,2,1)$ that computes the mean, (2) $E_{3}=(-1,0,1)$ that detects edges, and (3) $S_{3}=(-1,2,-1)$ which corresponds to the second derivate. By convolving these symmetric vectors, Laws has derived 9 basic convolution masks:

$$
\begin{array}{ccc}
\frac{1}{36}\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right] & \frac{1}{12}\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right] & \frac{1}{12}\left[\begin{array}{ccc}
-1 & 2 & -1 \\
-2 & 4 & -2 \\
-1 & 2 & -1
\end{array}\right] \\
\text { Laws } 1 & \begin{array}{cc}
\text { Laws } 3
\end{array} \\
\frac{1}{12}\left[\begin{array}{ccc}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{array}\right] & \frac{1}{4}\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 0 & 0 \\
-1 & 0 & 1
\end{array}\right] & \frac{1}{4}\left[\begin{array}{ccc}
-1 & 2 & -1 \\
0 & 0 & 0 \\
1 & -2 & 1
\end{array}\right] \\
\frac{1}{12}\left[\begin{array}{cc}
\text { Laws } 5
\end{array}\right. \\
{\left[\begin{array}{ccc}
-1 & -2 & -1 \\
2 & 4 & 2 \\
-1 & -2 & -1
\end{array}\right]} & \frac{1}{4}\left[\begin{array}{ccc}
-1 & 0 & 1 \\
2 & 0 & -2 \\
-1 & 0 & 1
\end{array}\right] & \frac{1}{4}\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 4 & -2 \\
1 & -2 & 1
\end{array}\right]
\end{array}
$$

Marc Van Droogenbroeck Computer Vision
Academic year: 2023-2024

Textures and energy II

Textures

a typical 5×5 filter

Laws 3

Laws 4

Laws 5

Laws 9

Figure: Laws "residues" (reverse video).

(1) Fundamentals of 2D imaging
 (2) Motion analysis and background subtraction
 Performance analysis
 (4) 3D vision: calibration and reconstruction
 Linear filtering
 Mathematical morphology
 Edge detection
 (8) Non-linear filtering
 (9) Feature detection and tracking
 segmentation

(11) Object description and analysis

- General considerations
- Texture analysis
- Shape description

(12) Template Matching \& Image Registration

Introduction to machine learning
Marc Van Droogenbroeck

Shape analysis

- Shape description. There are many of them:
- Lineic shape description
- Quadtree as a shape descriptor
- Morphological skeleton
- Other surfacic shape descriptors
- Measures
- Basic geometrical measures
- Shape factors
- Moments
- Morphological measures

There are two main families for describing a shape:

- lineic shape descriptors. They follow the border and encode its characteristics.
- surfacic shape descriptors. They represent the surface surrounded by the border.

[^2]\qquad

There are two main families for describing a shape:

- lineic shape descriptors. They follow the border and encode its characteristics.
- surfacic shape descriptors. They represent the surface surrounded by the border.

Properties

- translation, rotation, and scale (affine) invariance
- robustness to noise
- robustness to partial occlusions

Chain code

Figure: Definitions of directions in (a) 4-connectivity and (b) 8-connectivity.

How to encode a series of pixels? II

(a)

(c)

(b)

(d)

Figure: (a) A contour, (b) contour sampled on a digital grid, (c) 4-connected chain code, and (d) 8-connected chain code.

Code: 00017222533135754666

Figure: Contour with a crossing border pixel.

Direction of the descriptor:

- clockwise: external border
- counter-clockwise: internal border

Polygonal approximation

Figure: Polygonal approximation of a shape.

Some shape descriptors see the object as:

- a binary function

$$
f(x, y)= \begin{cases}1 & \text { if }(x, y) \text { belongs to the object } \tag{195}\\ 0 & \text { otherwise }\end{cases}
$$

- a series of points in the complex 2D space

$$
\begin{equation*}
s[n]=x[n]+j y[n] \tag{196}
\end{equation*}
$$

$s[n]$ is a one-dimensional discrete collection of complex numbers.

Fourier descriptors II

Figure: Representation of a shape as a series of points in the complex 2D space.

Fourier descriptors III

Definition (Fourier descriptor)

The discrete Fourier transform of $s[n]$ is defined as

$$
\begin{equation*}
\mathcal{S}[u]=\frac{1}{N} \sum_{n=0}^{N-1} s[n] e^{-2 \pi j u n / N} \tag{197}
\end{equation*}
$$

The $\mathcal{S}[u]$ coefficients are the Fourier descriptors of the shape.

Approximations.

Figure: Original shape and approximations with a selection of Fourier descriptors.

Figure: Approximations of a human silhouette by an increasing number of Fourier descriptors.

The quadtree as a shape descriptor

Figure: Quadtree decomposition and quadtree representation.

First attempts to define the skeleton

- Consider a continuous set X ans its frontier ∂X; an element x of the object X belongs to the skeleton of X, denoted by $S(X)$, if there exists a disk centered on x, included in X, that touches ∂X at least twice (maximal balls with two contact points).
- Locus of the center of all the maximal balls B contained in X.

These definitions are not fully equivalent, but they have the same topological closure in \mathbb{R}^{2}.

The morphological skeleton to describe a shape II

Figure: Shapes and their skeleton $S(X)$.

Skeletons are sensitive to noise on the object.

Figure: What is the skeleton of this object X ? Ideally, it should be located between the two rows. In practice, it is on the upper or lower row.

\square

Difficulty

Figure: What is the skeleton of this object X ? Ideally, it should be located between the two rows. In practice, it is on the upper or lower row.

Properties of a skeleton transform

(1) The skeleton transform is nor increasing, neither non-increasing. Indeed, $X \subseteq Y$ does not imply that $S(X) \subseteq S(Y)$, nor that $S(Y) \subseteq S(X)$.
(2) The skeleton transform is anti-extensive: $S(X) \subseteq X$.
(3) The skeleton transform is idempotent: $S(S(X))=S(X)$.

Morphological size I

Definition (Continuous object size)

Let B be a continuous set whose size is arbitrary set to 1 . Then, we can define a scale space of continuous sets by

$$
\begin{equation*}
r B=\{r b \mid b \in B\} r \geq 0 \tag{198}
\end{equation*}
$$

where r is a continuous parameter.

Morphological size II

Definition

The dilation (dilatation in French!) of X by B is defined as

$$
\begin{equation*}
X \oplus B=\{x+b \mid x \in X, b \in B\} \tag{199}
\end{equation*}
$$

Definition (Discrete object size)

Let B be a discrete, convex, finite, set of \mathbb{Z}^{2}, whose size is arbitrary set to 1. Then, we build a family of homethetic versions of B, for $n=0,1, \ldots$, by

$$
\begin{equation*}
n B=\underbrace{B \oplus \ldots \oplus B}_{n-1 \text { dilations }} \tag{200}
\end{equation*}
$$

In this expression, $n B$ is obtained as a cascade of $(n-1)$ successive dilations. By convention, for $n=0,0 B=\{(0,0)\}$. Note that $n B \oplus m B=(n+m) \oplus B$ for every n, m.

Morphological size III

Theorem

Let $\partial(B)$ be the frontier of B in \mathbb{R}^{2}. Then

$$
\begin{equation*}
\partial(B) \oplus B=B \oplus B \tag{201}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
n B=\underbrace{B \oplus \ldots \oplus B}_{n-1 \text { dilations }}=B \oplus \underbrace{\partial(B) \oplus \ldots \oplus \partial(B)}_{n-2 \text { dilations }} \tag{202}
\end{equation*}
$$

Multiresolution filters

Definition

We define the multiresolution opening and closing respectively as

$$
\begin{align*}
& X \circ n B=(X \ominus n B) \oplus n B \tag{203}\\
& X \bullet n B=(X \oplus n B) \ominus n B \tag{204}
\end{align*}
$$

Since $(X \ominus B) \ominus C=X \ominus(B \oplus C)$ and $(X \oplus B) \oplus C=X \oplus(B \oplus C)$,

$$
\begin{equation*}
X \circ n B=[\underbrace{[(X \ominus B) \ominus B \ldots \ominus B}_{\mathrm{n} \text { erosions }} \underbrace{\oplus B \oplus B \ldots \oplus B}_{\mathrm{n} \text { dilations }} \tag{205}
\end{equation*}
$$

By definition,

$$
\begin{equation*}
X \circ n B=\bigcup_{(n B)_{z} \subseteq X}(n B)_{z} \tag{206}
\end{equation*}
$$

Formal definition of the skeleton I

Definition (Skeleton [Lantuéjoul])

The skeleton of a set X is the union of a family of subsets S_{n}, each of them being the set of references to translates of $n B$ included in X, except all the references of translates of $(n+1) B$ contained in X. Formally, we have

$$
\begin{gather*}
S_{n}(X)=(X \ominus n B) \backslash([X \ominus n B] \circ B), n=0,1, \ldots, N \tag{207}\\
S(X)=\bigcup_{n=0}^{N} S_{n}(X) \tag{208}
\end{gather*}
$$

where B is a 2×2 wide pixels set for a square digital grid or an hexagon for an hexagonal grid.

Figure: Some skeletons obtained with Lantuéjoul's formula.

We define

$$
\begin{equation*}
\pi(X)=\left[\left[\left[S_{N}(X) \oplus B\right] \cup S_{N-1}(X)\right] \oplus B \cup S_{N-2}(X) \ldots\right] \oplus B \cup S_{0}(X) \tag{209}
\end{equation*}
$$

It can be shown that

$$
\begin{equation*}
\pi(X)=\bigcup_{n=0}^{N}\left[S_{n}(X) \oplus n B\right]=X \tag{210}
\end{equation*}
$$

\Rightarrow it is possible to reconstruct the shape perfectly based on the skeleton

Definition (Distance function)

The distance function of a set $X \subseteq \mathcal{E}$, denoted by $\phi(X)$, is defined as

$$
\begin{equation*}
[\phi(X)](h)=d\left(X^{c}, h\right) \tag{211}
\end{equation*}
$$

with the convention that $d(\emptyset, h)=+\infty$ for $h \in \mathcal{E}$.

Alternative skeleton formulas II

(a) Original image

(c) Local maximum of (b)

(b) Level sets of the distance function

(d) Skeleton by maximal balls

Figure: Skeleton by maximal balls.

Figure: Some skeletons obtained with Vincent's algorithm.

Figure: A shape is described as the union of a rectangle, a triangle and a diamond.

Code : 0000000217777222...

Figure: Comparison of some shape descriptors.

There are three fundamental measures
(1) Perimeter
(2) Area
(3) Euler-Poincarré number

There is a relationship between the number of connected components C and the number of holes H.

Definition (Euler number)

The Euler number E is defined as

$$
\begin{equation*}
E=C-H \tag{212}
\end{equation*}
$$

Measures II

Figure: Euler number: $E=1-2=-1$.

Measures III

Figure: Two letters with a different Euler number.

Shape factors

Figure: An object X and two reference sets (circumscribing disk/ellipse and smallest rectangular bounding box R).

Shape factor name	Expression
compactdness	$\frac{P(X)^{2}}{4 \pi A(X)}$
rectangularity	$\frac{A(X)}{A(R)}$
circularity	$\frac{4 A(X)}{\pi D_{\max }^{2}}$
anisometry	$\frac{D_{\max }}{D_{\min }}$

Moments

Moments are surfacic measures, used for example in character recognition.
Remember that we can see an object as a binary function

$$
f(x, y)= \begin{cases}1 & \text { if }(x, y) \text { belongs to the object } \tag{213}\\ 0 & \text { otherwise }\end{cases}
$$

Definition (Moment of order $p+q$)

The $p+q$ moment of a function $f(x, y)$ is defined as

$$
\begin{equation*}
m_{p q}=\sum_{x} \sum_{y} x^{p} y^{q} f(x, y) \tag{214}
\end{equation*}
$$

All these moments can be centered:

$$
\begin{equation*}
\mu_{p q}=\sum_{x} \sum_{y}\left(x-m_{10}\right)^{p}\left(y-m_{01}\right)^{q} f(x, y) \tag{215}
\end{equation*}
$$

and they can be normalized:

$$
\begin{equation*}
\eta_{p q}=\frac{\mu_{p q}}{\mu_{00}^{\frac{p+3}{2}}} \tag{216}
\end{equation*}
$$

Morphological measures and granulometry I

Granulometry is an approach to compute a size distribution of grains in binary images, using a series of opening operations.

Consider a ball $n B$ whose radius is given by n, then we define a granulometric curve by

$$
\begin{equation*}
\psi(n)=A(X \circ n B) \tag{217}
\end{equation*}
$$

where $A()$ denotes the area.
Abrupt changes is this curve are interesting for detecting typical sizes.

Definition (Pattern spectrum)

The Pattern Spectrum (PS) is defined as

$$
\begin{equation*}
\operatorname{PS}(n)=-\frac{A(X \circ n B)}{d n} \tag{218}
\end{equation*}
$$

Morphological measures and granulometry II

Figure: A binary object and a corresponding granulometric curve.

Convexity

Definition (Convexity)

A set $X \subseteq \mathcal{E}$ is convex if $r x+(1-r) y \in X$ for every $x, y \in X$ where $r \in[0,1]$.

In other words, a line joining two arbitrary points of X has to be entirely included in X.

Figure: A, B are convex; C is not convex.

Convex envelope I

The notion of convexity leads to that of convex envelope

Definition (Convex envelope)

The convex envelope of a set $X \subseteq \mathcal{E}$, denoted by $\operatorname{co}(X)$, is the intersection of all the convex sets comprising X.

Figure: A set X and its convex envelope.

Convex envelope II

Theorem

For $X, Y \subseteq \mathcal{E}$,

$$
\begin{equation*}
\operatorname{co}(X \oplus Y)=\operatorname{co}(X) \oplus \operatorname{co}(Y) \tag{219}
\end{equation*}
$$

Definition (Convexity shape factor)

The convexity shape factor is defined as

$$
\begin{equation*}
C=\frac{A(X)}{A(\operatorname{co}(X))} \tag{220}
\end{equation*}
$$

Outline

(12) Template Matching \& Image Registration

- Introduction \& Applications
- Some solutions and their corresponding approach
- Template matching \& image registration components
- Implementation speed-up

Outline

(1) Fundamentals of 2D imaging
\square
Motion analysis and background subtraction Performance analysis 3D vision: calibration and reconstruction
\square
Mathematical morphology Edge detection
(8) Non-linear filtering

(9) Feature detection and tracking

Segmentation(11) Object description and analysis
(12) Template Matching \& Image Registration

- Introduction \& Applications
- Some solutions and their corresponding approach
- Template matching \& image registration components
- Implementation speed-up
- Introduction \& Applications
- Some solutions and their corresponding approach
- Template matching \& image registration components
- Implementation speed-up

Table of content

- Introduction \& Applications
- Definition \& Examples
- Applications
- Some solutions and their corresponding approach
- Template matching \& image registration components
- Implementation speed-up

Template matching - Example

Template matching - Definition

Definition

Template matching is the process of either finding any instance of a template image T within another image I or finding which ones of the templates $T_{1}, T_{2}, \ldots, T_{N}$ correspond in some way to another image I.

We search how to transform or warp a template (resp. image) to make it similar to a reference image (resp. template).
The template is also called the pattern or the model.

Figure: Find the template T_{k} which correspond to the observed image I.

Image registration or alignment - Example

Definition

Image registration is the process of spatially aligning two images of a scene/object so that corresponding points assume the same coordinates.

- Given two images taken, for example,
- at different times,
- from different devices
- or different point of view;
- the goal is to determine a reasonable transformation of the images
- such that a transformed version of the first image is similar to the second one.
- Introduction \& Applications
- Definition \& Examples
- Applications
- Some solutions and their corresponding approach
- Template matching \& image registration components
- Implementation speed-up

Machine vision (and especially template matching) is pervasive in almost all steps of an industrial production chain.

Machine vision II

- Measuring and assessing the matching quality, the component presence/absence/type and/or position and orientation \rightarrow Non destructive testing (NDT), defect detection, model conformance assessment

Machine vision III

- Counting the number of instances that matched the template \rightarrow Detection of given objects, computing their location, type and/or properties

Template Matching \& Image Registration

Electronic components manufacturing II

- Wafer dicing is the process by which die are separated from a wafer of semiconductor.

Electronic components manufacturing III

- Die bonding is the process of attaching the semiconductor die either to its package or to some substrate.
- Wire bonding is the process of making interconnections between an integrated circuit or other semiconductor device and its packaging.

Printed board assembly (pick \& place) I

- Position of picked components
- Position of placement area
- Control of welding after the process

Printed board assembly (pick \& place) II

- 3D reconstruction

\rightarrow find the correspondences between the left and right view of the same scene

Multi-view correspondences II

- Panoramic images: Image alignment for stitching
\rightarrow find correspondences between several views of the same scene Input Images

Multi-modality correspondences and fusion

- Image alignment and fusion

- Remote sensing: satellite image fusion

Biomedical (elastic) image registration

Non-rigid (elastic) image registration

(a) reference \mathcal{R}

(d) template \mathcal{T}
(b) template \mathcal{T} with grid
(c) $\mathcal{T}[y]$ with grid
(e) difference $|\mathcal{T}-\mathcal{R}|$
(f) difference $|\mathcal{T}[y]-\mathcal{R}|$

From [Modersitzki Jan, "FAIR Flexible Algorithms for Image Registration", 2009, Figure 1.1]

Template matching vs. Image registration

- Template matching and image registration processes have essentially the same goal:
- They compare two (or more) images, and
- look for a transformation/warping of one (or both) image(s),
- in order to match/align the images (to make them fit).
- They differ by the way users consider the images;
- In template matching, one of the image is special (the template) and is often (not always) smaller in size.
The other image represents/spans the work space where we would like to locate the template.
- In image registration both images play a similar role.

They are both embedded in a global work space where we would like to find their relative position.

Outline

(1) Fundamentals of 2D imaging

(2) Motion analysis and background subtraction

Performance analysis
(4) 3D vision: calibration and reconstruction
(3) Linear filtering
(6) Mathematical morphology
(7) Edge detection
(8) Non-linear filtering

O Feature detection and tracking

(10) Segmentation

(11) Object description and analysis

12 Template Matching \& Image Registration

- Introduction \& Applications
- Some solutions and their corresponding approach
- Template matching \& image registration components
- Implementation speed-up

Philippe Latour
Table of content

- Introduction \& Applications.
- Some solutions and their corresponding approach.
- Naive solution \& Block diagram.
- Pixel based approach.
- Feature based approach.
- Comparisons.
- Template matching \& image registration components.
- Implementation speed-up.

Naive solution I

We consider:
\rightarrow the image I with L_{I} lines and K_{I} columns, represented by the matrix $\underline{I}=\left(I_{I k}\right)$ where $I \in\left[0, L_{l}\left[, k \in\left[0, K_{l}[\right.\right.\right.$,
\rightarrow the template \mathbf{T} with L_{T} lines and K_{T} columns, represented by the matrix $\underline{T}=\left(T_{i j}\right)$ where $i \in\left[0, L_{T}\left[, j \in\left[0, K_{T}[\right.\right.\right.$.

Template matrix $\underline{\underline{T}}$

Observed image matrix $\underline{\underline{I}}$

Naive solution II

We define all the admissible (sub-) windows $\mathbf{W}^{(1, k)}$ completely included within the image I and of the same size as the template \mathbf{T} by the following sub-matrices $\underline{W}^{(l, k)}$:

$$
W_{i j}^{(I, k)}=\left\{\begin{array}{cl}
I_{l+i, k+j} & \text { for } i \in\left[0, L_{T}-1\right], j \in\left[0, K_{T}-1\right] \tag{221}\\
0 & \text { otherwise }
\end{array}\right.
$$

where $I \in\left[0, L_{I}-L_{T}\right]$ and $k \in\left[0, K_{I}-K_{T}\right]$ are the indices, in the image \mathbf{I}, of the upper left pixel of $\mathbf{W}^{(1, k)}$.

Naive solution III

Compute the Euclidean distance

$$
\begin{equation*}
\operatorname{dist}\left(\underline{I}, \underline{W}^{(1, k)}\right)=\sum_{i=0}^{L_{T}-1 K_{T}-1} \sum_{j=0}\left[T_{i j}-W_{i j}^{(1, k)}\right]^{2} \tag{222}
\end{equation*}
$$

then create the distance map \mathbf{D}, represented by the matrix \underline{D} :

$$
\left.D_{\left\lfloor\frac{K_{T}}{2}\right.}\right\rfloor+k,\left\lfloor\frac{L_{T}}{2}\right\rfloor++1=\left\{\begin{array}{cl}
\operatorname{dist}\left(\underset{\left(\underline{T}, \underline{W}^{(I, k)}\right.}{ }\right) & \text { for } I \in\left[0, L_{I}-L_{T}\right], k \in\left[0, K_{I}-K_{T}\right] \tag{223}\\
\text { otherwise }
\end{array}\right.
$$

and find the position of the minimum in these map.

Template \mathbf{T}

Philippe Latour
Template Matching \& Image Registration

Distance map D

Observed image I

Naive solution in pixel coordinates - Image translation

Previously, in the naive solution, we matched the template T to a part of the translated version of the image (the sub-image function
$\left.W_{k, I}(x, y)=I(x+k, y+I)\right)$.
In pixel coordinates, this may be illustrated by:

It is equivalent to match a translated template to the original image:

Naive solution - Block diagram |

The block diagram of this pixel based (naive) solution is:

Naive solution - Block diagram II

The block diagram of this pixel based (naive) solution is:

Template Matching \& Image Registration
Some solutions and their corresponding approach
Pixel-based

Question?

Which "elements" are we going to match in the reference and template images ?

- All pixels of an image/template:

- For all warped templates, compare all pairs of corresponding pixels (\equiv located at the same place in the images and the warped template).
- Then compute a global score based on the individuals comparisons.
- And choose the warping for which the score is maximum/minimum

```
or Feature-based ?
```


Question?

Which "elements" are we going to match in the reference and template images ?

- "Interesting" points of an image/template:

- First search for the feature points in the image/template,
- Then find the best matching between feature points in the image and the template
- And finally compute the warping based on the best feature points matching

Template Matching \& Image Registration
Some solutions and their corresponding approach

Table of content

- Introduction \& Applications.
- Some solutions and their corresponding approach.
- Naive solution \& Block diagram.
- Pixel based approach.
- Feature based approach.
- Comparisons.
- Template matching \& image registration components.
- Implementation speed-up.

Pixel-based approach I

Pixel-based approach

Shift or warp the images relatively to each other, then look at how much the pixels agree and find the warping parameters for which the agreement is maximum.

- So, we first need to decide which kind of warping is eligible between the template and the image.
- In the previous naive solution, it is only translation.
- The eligible warping defines the parameter space or the search space:
- Translation (2D) + rotation (1D) + isotropic scaling (1D)
\rightarrow 4D search space
- Affine / Projective transform \rightarrow 6D / 8D search space
- Applying the warping
- to the pattern
- or the image
- or both?
- Image re-sampling and sub-pixel accuracy?

Pixel-based approach II

Pixel-based approach

Shift or warp the images relatively to each other, then look at how much the pixels agree and find the warping parameters for which the agreement is maximum.

- Then a suitable similarity or dissimilarity measure must be chosen to compare the images
- In the previous naive solution, it is the Euclidean distance.
- The similarity or dissimilarity measure depend on the image characteristics to which it is necessary to be invariant. The insensitivity properties guide the choice of a score/distance measure.
- Lighting conditions (linear gain and offset)
- Noise
- "Small" rotation or scaling
- Thinning
- \rightarrow Define the similarity/dissimilarity measure

Pixel-based approach III

Pixel-based approach

Shift or warp the images relatively to each other, then look at how much the pixels agree and find the warping parameters for which the agreement is maximum.

- In the previous naive solution, we try all possible alignment (an exhaustive search).
- But this solution is often impractical and hierarchical coarse-to-fine techniques based on image pyramids are often used.
- The search technique must be devised:
- Exhaustive search
- Coarse to fine hierarchical refinement.
- Steepest descent
- Conjugate gradient
- Quasi-Newton method
- Levenberg-Marquardt
- Simulated annealing

General pixel-based solution - Block diagram I

The block diagram of a more general solution could be

The block diagram of a more general solution could be

Template Matching \& Image Registration
Table of content

- Introduction \& Applications.
- Some solutions and their corresponding approach.
- Naive solution \& Block diagram.
- Pixel based approach.
- Feature based approach.
- Comparisons.
- Template matching \& image registration components.
- Implementation speed-up.

Feature-based approach

Feature-based approach

In both images, extract feature points and compute their descriptor vector. Then, match the corresponding feature points and compute the image warping that transforms at best (maximum agreement) each feature points into its corresponding one.

Let's consider two images of the same (or similar/related) scene/object taken

- at different moment, or
- from a different point of view, or
- with different sensor (parameters).

Feature points definition I

Feature-based approach

In both images, extract feature points and compute their descriptor vector. Then, match the corresponding feature points and compute the image warping that transforms at best (maximum agreement) each feature points into its corresponding one.

Feature points in each image carry critical information about (local) scene structure.

- Also called critical points, interest points, key points, extremal points, anchor points, landmarks, control points, tie points.
- For instance corners, vertices, junctions, edges, dark/light blob center, unique patches, moments, ...

Feature points definition II

Feature-based approach

In both images, extract feature points and compute their descriptor vector. Then, match the corresponding feature points and compute the image warping that transforms at best (maximum agreement) each feature points into its corresponding one.

Feature points are/should be:

- Independent of noise, blurring, contrast, lightning conditions.
- Dependent or Independent of geometric changes (rotation, scaling, affine transform).
- Widely used in image analysis (not only for image registration).

Feature points definition III

Feature-based approach

In both images, extract feature points and compute their descriptor vector. Then, match the corresponding feature points and compute the image warping that transforms at best (maximum agreement) each feature points into its corresponding one.

Defining and computing a "featureness" function

- Invariant to some image variation (translation, rotation, scaling, brightness, contrast, ...)
- For instance; central moments, pixel intensity variances, gradient module, LoG/DoG, entropy, Harris cornerness, ...
- And keeping only the most-significant maxima/minima/zeroes of the "featureness" function.

Feature points representation \& matching I

Feature-based approach

In both images, extract feature points and compute their descriptor vector. Then, match the corresponding feature points and compute the image warping that transforms at best (maximum agreement) each feature points into its corresponding one.

Represent each feature point by a descriptor vector

- Vector of characteristic values describing the feature point in an unique and discriminatory way.
- Position, gradient, image moment, scale, orientation, Histogram Of Gradients (HOG), Local Binary Pattern (LPB), ...

Philippe Latour
Computer Vision
Academic year: 2023-2024
471 / 538
Template Matching \& Image Registration
Some solutions and their corresponding approach
Feature points representation \& matching II

Feature-based approach

In both images, extract feature points and compute their descriptor vector. Then, match the corresponding feature points and compute the image warping that transforms at best (maximum agreement) each feature points into its corresponding one.

Find/match the corresponding feature points in both images:

- Compare the descriptor vectors to find the best correspondence between feature points in each images.

Feature points transformation

Feature-based approach

In both images, extract feature points and compute their descriptor vector. Then, match the corresponding feature points and compute the image warping that transforms at best (maximum agreement) each feature points into its corresponding one.

Compute the transformation/warping such that the feature points in the left image fit their corresponding point in the right image.

- Define which kind of warping is admissible; rigid global warping (homography) or elastic/local warping.
- Use robust fitting methods:
- RANSAC,
- Hough Transform,
- ICP (Iterative Closest Point)

- Introduction \& Applications.
- Some solutions and their corresponding approach.
- Naive solution \& Block diagram.
- Pixel based approach.
- Feature based approach.
- Comparisons.
- Template matching \& image registration components.
- Implementation speed-up.

Pixel-based vs. feature based approach I

Pixel-based approach

Shift or warp the images relatively to each other, then look at how much the pixels agree and find the warping parameters for which the agreement is maximum.

Feature-based approach

In both images, extract feature points and compute their descriptor vector. Then, match the corresponding feature points and compute the image warping that transforms at best (maximum agreement) each feature points into its corresponding one.

Template matching and/or image registration ARE optimization problems

Pixel-based vs. feature based approach II

	Pixel based	Feature based
Pattern information usage	Use all pixels in the pattern in an uniform way. No need to analyze or understand the pattern.	Find and use pattern features (most informative part of the pattern). \rightarrow Sensitive operation.
Occlusion or pose variation	Sensitive	Could be design to be insensitive
Sub-pixel accuracy	Interpolation of the similarity/dissimilarity measure	Naturally accurate at the sub-pixel level.
Admissible warping	The choice has to be done at the beginning of the process (orientation and scaling)	Mostly insensitive to differences in orientation and scaling
Noise and lighting conditions	Sensitive	Naturally much more insensitive

	Pixel based	Feature based
Rigid pattern warping	Mostly limited to rigid pattern warping	Enable non-rigid warping.
Dimensionality of the search space	Mostly limited to low dimensionality (the search time is exponential in the search space dimensionality)	Higher dimensionality search space are more easily implementation on GPUs
Implementatign	Complexity proportional to the image size. Need specific search strategies to reach real-time.	Much more difficult to implement and/or to optimize
Complexity	Complexity roughly proportional to the number of feature points (depend more on the content of the scene	

Outline

(12) Template Matching \& Image Registration

- Introduction \& Applications
- Some solutions and their corresponding approach
- Template matching \& image registration components
- Implementation speed-up

Table of content

- Introduction \& Applications
- Some solutions and their corresponding approach
- Template matching \& image registration components
- Pixel-based approach: Similarity/Dissimilarity measures
- Feature-based approach: Feature detection
- Implementation speed-up

Similarity / Correlation / Score	Dissimilarity / Distance
Pearson correlation coefficient	L1 Norm
Tanimoto Measure	Median of Absolute Differences
Stochastic Sign Change	Square L2 Norm
Deterministic Sign Change	Median of Square Differences
Minimum Ratio	Normalized Square L2 Norm
Spearman's Rho	Incremental Sign Distance
Kendall's Tau	Intensity-Ratio Variance
Greatest Deviation	Intensity-Mapping-Ratio Variance
Ordinal Measure	Rank Distance
Correlation Ratio	Joint Entropy
Energy of Joint Probability	Exclusive F-Information
Distribution Material	
Similarity Shannon Mutual Information	
Rényi Mutual Information	
Tsallis Mutual Information	
F-Information Measures	

Similarity / Correlation / Score	Dissimilarity / Distance
Pearson correlation coefficient	L1 Norm
Tanimoto Measure	Median of Absolute Differences
Stochastic Sign Change	Square L2 Norm
Deterministic Sign Change	Median of Square Differences
Minimum Ratio	Normalized Square L2 Norm
Spearman's Rho	Incremental Sign Distance
Kendall's Tau	Intensity-Ratio Variance
Greatest Deviation	Intensity-Mapping-Ratio Variance
Ordinal Measure	Rank Distance
Correlation Ratio	Joint Entropy
Energy of Joint Probability	Exclusive F-Information
Distribution Material	
Similarity Shannon Mutual Information	
Rényi Mutual Information	
Tsallis Mutual Information	
F-Information Measures	

Pixel-based approach: Similarity/dissimilarity measures

- Given two corresponding sequences of measurement $\left\{a_{i} \mid i=1, \cdots, n\right\}$ and $\left\{b_{i} \mid i=1, \cdots, n\right\}$, we will represent them by the following (column) vectors:
- $\underline{A}=\left(a_{i}\right)_{i=1, \cdots, n} \in \mathbb{R}^{n}$
- $\underline{B}=\left(b_{i}\right)_{i=1, \cdots, n} \in \mathbb{R}^{n}$
- \underline{A} and \underline{B} might represent measurements from two objects or phenomena. Here, in our case, we assume they represent images and a_{i} and b_{i} are the intensities of the corresponding pixels in the images.
- The similarity (dissimilarity) between them is a measure that quantifies the dependency (independency) between the sequences.
- In the naive solution, we used the Euclidean distance (the square L2 norm).

Pearson correlation coefficient

Definition

The Pearson correlation coefficient of two vectors \underline{A} and \underline{B} is:

$$
\begin{equation*}
r(\underline{A}, \underline{B})=\frac{\operatorname{covar}(\underline{A}, \underline{B})}{\sqrt{\operatorname{var}(\underline{A}) \operatorname{var}(\underline{B})}} \tag{224}
\end{equation*}
$$

With the usual notations:

- $\mu_{\mathrm{A}}=\frac{1}{n} \sum_{i=1}^{n} a_{i}$

$$
\operatorname{var}(\underline{A})=\sigma_{A}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(a_{i}-\mu_{A}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} a_{i}^{2}-\mu_{A}^{2}
$$

- $\mu_{B}=\frac{1}{n} \sum_{i=1}^{n} b_{i} \quad \operatorname{var}(\underline{B})=\sigma_{B}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(b_{i}-\mu_{B}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} b_{i}^{2}-\mu_{B}^{2}$
$-\operatorname{covar}(\underline{A}, \underline{B})=\frac{1}{n} \sum_{i=1}^{n}\left(a_{i}-\mu_{A}\right)\left(b_{i}-\mu_{B}\right)=\frac{1}{n} \sum_{i=1}^{n} a_{i} b_{i}-\mu_{A} \mu_{B}$
We may write:

$$
\begin{aligned}
& r(\underline{A}, \underline{B})=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(a_{i}-\mu_{A}\right)\left(b_{i}-\mu_{B}\right)}{\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(a_{i}-\mu_{A}\right)^{2}} \sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(b_{i}-\mu_{B}\right)^{2}}} \\
& r(\underline{A}, \underline{B})=\frac{\frac{1}{n} \sum_{i=1}^{n} a_{i} b_{i}-\mu_{A} \mu_{B}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} a_{i}^{2}-\mu_{A}^{2}} \sqrt{\frac{1}{n} \sum_{i=1}^{n} b_{i}^{2}-\mu_{B}^{2}}}
\end{aligned}
$$

The Pearson coefficient $r(\underline{A}, \underline{B})$ is then easily computed with one pass on the images \underline{A} and B.

Pearson correlation coefficient properties I

If we introduce the reduced or normalized vectors:

$$
\underline{\tilde{A}}=\frac{1}{\sigma_{A}}\left(\underline{A}-\mu_{A} \underline{1}\right) \text { and } \underline{\tilde{B}}=\frac{1}{\sigma_{B}}\left(\underline{B}-\mu_{B} \underline{1}\right)
$$

We have the following relation:

Theorem

$$
\begin{equation*}
r(\underline{A}, \underline{B})=\frac{1}{n} \underline{\tilde{A}}^{T} \underline{\tilde{B}}=r(\underline{\tilde{A}}, \underline{\tilde{B}}) \tag{225}
\end{equation*}
$$

Which is obvious from

$$
r(\underline{A}, \underline{B})=\frac{1}{n} \sum_{i=1}^{n}\left(\frac{a_{i}-\mu_{A}}{\sigma_{A}}\right)\left(\frac{b_{i}-\mu_{B}}{\sigma_{B}}\right)=\frac{1}{n} \underline{\tilde{A}}^{T} \underline{\tilde{B}}=r(\underline{\tilde{A}}, \underline{\tilde{B}})
$$

Pearson correlation coefficient properties II

The Pearson coefficient doesn't depend on the image's gain and offset.

Theorem (Invariance to affine transformation of pixel values)

For any values $\alpha, \beta, \gamma, \delta$ such that $\alpha \neq 0$ and $\gamma \neq 0$, we have:

$$
r(\alpha \underline{A}+\beta \underline{1}, \gamma \underline{B}+\delta \underline{1})=\operatorname{sign}(\alpha \gamma) r(\underline{A}, \underline{B})
$$

This result comes immediately from

$$
(\alpha \widetilde{A}+\beta \underline{1})=\frac{1}{|\alpha| \sigma_{A}}\left[(\alpha \underline{A}+\beta \underline{1})-\left(\alpha \mu_{A}+\beta\right) \underline{1}\right]=\frac{\operatorname{sign}(\alpha)}{\sigma_{A}}\left(\underline{A}-\mu_{A} \underline{1}\right)=\operatorname{sign}(\alpha) \underline{\tilde{A}}
$$

Then

$$
\begin{gathered}
r(\alpha \underline{A}+\beta \underline{1}, \gamma \underline{B}+\delta \underline{1})=r((\alpha \widetilde{A+\beta} \underline{1}),(\gamma \underline{\underline{B}+\delta \underline{1}})) \\
r(\alpha \underline{A}+\beta \underline{1}, \gamma \underline{B}+\delta \underline{1})=r(\operatorname{sign}(\alpha) \underline{\tilde{A}}, \operatorname{sign}(\gamma) \underline{\tilde{B}})=\operatorname{sign}(\alpha \gamma) r(\underline{A}, \underline{B})
\end{gathered}
$$

Pearson correlation coefficient properties III

Due to the usual properties of variance and covariance;

Theorem

The range of values of $r(\underline{A}, \underline{B})$ is $[-1,+1]$:
$r=+1$ if and only if $\underline{B}=\alpha \underline{A}+\beta \underline{1}$ with $\alpha>0$. It is a perfect direct matching between \underline{A} and \underline{B}.
$r=-1$ if and only if $\underline{B}=\alpha \underline{A}+\beta \underline{1}$ with $\alpha<0$. It is a perfect inverse matching between \underline{A} and \underline{B}.
$r=0$ if and only if there is no linear correlation between \underline{A} and \underline{B}.
(a) A template T.
(b) An image I containing the template T.
(c) The correlation image $C[T, I]$ with intensity at a pixel showing the correlation coefficient between the template and the window centered at the pixel in the image.
(d) The real part of image $C_{p}[T, I]$, showing the phase correlation result with the location of the spike encircled.

Spearman rank correlation or Spearman's rho I

- The Spearman rank correlation or Spearman's Rho (ρ) between vectors $\underline{A}=\left(a_{i}\right)_{i=1, \cdots, n}$ and $\underline{B}=\left(b_{i}\right)_{i=1, \cdots, n}$ is given by

$$
\begin{equation*}
\rho=1-\frac{6 \sum_{i=1}^{n}\left[R\left(a_{i}\right)-R\left(b_{i}\right)\right]^{2}}{n\left(n^{2}-1\right)} \tag{226}
\end{equation*}
$$

where $R\left(a_{i}\right)$ and $R\left(b_{i}\right)$ represent ranks of a_{i} and b_{i} in images \underline{A} and B.

- Remark: to eliminate possible ties among discrete intensities in images, the images are smoothed with a Gaussian of a small standard deviation, such as 1 pixel, to produce unique floating-point intensities.
- Comparison with the Pearson correlation coefficient:
- ρ is less sensitive to outliers and, thus, less sensitive to impulse noise and occlusion.
- ρ is less sensitive to nonlinear intensity difference between images than Pearson correlation coefficient.
- Spearman's ρ consistently produced a higher discrimination power than Pearson correlation coefficient.
- Computationally, ρ is much slower than r primarily due to the need for ordering intensities in I and J.

Kendall's tau

- If a_{i} and b_{i}, for $i=0, \ldots, n$, show intensities of corresponding pixels in \underline{A} and \underline{B}, then for $i \neq j$, two possibilities exist:
- Either concordance : $\operatorname{sign}\left(a_{j}-a_{i}\right)=\operatorname{sign}\left(b_{j}-b_{i}\right)$
- Or discordance : $\operatorname{sign}\left(a_{j}-a_{i}\right)=-\operatorname{sign}\left(b_{j}-b_{i}\right)$
- Assuming that out of the C_{n}^{2} possible combinations, N_{c} pairs are concordant and N_{d} pairs are discordant, Kendall's τ is defined by:

$$
\begin{equation*}
\tau=\frac{N_{c}-N_{d}}{\frac{n(n-1)}{2}} \tag{227}
\end{equation*}
$$

- If bivariate $(\underline{A}, \underline{B})$ is normally distributed, Kendall's τ is related to Pearson correlation coefficient r by:

$$
\begin{equation*}
r=\sin \left(\frac{\pi \tau}{2}\right) \tag{228}
\end{equation*}
$$

Kendall's tau II

- Comparison with other similarity measures:
- Pearson correlation coefficient can more finely distinguish images that represent different scenes than Kendall's τ.
- Conversely, Kendall's τ can more finely distinguish similar images from each other when compared to Pearson correlation coefficient.
- Spearman's ρ and Kendall's τ have the same discrimination power when comparing images of different scenes.
- Kendall's τ is one of the costliest similarity measures.

Spearman's Rho

Kendall's Tau

Table of content

- Introduction \& Applications
- Some solutions and their corresponding approach
- Template matching \& image registration components
- Pixel-based approach: Similarity/Dissimilarity measures
- Feature-based approach: Feature points detection
- Implementation speed-up

Feature point category

A large number of point detectors have been developed throughout the years:

- Corner-based detectors
- Edge-based detectors
- Model-based detectors
- Uniqueness-based detectors
- Curvature-based detectors
- Laplacian-based detectors
- Gradient-based detectors
- Hough Transform-based detectors
- Symmetry-based detectors
- Filtering-based detectors
- Transform Domain detectors
- Pattern Recognition-based detectors
- Moment-based detectors
- Entropy-based detectors

Feature point category

A large number of point detectors have been developed throughout the years:

- Corner-based detectors
- Edge-based detectors
- Model-based detectors
- Uniqueness-based detectors
- Curvature-based detectors
- Laplacian-based detectors
- Gradient-based detectors
- Hough Transform-based detectors
- Symmetry-based detectors
- Filtering-based detectors
- Transform Domain detectors
- Pattern Recognition-based detectors
- Moment-based detectors
- Entropy-based detectors

Corner-based detectors I

- The angle between the line connecting pixel (x, y) to the i th pixel on the smallest circle and the x-axis is θ_{i}, and the intensity at the ith pixel is $I_{1}\left(\theta_{i}\right)$
- If $\tilde{l}_{j}\left(\theta_{i}\right)$ represents the normalized intensity at θ_{i} in the j th circle, then

$$
\begin{equation*}
C(x, y)=\sum_{i=1}^{n} \prod_{j=1}^{m} \tilde{I}_{j}\left(\theta_{i}\right) \tag{229}
\end{equation*}
$$

is used to measure the strength of a vertex or a junction at (x, y).

- In the following formula, if $m=2$ (2 circles), $C(x, y)$ is the Pearson coefficient of the two vectors $\tilde{I}_{1}\left(\theta_{i}\right)$ and $\tilde{I}_{2}\left(\theta_{i}\right)$.
- Pixel (x, y) is then considered a corner if $C(x, y)$ is locally maximum.

Corner-based detectors II

(a)

(b)

Laplacian-based detectors I

- A number of detectors use either the Laplacian of Gaussian (LoG) or the difference of Gaussians (DoG) to detect points in an image.
- For the following development, we consider a "continuous" image

$$
\begin{equation*}
I: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}:(x, y) \in \Omega \rightarrow I(x, y) \tag{230}
\end{equation*}
$$

and we define a scaled version of this image

$$
\begin{equation*}
L(x, y ; \sigma)=g(x, y ; \sigma) \otimes I(x, y) \tag{231}
\end{equation*}
$$

where $g(x, y ; \sigma)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma^{2}}\right)$ is the Gaussian kernel of variance σ^{2}.

- The Laplacian of Gaussian LoG $=\triangle L(x, y ; \sigma)$ is defined as

$$
\begin{equation*}
\triangle L(x, y ; \sigma)=\triangle[G(x, y ; \sigma) \otimes I(x, y)]=[\triangle g(x, y ; \sigma)] \otimes I(x, y) \tag{232}
\end{equation*}
$$

Laplacian-based detectors II

- So, we compute the Laplacian of the Gaussian

$$
\begin{equation*}
\triangle g(x, y ; \sigma)=\frac{x^{2}+y^{2}-2 \sigma^{2}}{2 \pi \sigma^{6}} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma^{2}}\right) \tag{233}
\end{equation*}
$$

and its partial derivative relatively to σ

$$
\begin{equation*}
\frac{\partial}{\partial \sigma} g(x, y ; \sigma)=\frac{x^{2}+y^{2}-2 \sigma^{2}}{2 \pi \sigma^{5}} \exp \left(-\frac{x^{2}+y^{2}}{2 \sigma^{2}}\right) . \tag{234}
\end{equation*}
$$

Then, we deduce

$$
\begin{equation*}
\sigma \triangle L(x, y ; \sigma)=\frac{\partial}{\partial \sigma} L(x, y ; \sigma) \simeq \frac{[L(x, y ; k \sigma)-L(x, y ; \sigma)]}{k \sigma-\sigma} \tag{235}
\end{equation*}
$$

and the DoG operator is an approximation to the LoG operator

$$
\begin{equation*}
L(x, y ; k \sigma)-L(x, y ; \sigma)=(k-1) \sigma^{2} \triangle L(x, y ; \sigma) . \tag{236}
\end{equation*}
$$

Laplacian-based detectors III

- Local extrema of LoG or its approximation DoG detect centers of bright or dark blobs in an image.
- They are less influenced by noise than points representing corners and junctions
- They are stable and discriminative for image matching.
- SIFT (Scale Invariant Feature Transform) used the difference of Gaussians (DoG) to find points in an image.

(a)

(b)

Outline

(1) Fundamentals of 2D imaging

(2) Motion analysis and background subtraction

Performance analysis
(4) 3D vision: calibration and reconstruction
\square
6 Mathematical morphology
(7) Edge detection
(8) Non-linear filtering
(9) Feature detection and tracking
(10)

Segmentation
(11) Object description and analysis
(12) Template Matching \& Image Registration

- Introduction \& Applications
- Some solutions and their corresponding approach
- Template matching \& image registration components
- Implementation speed-up

Philippe Latour

Table of content

- Introduction \& Applications
- Some solutions and their corresponding approach
- Template matching \& image registration components
- Implementation speed-up
- FFT
- Multiresolution: Coarse to fine
- Hybrid approach: feature extraction in one image only

Correlation and Fourier Transform I

The 2D Discrete Fourier Transform (2D-DFT) enable the fast computation of the cross-correlation of images.

Definition

A discrete image of L lines and K columns is first represented by:
the matrix of its pixel values $\underline{I}=\left(I_{k k}\right)$
where $I=0, \cdots, L-1$ and $k=0, \cdots, K-1$,
and then, we extend the image by defining $a_{l k}=0$
when $I \notin[0, L-1]$ or $k \notin[0, K-1]$

Correlation and Fourier Transform II

Definition (2D-DFT on a grid of L lines by K columns)

The 2D-DFT of $\underline{\underline{l}}$ is the matrix

$$
\underline{\underline{I}}=\mathcal{F}[\underline{I}]=\left(\alpha_{u v}\right)
$$

where $u=0, \cdots, L-1$ and $v=0, \cdots, K-1$, and

$$
\alpha_{u v}=\sum_{l=0}^{L-1 K-1} \sum_{k=0} I_{I k} e^{-j 2 \pi\left(\frac{l u}{L}+\frac{k v}{K}\right)}=\sum_{I, k \in \mathbb{Z}} I_{I k} e^{-j 2 \pi\left(\frac{l u}{L}+\frac{k v}{K}\right)}
$$

And the inverse formulas are

$$
I_{I k}=\frac{1}{L K} \sum_{u=0}^{L-1 K-1} \sum_{v=0} \alpha_{u v}^{j 2 \pi\left(\frac{l u}{L}+\frac{k v}{K}\right)}
$$

Correlation and Fourier Transform III

In the previous definition, we extend the range of values of u and v and obtain a periodic "infinite" array, thanks to the following relation:

$$
\begin{gathered}
\alpha_{u+L, v+K}=\sum_{l, k \in \mathbb{Z}} I_{I k} e^{-j 2 \pi\left(\frac{(l u+L)}{L}+\frac{k(v+K)}{K}\right)} \\
\alpha_{u+L, v+K}=\sum_{l, k \in \mathbb{Z}} I_{l k} e^{-j 2 \pi\left(\frac{(u}{L}+\frac{k v}{K}\right)} \overbrace{e^{-j 2 \pi(l+k)}}^{=1}=\alpha_{u v}
\end{gathered}
$$

So, we define $\alpha_{u v}$ for all integral values of u and v by $\alpha_{u+n L, v+m K}=\alpha_{u v}$.

Correlation and Fourier Transform IV

Definition

The cross-correlation of two "extended" images \underline{I} (initially L_{I} lines by K_{I} columns) and I (initially L_{T} lines by K_{T} columns) is

$$
\Gamma(\underline{I}, \underline{T})=\underline{C}=\left(c_{l k}\right)
$$

where

$$
c_{l k}=\sum_{n=0}^{L_{1}-1} \sum_{m=0}^{K_{l}-1} I_{n m} T_{n+l, m+k}=\sum_{n, m \in \mathbb{Z}} I_{n m} T_{n+l, m+k}
$$

with $c_{l k} \neq 0$ if $I \in\left\{-L_{I}+1, \cdots, L_{T}-1\right\}$ and
$k \in-\left\{K_{I}+1, \cdots, K_{T}-1\right\}$,
and $L_{C}=L_{I}+L_{T}-1$ and $K_{C}=K_{I}+K_{T}-1$.

Correlation and Fourier Transform V

The 2D-DFT of the cross-correlation of these two images is

$$
\begin{aligned}
& \gamma_{u v}=\sum_{l, k \in \mathbb{Z}} c_{l k} e^{-j 2 \pi\left(\frac{L}{L_{C}}+\frac{h v}{K_{C}}\right)} \\
& \gamma_{u v}=\sum_{l, k \in \mathbb{Z}}\left[\sum_{n, m \in \mathbb{Z}} I_{n m} T_{n+l, m+k}\right] e^{-j 2 \pi\left(\frac{L u}{L_{C}}+\frac{h^{\prime}}{k_{C}}\right)} \\
& \gamma_{u v}=\sum_{n, m \in \mathbb{Z}} I_{n m} \sum_{l, k \in \mathbb{Z}} T_{n+1, m+k} e^{-j 2 \pi\left(\frac{h u}{L_{C}}+\frac{h v}{\kappa_{C}}\right)} \\
& \gamma_{u v}=\sum_{n, m \in \mathbb{Z}} I_{n m} \sum_{l^{\prime}, k^{\prime} \in \mathbb{Z}} T_{l^{\prime} k^{\prime} e^{\prime}} e^{-j 2 \pi\left(\frac{\left(1^{\prime}-n\right) u}{L_{C}}+\frac{\left(k^{\prime}-m\right) v}{k_{c}}\right)} \\
& \gamma_{u v}=\left(\sum_{n, m \in \mathbb{Z}} I_{n m}+j 2 \pi\left(\frac{n u}{\left.\frac{n c}{L_{C}}+\frac{m v}{K_{C}}\right)}\right)\left(\sum_{l^{\prime}, k^{\prime} \in \mathbb{Z}} T_{l^{\prime} k^{\prime}} e^{-j 2 \pi\left(\frac{f^{\prime} u_{C}}{L_{C}}+\frac{\prime^{\prime} v}{K_{C}}\right)}\right)\right. \\
& \gamma_{u v}=\alpha_{u v}^{*} \beta_{u v}
\end{aligned}
$$

Template Matching \& Image Registration
Implementation speed-up

Correlation and Fourier Transform VI

- The best-matching template window in the image is located at the peak of the cross-correlation

$$
\begin{equation*}
\underline{C}[\underline{T}, \underline{I}]=\frac{1}{n} \Gamma(\underline{T}, \underline{I})=\frac{1}{n} \mathcal{F}^{-1}\left\{\mathcal{F}\{\underline{I}\}^{*} \mathcal{F}\{\underline{I}\}\right\} \tag{237}
\end{equation*}
$$

- This is different from the Pearson correlation coefficient, where each sub-window of the image \underline{I} is first normalized before being correlated.
- Phase correlation: the information about the displacement of one image with respect to another is included in the phase component of the cross-power spectrum of the images:

$$
\begin{equation*}
\underline{C_{p}}[\underline{T}, \underline{I}]=\mathcal{F}^{-1}\left\{\frac{\mathcal{F}\{\underline{I}\}^{*} \mathcal{F}\{\underline{I}\}}{\left\|\mathcal{F}\{\underline{T}\}^{*} \mathcal{F}\{\underline{I}\}\right\|}\right\} \tag{238}
\end{equation*}
$$

Multiresolution - Coarse-to-fine approach

- Compute image and pattern down-scaled pyramids.
- Proceed to a full search of the most reduced (coarser) pattern within the most reduced image.
- Find a number of possible candidates at the coarsest scale by an exhaustive search.
- For each candidates at a given scale:
- Upscale the image and the candidate and look for the best matching pattern location in a neighborhood of the candidate.
- Reduce the number of candidates
- If the finer scale has not yet been reached, proceed to the next scale level
- Search for some feature points in the template.
- Consider very simple feature points as
- the local maxima of the gradient,
- regularly spaced patches.

Scan the warping parameter space following a given strategy:

- Transform the feature points of the template following the current eligible warping parameters.
- Superimpose the warped feature points (of the template) on the observed image.
- At each warped feature points location in the observed image, check if a compatible feature point exists in the observed image and measure its similarity/dissimilarity score.
- Compute a global measure of similarity/dissimilarity by adding all the individual scores of the feature points.
- Find the optimum of this measure on the search space.
- "Detect and track" instead of "detect and match".

Bibliography

嗇 A．Goshtasby．

Image registration－Principles，Tools an Methods．Springer－Verlag London，2012，DOI：10．1007／978－1－4471－2458－0
固 R．Brunelli．
Template matching techniques in computer vision－Theory and practice．John Wiley \＆Sons， 2009.
囯 R．Szeliski．
Image alignment and stitching：a tutorial．Technical Report MSR－TR－2004－92，Microsoft Research， 2006

Outline

（13）Introduction to machine learning
－Introduction to machine learning（ML）
－Understanding classification
－Conclusion

- Can you decide which silhouettes are those of humans?
- Try to write an algorithm to solve this problem!

After binarization of the silhouettes

- Can you decide which silhouettes are those of humans?
- Try to write an algorithm to solve this problem!

Very first understanding

Observation

- Most of the tasks related to video scene interpretation are complex.
- A human expert can easily take the right decision, but usually without being able to explain how he does it.

One possible solution

Use machine learning techniques that have proven to be a powerful tool in computer science and vision

Outline

Fundamentals of 2D imaging
Motion analysis and background subtraction
Performance analysis
3D vision: calibration and reconstruction
Linear filtering
Mathematical morphology
Edge detection
(8) Non-linear filtering
(9) Feature detection and tracking
(10) Segmentation
(11) Object description and analysis
(12) Template Matching \& Image Registration
(13) Introduction to machine learning

- Introduction to machine learning (ML)
- Understanding classification
- Conclusion

Machine learning techniques

Machine learning (ML) techniques ${ }^{2}$ aim is to

- build a decision rule automatically.
- speed up the decisions.
- be able to generalize to unseen objects. Really?!

Computational cost:

- The model is learned only once.
- The model is used many times.
- [Q] Which operation should be the fastest?

[^3]Examples of techniques are:

- Naive Bayes classifier
- Nearest neighbor
- Artificial neuronal networks (\rightarrow deep learning)
- Support Vector Machines (SVM) [CV95]
- Random forests (ExtRaTrees [GEW06])

A good reference book on this topic is [HTF09].
machine learning

For supervised learning, we have labeled (annotated) training data.

Classification vs regression

Example of classification:

yes

yes

no

yes

no

no

Example of regression:

65.2^{0}
-2.0^{0}
-71.5^{0}
$15.4^{0} \quad-47.4^{0}$
-5.5^{0}

Applications I

ML techniques have proven to be successful for many purposes:

- detecting people in images [DT05];
- recognizing people [BHP05];
- analyzing people's behavior [SFC ${ }^{+} 11$];
- detecting faces with software embedded in cameras [VJ04];

[image source: Shotton2011RealTime]

Applications II

- semantic segmentation
- etc

There exists many machine learning libraries. For example,

- scikit-learn (Python)
- libSVM (Matlab, Java, Python, etc)
- Regression trees (C/Matlab)
- Java-ML (Java)
- Shark (C++)

More specifically for deep learning,

- Caffe2, TensorFlow, Theano, Torch, Keras, CNTK (Python)

Outline

(13) Introduction to machine learning

- Introduction to machine learning (ML)
- Understanding classification
- Conclusion

How does it work? What is learned?

Example of learning database:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	y
sample 1	7.99	6.77	9.75	1.58	1.00	0
sample 2	2.24	9.51	1.14	8.00	7.66	0
sample 3	2.18	2.83	2.96	5.14	9.73	0
sample 4	8.44	7.39	4.57	4.94	2.70	1
sample 5	9.55	5.92	2.52	0.46	1.53	1
sample 6	3.32	9.13	0.50	5.07	8.22	2

$$
M O D E L \equiv y\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=?
$$

- y is the output variable (the class)
- Samples are described by attributes (or features) x_{1}, x_{2}, \ldots
- The same number of attributes should be used for all samples.
- The meaning of an attribute should not depend on the sample.

Example of classification task

handwritten character recognition

7	2	1	0	4	1	4	9	5	9
0	6	9	0	1	5	9	7	3	4
9	6	6	5	4	0	7	4	0	1
3	1	3	4	7	2	7	1	2	1
1	7	4	2	3	5	1	2	4	4
6	3	5	5	6	0	4	1	9	5
7	8	9	3	7	4	6	4	3	0
7	0	2	9	1	7	3	2	9	7
7	6	2	7	8	4	7	3	6	1
3	6	9	3	1	4	1	7	6	9

The intrinsic difficulty of machine learning

The theoretical rule to minimize the error rate is

$$
\begin{equation*}
y(\vec{x})=\underset{y_{i} \in\{0,1, \ldots\}}{\arg \max }\left(p\left(y=y_{i} \mid \vec{x}\right)\right) \tag{239}
\end{equation*}
$$

Let ρ be the probability density function (pdf) of all objects in the attributes space, and ρ_{i} be the pdf of the objects belonging to class y_{i}. Using Bayes' rule (that is $p(A \mid B) p(B)=p(B \mid A) p(A)$):

$$
\begin{equation*}
p\left(y=y_{i} \mid \vec{x}\right)=\frac{\rho_{i}[\vec{x}] p\left(y=y_{i}\right)}{\rho[\vec{x}]} \tag{240}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
y(\vec{x})=\underset{y_{i} \in\{0,1, \ldots\}}{\arg \max }\left(\rho_{i}[\vec{x}] p\left(y=y_{i}\right)\right) \tag{241}
\end{equation*}
$$

The intrinsic difficulty is that it is very difficult to estimate ρ_{i} from the learning database because the space is not densely sampled.

An example of decision rule in 1D

Let us assume that we have to recognize men and women based on a single attribute: the height. In Australia, there are 100 women for 100 men. But in Russia, there are 114 women for 100 men.

$$
y=(\text { height < } 169.34 \text {)? "woman" : "man" ; }
$$

Example of classifier: the nearest neighbors (NN) |

Let us consider a problem in 2 dimensions (2 attributes x_{1}, x_{2}):

Advantages:

- The size of the neighborhood is automatically chosen depending on k.
- The model is the learning set (or a pruned version of it).

Drawbacks
(1) The time needed to take a decision is $\mathcal{O}(n)$, where n is the learning set size.
(2) Which distance measure should we select? There exists an infinity of possible choices! [DD09]

Example of classifier: the decision trees

Choosing the complexity of the model

Which model is the best?

[image source: P. Geurts, "An introduction to Machine Learning"

$\operatorname{error}(\mathrm{LS})=1.0 \%$
$\operatorname{error}(\mathrm{TS})=1.5 \%$

$\operatorname{error}(\mathrm{LS})=3.4 \%$
$\operatorname{error}(\mathrm{TS})=3.5 \%$

[image source: P. Geurts, "An introduction to Machine Learning"]

Sébastien Piérard, Mar	Academic year: 2023-2024	533 / 538
Introduction to machine learning		

(1) Fundamentals of 2D imaging
(2) Motion analysis and background subtractionPerformance analysis
O
3D vision: calibration and reconstruction

Linear filteringMathematical morphologyEdge detection
8 Non-linear filtering
(9) Feature detection and tracking
(10) Segmentation
(11) Object description and analysis
(12) Template Matching \& Image Registration
(13) Introduction to machine learning

- Introduction to machine learning (ML)
- Understanding classification
- Conclusion

ML $=$ automatic＋generalization＋preprocessing

Machine learning techniques are
－powerful methods．
－a complement to traditional methods．
－essential in computer science．
－adequate for real time computation．
－＂easy＂to use（not to engineer，nor to optimize ${ }^{3}$ ）．

國 N．Boulgouris，D．Hatzinakos，and K．Plataniotis．
Gait recognition：a challenging signal processing technology for biometric identification．
IEEE Signal Process．Mag．，22（6）：78－90，Nov． 2005.
© C．Cortes and V．Vapnik．
Support－vector networks．
Mach．Learn．，20（3）：273－297，Sept． 1995.
围 M．Deza and E．Deza．
Encyclopedia of Distances．
Springer， 2009.
睉 N．Dalal and B．Triggs．
Histograms of oriented gradients for human detection．
In IEEE Int．Conf．Comput．Vis．Pattern Recognit．（CVPR），volume 1， pages 886－893，San Diego，CA，USA，Jun． 2005.

Bibliography II

P. Geurts, D. Ernst, and L. Wehenkel.

Extremely randomized trees.
Mach. Learn., 63(1):3-42, Apr. 2006.
R T. Hastie, R. Tibshirani, and J. Friedman.
The elements of statistical learning: data mining, inference, and prediction.
Springer Series in Statistics. Springer, second edition, Sept. 2009.
囲 J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake.

Real-time human pose recognition in parts from single depth images.
In IEEE Int. Conf. Comput. Vis. Pattern Recognit. (CVPR), pages 1297-1304, Providence, RI, USA, Jun. 2011.

Bibliography III

P. Viola and M. Jones.

Robust real-time face detection.
Int. J. Comput. Vis., 57(2):137-154, 2004.

[^0]: ${ }^{1}$ We use capital/uppercase letters to denote coordinates in the real world.

[^1]: B is named "structuring element".

[^2]: $\begin{aligned} & \text { Properties } \\ & \text { - translation, rotation, and scale } \\ & \text { robustness to noise } \\ & \text { robustness to partial occlusions }\end{aligned}$

[^3]: ${ }^{2}$ We consider only "supervised" machine learning techniques.

