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Abstract

Trajectory planning is one of the fundamental problems in mobile robotics. A wide
variety of approaches have been proposed over the years to deal with the various issues of
this problem.

This thesis presents an original and complete solution to tackle the motion planning
problem for nonholonomic mobile robots in two-dimensional space. Given a set of obsta-
cles, an initial and a goal con�guration, the problem consists in computing e�ciently a
physically feasible trajectory that reaches the speci�ed target as fast as possible.

One of the original aspects of this work lies in the decomposition of the general problem
into several simpler subproblems, for which very e�cient solutions are developed. Their
combination provides a complete trajectory planning approach that is one of the most
computationally e�ective method suited for the motion of cylindrically shaped wheeled
mobile robots in the presence of polygonal obstacles.

This complete solution consists of three main steps. The �rst one is aimed at �nding
a short path that avoids obstacles and manages to reach the destination, without taking
into account nonholonomic constraints of the robot. Our path planning method relies on
an original re�nement procedure of a constrained Delaunay triangulation of the obstacles,
that outperforms other existing planning techniques.

The second step consists in interpolating paths into smooth curves that can be followed
by a real robot without slowing down excessively. By joining only two arcs of clothoids for
moving from one curvature to another, our approach is simpler and also computationally
cheaper than other interpolation methods.

Finally, thanks to the introduction of an original discretization scheme, an e�cient
algorithm for computing a time-optimal speed pro�le for arbitrary paths is presented.
The speed pro�le that results from this procedure not only allows the robot to follow the
synthesized path as fast as possible while taking into account a broad class of velocity and
accelerations constraints, but also provides the accurate advance information necessary to
implementing coordinated actions during the displacement of the robot (e.g., between the
locomotion system and other actuators).
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Résumé

La plani�cation de trajectoires est un des problèmes fondamentaux de la robotique
mobile. Ces dernières années, une grande variété de solutions ont donc été proposées a�n
de répondre au mieux aux di�érents aspects de ce problème.

Cette thèse s’inscrit dans cette démarche et présente une solution complète et origi-
nale pour résoudre le problème de plani�cation de mouvements pour des robots mobiles
non-holonomes se déplaçant dans un espace à deux dimensions. Étant donné un robot, un
ensemble d’obstacles, et une con�guration de départ et d’arrivée, le problème consiste à
calculer une trajectoire qui est non seulement réalisable par ce robot, mais qui de plus lui
permet d’atteindre sa destination le plus rapidement possible.

Une des originalités de la méthode présentée dans cette thèse réside dans la décompo-
sition du problème en plusieurs sous-problèmes, pour lesquels, des solutions très e�caces
sont développées. La combinaison de ces di�érentes solutions permet de répondre au prob-
lème posé et forme, à notre connaissance, une des méthodes les plus e�cace dédiée à la
plani�cation de mouvements pour des robots cylindriques à roues se déplaçant parmi des
obstacles polygonaux.

Cette solution complète comporte trois grande étapes. La première consiste à trouver
un chemin court qui évite les obstacles et qui permet d’atteindre la destination, sans tenir
compte des contraintes de non-holonomie du robot. Notre méthode repose sur une procé-
dure originale de ra�nement d’une triangulation de Delaunay contrainte, qui surpasse la
plupart des autres méthodes existantes.

La deuxième étape consiste en une interpolation des chemins en des courbes lisses
pouvant être suivies plus rapidement par un robot car demandant de moins ralentir lors
des changements d’orientation. En utilisant seulement des paires de clothoïdes pour passer
d’une courbure à une autre, notre méthode est plus simple et plus rapide que d’autres
méthodes d’interpolation.

Finalement, grâce à l’introduction d’une procédure de discrétisation originale, une
méthode e�cace de calcul d’un pro�l de vitesse optimal en temps est présentée. Celui-ci
permet au robot de suivre le chemin calculé le plus rapidement possible tout en tenant
compte d’une large gamme de contraintes de vitesse et d’accélération. Il fourni aussi les
informations sur les con�gurations futures du robot qui sont nécessaires à l’élaboration
d’actions coordonnées (e.g., entre le système de locomotion et d’autres actuateurs).
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Notations

The following notations are used throughout the thesis.

Sets

∅ The empty set.
� The set of all integers.
� The set of all natural numbers.
�>0 The set of all strictly positive natural numbers.
� The set of all real numbers.
�≥0 The set of all non-negative real numbers.
�>0 The set of all strictly positive real numbers.
�<0 The set of all strictly negative real numbers.
�2 The set of all ordered pairs of real numbers.
�3 The set of all ordered triples of real numbers.
�n The set of all ordered n-tuples of real numbers.
{A1,A2, . . . ,Ap } The set of all the elements A1 to Ap .
A × B The Cartesian product of two sets, A × B = {(a,b) | a ∈ A , b ∈ B}.
[a,b] The real interval {x | a ≤ x ≤ b}.
(a,b] The real interval {x | a < x ≤ b}.
[a,b) The real interval {x | a ≤ x < b}.
(a,b) The real interval {x | a < x < b}.

Manifolds

M An arbitrary manifold.
�1 The unit sphere in �2 (the unit circle), the set of unit norm vectors in �2.
SO(3) The special orthogonal group in �3, the set of 3 × 3 rotation matrices.
SE(3) The special Euclidean group of rigid body displacements in three-dimensions.

Computational complexity

O (д(n)) Big-O notation, f (n) = O (д(n)) means
∃c,k ∈ �>0 : n ≥ k ⇒ 0 ≤ f (n) ≤ cд(n).
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xii Notations

Geometry

[α] The angle belonging to (−π ,π ] and such that [α] = kα with k ∈ �.
arctan(α , β ) The principal value of the arctangent of α

β (handles β = 0, cf. Eq. 3.1).
[P1P2] The line segment that joins P1 to P2.
|P1P2 | The length of [P1P2] .
|P1 − P2 | The distance between P1 and P2.
ÂBC The angle between the two segments [AB] and [BC].
ABC The triangle ABC.

Logical connectives

¬ Negation (¬A is true i� A is false).
∧ Logical conjunction (A ∧ B is true i� A and B are both true).
∨ Logical disjunction (A ∨ B is false i� A and B are both false).
⇒ Material implication (A⇒ B is false i� A is true and B is false).
∀ Universal quanti�cation (∀x : P (x ) means P (x ) is true for all x ).
∃ Existential quanti�cation (∃x : P (x ) means P (x ) is true for at least one x ).
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Mobile robots

(x , y) Coordinates of the robot.
θ Orientation of the robot’s chassis.
θS Steering angle.
e, e ′ Axle width and wheelbase of the robot.
ψ̇L, ψ̇R , ψ̇S Angular speeds of the left, right, and steering wheels.
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ω Instantaneous speed of rotation of the robot.
aL, aR , aS Tangential accelerations of the left, right and steering wheel.
aC , aT Tangential and radial accelerations of the robot.

Miscellaneous

κ Instantaneous curvature.
C Con�guration space.
Cobs The obstacle region.
Cfree The free space (the set of con�gurations that do not con�ict with obstacles).







CHAPTER 1

Introduction

“Setting a goal is not the main thing.
It is deciding how you will go about achieving it

and staying with that plan.”

— Tom Landry

Robots are everywhere!

Industrial manipulator arms, reconnaissance drones, robot vacuum cleaners, space
rovers, surgery robots, or more recently, self-driving cars are becoming increasingly com-
mon. In the not-too-distant future, we can even expect to see humanoid robots assisting
humans in responding to natural or man-made disasters, based, for example, on the recent
achievements of the DRC1. With all those robots around, one of the most important chal-
lenges that we are facing, is how to make them as autonomous as possible, so they can
safely perform their tasks without further human intervention.

Most interactions between a robot and its environment are carried out by moving actu-
ators. Except in a limited and fully controlled environment (as it can sometimes be the case,
for example, in assembly plants), it is very di�cult and unreasonable to describe explicitly
all of these possible motions. Even simple daily tasks performed by a human being, like
moving into a house without colliding with furniture, or simply grabbing an object, can
1 DARPA Robotics Challenge (http://www.theroboticschallenge.org/)

1
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2 Chapter 1. Introduction

become quite complex for an autonomous robot. Indeed, the human brain is well suited
for carrying to carry out such actions, but programming a robot to perform them amounts
to solving many problems: detecting and reacting to obstacles, computing sequences of
actions to be carried out, interacting with the environment, . . .

Motion planning plays a key role in robotics, and in other domains of engineering that
rely on it, allowing robots to automatically decide which move to make in order to reach
a goal while taking into account environmental constraints. This problem is even more
crucial for mobile robots that can move in relatively large areas in the presence of dynamic
obstacles.

1.1 Motivation

There are lots of di�erent types of robots: some have wheels, tracks or legs, some can �y
or dive underwater, some are articulated, and all of them have to deal with their physical
constraints (such as limited speed or acceleration of their actuators). Motion planning, in
general, is therefore a complex problem.

Even if it may look simple, the generalized mover’s problem, which is to decide whether
a robot, consisting of a set of polyhedra freely linked together at certain vertices, can move
without collisions from an initial to a �nal con�guration in an environment constrained
by �xed polyhedral obstacles, is PSPACE-hard [Rei79, Can88].

In this thesis, we narrow our scope to motion planning algorithms for autonomous
mobile robots, and more particularly, for nonholonomic2 wheeled ones. This restriction
leads to simpli�cations with regard to the more general problem and, hopefully, to adequate
solutions. Moreover, with the advent of unmanned vehicles, the scope is still very large
and considerable room remains for improvement.

For many applications, the ability of the robot to react quickly to any situation is crucial,
and a strong emphasis must be placed on the e�ciency of motion planning, which often
has to be carried out with the limited amount of computing power available on the robot.
Our objective will then not to �nd an optimal solution to the planning problem, but to
develop a method that can very quickly synthesize a trajectory for reaching the target
in acceptable time, and that is consistent with the physical limitations of the robot (e.g.,
su�cient clearance is ensured with respect to obstacles, speed and acceleration bounds are
respected at all times).
2 A robot is nonholonomic when it has constraints on its velocity that are not derivable from position con-

straints; a car, for example, is nonholonomic, since it can move only in the direction imposed by its steering
wheels.



1.1. Motivation 3

This work has primarily been motivated by the Eurobot3 contest, in which small au-
tonomous mobile robots have to compete against opponents in a 2 × 3 m2 area strewn
with obstacles. In this contest, as in other robotics competitions like RoboCup Soccer4, it is
essential to plan paths in real-time due to the dynamic nature of obstacles, which requires
a method with very low computational cost, and synthesizing paths that can be followed
without slowing down in the vicinity of obstacles can provide a de�nite competitive ad-
vantage. In addition, obtaining accurate advance information about the locations that will
be visited by the robot and their associated timestamps is essential to implementing co-
ordinated actions between several robots, or between the locomotion system and other
actuators (e.g., picking up objects while moving).

As it can be expected given its importance, the motion planning problem for mobile
robots in two-dimensional space, has already been widely studied. (See, e.g., the survey
paper by Schwartz and Sharir [SS88] and the classical books by Latombe [Lat91] and by
Laumond [Lau98] for the basic concepts related to robot motion planning. Other more
recent books like the ones by Choset et al [CLH+05], by LaValle [LaV06] and by Siciliano
et al [SSVO09] cover most of the latest methods in the �eld.) In spite of all this, none of
the existing methods, to the best of our knowledge, was able to ful�ll directly and in a
satisfactory manner all our requirements for Eurobot.

Several methods, such as cell decomposition [BLP85], roadmap [BG08], rapidly ex-
ploring random trees [LaV98, KWP+11], and potential �eld techniques [GC02], generally
produce paths that are expressed as sequences of straight line segments (with sometimes
the addition of circle arcs), between the initial and �nal con�gurations. Those methods are
usually e�cient, but do not take into account velocity or acceleration constraints of the
actuators. This results in paths that cannot be followed by a mobile robot without stopping
at the junction points between adjacent segments in order to change its orientation, which
is ine�cient.

Other methods, such as curvature-constrained planning (e.g., [Dub57, JC93, RW98,
BK08]), tackle this problem and produce smooth paths, but are more complex, and less
e�cient in terms of computation time. This is mainly due to the fact that these methods
merely try to generate optimal trajectories (shortest, fastest, . . . ), which is an inherently
di�cult problem5.

One general idea in order to improve e�ciency is to divide the motion problem into
subproblems, �rst computing a collision-free trajectory without taking into account non-
holonomic constraints, and then transforming it to compute the desired trajectory. This

3 http://www.eurobot.org
4 http://wiki.robocup.org/wiki/Middle_Size_League
5 The curvature-constrained shortest-path problem is known to be NP-hard, when the obstacles are polygons

with a total of N vertices and the vertex positions are given within O (N 2) bits of precision [RW98].

http://www.eurobot.org
http://wiki.robocup.org/wiki/Middle_Size_League
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approach is also followed in, e.g., [LJTM94, LL98], but, since they also try to meet optimal-
ity criteria, these methods are still often complex and time-consuming.

We can also mention, among others, reactive approaches (e.g., [Kha86, FBT97]) or
methods suited for autonomous car navigation prompted by the DARPA Grand and Urban
Challenge6 (e.g., [TMD+06, CE07, UAB+08, KKT+09]). Those methods are usually e�cient,
but either have a reactive nature that prevents planning coordinated actions, or cannot
provide a guarantee of �nding a feasible path if one exists. These issues rarely happen for
regular on-road planning, which is the primary use of these techniques, but this can be
di�erent for complex situations or other environments.

In order to be competitive against various opponents in the context of a robotics com-
petition, the ability to quickly plan actions is decisive, and since we also have to implement
our solutions on low-cost embedded processors, the computation time of the complete
motion planning method then becomes a priority. Generating trajectories to reach targets
in the shortest possible time is also important, but, because of environmental uncertainties
(drift, sensor errors, . . . ), obtaining global optimality matters less.

This thesis concentrates on the design of a complete work�ow that can be and has
been used on real mobile robots, like those participating to the Eurobot contest or the
RoboCup Soccer Middle Size League, assembling existing e�cient solutions when possible,
and optimizing or developing others when necessary, while keeping in mind our important
concern for e�ciency.

We can summarize the di�erent requirements for our motion planning problem as follows:

• generate trajectories that avoid a given set of obstacles with su�cient clearance,

• generate trajectories consistent with the physical constraints of the robot,

• generate trajectories that allow to reach the target as fast as possible,

• limit as much as possible the computation time, which should remain negligible with
respect to time constants of actuators,

• deal e�ciently with a changing environment (avoid the need to pre-compute trajec-
tories, . . . ),

• provide accurate advance information about trajectories, such as future locations
with associated timestamps (to make it possible to plan coordinated actions),

• remain general when possible (with respect to di�erent kind of wheeled robots, shape
of obstacles, . . . ).

6 http://archive.darpa.mil/grandchallenge/

http://archive.darpa.mil/grandchallenge/
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1.2 Contributions

This thesis presents an original and complete method to tackle the motion planning prob-
lem for a nonholonomic mobile robot in two-dimensional space. Given a set of polygonal
obstacles, an initial and a target con�guration, the problem consists in computing e�-
ciently a fast and physically feasible trajectory that reaches the speci�ed destination.

Our approach consists in dividing the problem into three main subproblems. The �rst
one is aimed at �nding a path that avoids obstacles and manages to reach the target. Such
a path takes the form of a sequence of straight line segments that clears the obstacles at
a speci�ed safety distance. The second step is to smooth this path, in order to obtain a
path that can be travelled faster than the broken line. The third step is to compute a time-
optimal speed pro�le for this path, taking into account the physical constraints of the robot.

In addition to this general work�ow, we can highlight other major contributions:

• An original data structure for representing the spatial properties of any path that
can be followed by a nonholonomic mobile robot (Section 3.2), that allows e�cient
and accurate interpolation, as well as resampling (Section 3.2.6).

• An algorithm for computing an optimal speed pro�le7 for such represented paths,
while taking into account a broad class of physical constraints of the robot, e.g.,
bounds on the admissible velocity or acceleration of its wheels or its center of mass,
the aim being to minimize the total time needed for following the path (Chapter 4).

• A new algorithm for e�ciently interpolating a broken line, i.e., a sequence of con-
nected straight line segments, into a smooth curve, while remaining at a safe distance
from obstacles (Chapter 5). The goal is to obtain a path that can be travelled much
faster than the original broken line.

• An original approach to e�ciently generating paths with arbitrary clearance to polyg-
onal obstacles (Chapter 7).

Some of these contributions have been submitted for publication [LB15a, LB15b].

The results presented in this thesis have been successfully implemented in the robots
built for Eurobot at the University of Liège. In this framework, the very low computational
cost of this approach made it possible to perform near-optimal trajectory planning in real-
time, which provided a signi�cant advantage over other methods.

7 A speed pro�le associates each point of the path with a timestamp that provides the instant at which it will
be visited by the robot.
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1.3 Outline of the Thesis

Chapter 2 introduces notions that are useful for the rest of the manuscript. It �rst de-
scribes locomotion models of di�erent wheeled mobile robots and then describes basic
concepts related to motion planning. It also gives some details about the Eurobot
contest framework.

Chapter 3 discusses spatial and temporal properties of paths and trajectories for mobile
robots, and presents an original data structure for discretely representing trajecto-
ries that can be followed by nonholonomic wheeled mobile robots. It also discusses
di�erent properties of this structure, such as e�cient arbitrary resampling.

Chapter 4 introduces the notion of speed pro�le for the path representation described in
Chapter 3. It then presents an algorithm for computing a time-optimal speed pro�le
that minimizes the total time needed by a robot for following such path representa-
tions while being consistent with the physical constraints of the robot. This algorithm
has a linear computational cost (in the number of path steps).

Chapter 5 presents an algorithm for interpolating a collision-free path expressed as a
sequence of straight line segments into a smooth path that can be precisely followed
by a nonholonomic robot without slowing down excessively. The aim is to reduce
the time needed for the robot to reach the destination, while still avoiding obstacles.

Chapter 6 describes a method for computing a sequence of line segments that leads from
an initial con�guration of the robot to a target location, while avoiding some set
of point obstacles with a given clearance. This path can be used as an input to the
algorithm described in Chapter 5.

Chapter 7 presents an original generalization of the method described in Chapter 6 for
sets of obstacles that include line segments in addition to individual points, which
is useful for e�ciently delineating polygonal obstacles without prior discretization,
and speeds up the procedure.

Chapter 8 �rst describes some of the experiments performed in order to validate the
di�erent algorithms introduced in previous chapters. It considers case studies from
the Eurobot contest, but also discusses performance for larger problems. Then it
summarizes the di�erent results and discusses the main contributions of this thesis.
Finally, it gives a non-exhaustive list of improvements or perspectives than this work
has opened.
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“Begin at the beginning,” the King said gravely,
“and go on till you come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland





CHAPTER 2

Mobile Robots

This chapter introduces some notions that are useful for the rest of this
manuscript. First, it presents the locomotion models of the most common
wheeled mobiles platforms, and discusses and compares their structural
and dynamical properties. According to this discussion, it shows that
most of these platforms have restricted mobility due to nonholonomic
constraints resulting from the pure rolling condition between the wheels
and the ground. Then, it introduces some basic concepts related to the
environment. It shows, for example, that odometry, using wheel sensors,
can be used as a �rst step to estimate the position of a wheeled robot in its
workspace. It also addresses the concepts of con�guration space, collision-
free path, path clearance or admissible trajectory. Finally, it introduces
the Eurobot contest framework, which has �rst motivated this thesis and
wherein its results have been successfully implemented.

2.1 Locomotion Models

Ground locomotion of man-made vehicles usually relies on wheels, and this is also the
case for mobile robots. This design is much simpler than using tracks or legs and is easier
to build, program, and control in relatively �at environments. Wheeled robots, however,
have di�culties navigating in rocky or slippery terrain, which is not our concern in the
scope of this thesis. There are several classes of wheeled robots, determined mainly by the
number and the position of wheels used. This section presents common wheeled mobile
robot platforms and discusses their properties in a �at environment.

9
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2.1.1 Di�erential Drive

A di�erential drive robot, as illustrated for example in Figure 2.1, is one of the most popular
wheeled robot design and is constituted by two �xed, identical, and parallel driving wheels
(WL and WR ), each of which is controlled by an independent motor. Additional passive
support elements (such as ball casters, depicted as double circles in the �gure) ensure the
stability of the platform. They are often mounted on springs, such that at any time, only
one of them pushes the ground with non negligible force. In other words, the weight of
the robot is always distributed over the locomotion wheels and one of the casters.

e

WR

O

WL

Figure 2.1 – Di�erential drive platform.

This choice of locomotion platform constrains the possible movements of the robot.
Assuming perfect friction, as we will throughout this thesis, the kinematic constraints im-
ply that each wheel is only free to move along its current orientation, and that the velocity
of its center is parallel to the plane of the ground (nonslip condition) and is proportional
to its angular speed (pure rolling condition). These constraints also imply that each wheel
can only be steered around its contact patch with the ground, which we assume to be a
single point. This means that each wheel is constantly tangent to the trajectory it follows
or, equivalently, that the instantaneous center of rotation of such a trajectory is always
located on that wheel’s axle (i.e., the line orthogonal to the plane of the wheel that passes
through its center).

As a consequence, the trajectory followed by the robot is entirely characterized by the
angular speeds ψ̇L and ψ̇R of its two wheels (assuming that the geometry of the robot is
known). For simplicity sake, we assume that the directions of rotation of the wheels are
measured in such a way that a positive value of ψ̇L or ψ̇R moves the robot forwards. When
both wheels rotate at constant speed, the robot either follows a straight line (if ψ̇L = ψ̇R )
or a circular arc (if ψ̇L , ψ̇R ). In the latter case, the center of the circular arc is located on
the common axle of the wheels. The situation is illustrated in Figure 2.2, where e denotes
the axle width (i.e., the distance between the wheel contact patches).
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r

e
2

e
2

OO

Figure 2.2 – Trajectories at constant wheel speed.

Since the locomotion platform is assumed to be rigid, the trajectories followed by the
robot can be described by the movement of a single reference point O, a natural choice for
which is the midpoint of the two driving wheels.

Let rW denotes the (common) radius of the wheels. If both wheels rotate at a constant
angular speed ψ̇L = ψ̇R = ψ̇ , then O follows a straight line parallel to the wheels, with the
speed v = rW ψ̇ . (A negative speed means that the robot moves backwards.)

If, on the other hand, the wheels rotate at di�erent angular speeds ψ̇L and ψ̇R , then the
velocities of the left and right wheels are respectively given by

vL = rW ψ̇L, (2.1)
vR = rW ψ̇R . (2.2)

The radius r of the circle followed by the reference point O satis�es

vR

(
r −

e

2

)
= vL

(
r + e

2

)
, (2.3)

where a positive (resp. negative) value of r means that the center of the circle is located on
the left (resp. right) of O. This yields

r =
e

2 ·
vR +vL
vR − vL

=
e

2 ·
ψ̇R + ψ̇L
ψ̇R − ψ̇L

. (2.4)

The longitudinal velocity and the instantaneous velocity of rotation of the robot are
then directly related to the angular speed of the two driving wheels.
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For the longitudinal velocity v of the robot, we have

v =
vR +vL

2 =
rW
2

(
ψ̇R + ψ̇L

)
, (2.5)

and for the instantaneous velocity of rotation ω of the robot, we have

ω =
vR − vL

e
=
rW
e

(
ψ̇R − ψ̇L

)
. (2.6)

2.1.2 Tricycle Robot

A tricycle robot is a locomotion platform that is a bit more complex. It is composed of two
wheelsWL andWR that are parallel, �xed, and free (in the sense that they are not driven),
augmented with a third wheelWS that is driven and steered. This platform is illustrated in
Figure 2.3. It has the advantage of providing a larger support polygon than the di�erential
drive con�guration. Furthermore, it allows to mount odometry feedback sensors (see Sec-
tion 2.2.1) on the two free wheels, which are less likely to skid than a driven wheel.

e

WS

WR

θS

e ′

O

WL

Figure 2.3 – Tricycle platform.

In this model, the trajectory followed by the robot is entirely characterized by the
angular speed ψ̇S of the steering wheel, as well as by the steering angle θS (assuming that
the geometry of the robot is known). Like in Section 2.1.1, we consider that a positive value
of ψ̇S corresponds to the robot moving forwards. Moreover, as depicted in Figure 2.3, the
steering angle is de�ned such that θS = 0 corresponds to a straight trajectory, and θS > 0
(resp. θS < 0) to a left (resp. right) turn. It can be assumed w.l.o.g. that the steering angle
always satis�es − π2 ≤ θS ≤

π
2 .
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r

θS

θSO O

e ′

Figure 2.4 – Trajectories at constant wheel speed.

If the steering angle θS is constant, then the path followed by the robot is either a
straight line if θS = 0, or a circular arc if θS , 0. The center of this circular arc is located at
the intersection of the common axle of the free wheels and the axle of the steering wheel.
This is illustrated in Figure 2.4, where e ′ denotes the distance between the contact patch
of the steering wheel and the rear axle, also known as the wheelbase of the robot.

The trajectories followed by the robot can also be described by the movement of a
single reference point O, assuming, as in the case of a di�erential drive platform, that the
locomotion platform is rigid. A natural choice is to place the reference pointO of the robot
at the midpoint of the free wheels axle.

Let rW denotes the radius of the steering wheel. Assume that the steering wheel rotates
at a constant speed ψ̇S . The speed of the steering wheel is given by

vS = rW ψ̇S , (2.7)

If θS = 0, then O follows a straight line parallel to the free wheels, with the velocity
v = rW ψ̇S identical to the speed vS of the steering wheel. (A negative speed means that
the robot moves backwards.)

If θS , 0, then the radius r of the circle followed by O is given by

r = e ′ cotθS . (2.8)

As in Section 2.1.1, a positive (resp. negative) value of r means that the center of the circle
is located on the left (resp. right) of O.
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The longitudinal velocity of the robot becomes

v = vS cosθS = rW ψ̇S cosθS , (2.9)

and the instantaneous velocity of rotation ω of the robot becomes

ω =
vS
e ′

sinθS =
rW
e ′

ψ̇S sinθS . (2.10)

2.1.3 Car-Like Robot

A popular choice for a four-wheel robot is the car-like platform. This platform is illus-
trated in Figure 2.5 and is composed of two rear wheels (WrL andWrR ) that are parallel and
�xed, and of two front wheels (WfL and WfR ) that are steerable. The two steering angles
θL and θR of the front wheels should be synchronized to keep the same instantaneous
center of rotation. Thus, these two wheels are kinematically equivalent to a single virtual
steerable wheel placed at their midpoint, with a steering angle of θS , and the car-like robot
has, therefore, similar properties to the tricycle robot (see Section 2.1.2).

θSθL θR

O

WrL WrR

WfRWfL

r

e ′

e

Figure 2.5 – Car-like platform.

As in Section 2.1.2, let e denotes the axle width and e ′ the wheelbase. A natural choice is
to place the reference pointO of the robot at the midpoint of the rear wheels axle. Assume
that the wheels rotate at a constant speed, ifO follows a straight line parallel to the wheels,
we have

θL = θR = θS = 0, (2.11)
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and if O follows a circle of radius r , we have

tanθS =
e ′

r
, (2.12)

tanθL =
e ′

r − e
2
, (2.13)

tanθR =
e ′

r + e
2
. (2.14)

A major advantage of a car-like robot is that it is far more stable (than a tricycle) in
high-speed turns, since the center of gravity has to remain inside a rectangle instead of
a triangle. However, it requires a slightly complicated steering mechanism (e.g., an Ack-
ermann steering geometry [Jaz14]), and it also requires, in most cases, a di�erential gear
and suspensions on the wheels in order to obtain pure rolling of the driven wheels during
turns and to keep all the wheels in the ground when the terrain is not perfectly �at.

Because of the complicated steering geometry, it is in general complex to build a car-
like platform that can achieve a turning radius of zero. Motion planning and control can,
therefore, become di�cult in the presence of obstacles.

2.1.4 Other Wheeled Robots

There are many other alternative designs for wheeled mobile robots. Robots can in par-
ticular be designed with only one wheel (e.g., unicycle robot) or two (e.g., bicycle robot,
inverted pendulum, . . . ). Those robots have the advantage to be compact, but they require
dynamic control in order to maintain their balance. Three wheels are su�cient for static
and dynamic balance, but additional wheels can also be added in order to increase stability.
However, if the terrain is not �at, then nontrivial mechanisms are needed to keep all the
wheels in contact with the ground.

All the robots presented so far are nonholonomic since they have restricted mobility,
due to the fact that the wheels are assumed to roll without slipping. In other words, the
allowable direction of movement of a wheel center is limited to the possible orientations
of the wheel, and then, for example, a di�erential drive robot can not move in a direction
perpendicular to its �xed wheels.

There exist wheeled robots that are omnimobile (i.e., able to move in any direction) and
holonomic (i.e., that do not need any reorientation of the wheels before arbitrary motion).
One of the most common example is the omnimobile robot with Swedish wheels. The
Swedish wheel, as illustrated for example in Figure 2.6(a), is a special wheel designed to
ensure three degrees of freedom for plane motion. In order to eliminate the nonholonomic
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constraint, small rollers, that are free to rotate, are placed along the outer rim of the wheel
allowing free lateral motion of the wheel. This results in a wheel that can be actively driven
in its main direction of travel, but for which the lateral velocity is passively determined by
the motion of the other wheels.

(a) Swedish wheel.

O

(b) Omnimobile platform.

Figure 2.6 – Omnimobile robot with Swedish wheels.

Three Swedish wheels are necessary and su�cient to get the three degrees of freedom
needed to build an holonomic omnidirectional robot (see Figure 2.6(b)). The platform itself
is very simple, but the design of a satisfying Swedish wheel is quite complex. There is
almost inevitably discontinuities between the rollers, that can cause vibrations and result
in poor grip. These wheels are also more fragile than conventional ones, and are not recom-
mended for heavy payloads or with non-�at environment. In this thesis, we do not consider
holonomic mobile robots, but he who can do more can do less, and all the trajectories that
can be followed by a nonholonomic wheeled mobile robot, can also be followed by an
holonomic one.

2.2 Environment

2.2.1 Localization

Assuming nonslip and pure rolling condition of all wheels, it is possible to develop a model
of the con�guration (position and orientation) of a nonholonomic wheeled robot as a func-
tion of time.

Using an external reference frame as illustrated in Figure 2.7, if x (t ) and y (t ) represent
the coordinates of the robot reference pointO, and θ (t ) characterizes the orientation of the
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y (t ) O

θ (t )

y

x (t ) x

Figure 2.7 – Con�guration variables.

robot’s chassis1, we have

ẋ = v cosθ (2.15)

ẏ = v sinθ (2.16)

θ̇ = ω (2.17)

where v denotes the longitudinal velocity and ω the instantaneous velocity of rotation of
the reference point.

The con�guration at time t of the robot can then be obtained by integration:

x (t ) =

∫ t

0
ẋ (τ ) dτ + x0 =

∫ t

0
v (τ ) cosθ (τ ) dτ + x0 (2.18)

y (t ) =

∫ t

0
ẏ (τ ) dτ + y0 =

∫ t

0
v (τ ) sinθ (τ ) dτ + y0 (2.19)

θ (t ) =

∫ t

0
θ̇ (τ ) dτ + θ0 =

∫ t

0
ω (τ ) dτ + θ0 (2.20)

We see in Section 2.1, thatv and ω depend only on the angular speeds ψ̇L and ψ̇R of the
driving wheels for a di�erential drive platform, and on the angular speed ψ̇S of the steering
wheel as well on the steering angle θS for tricycle and car-like platforms. Thus, given these
1 The orientation of the robot is arbitrarily chosen such that θ (t ) = 0 corresponds to a direction of motion

that follows the y-axis.
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two control inputs and an initial con�guration, it is now possible to estimate the state of
an idealized robot using this motion model at any time t . This procedure is called odometry.

Given such a model and assuming perfect knowledge of the control inputs, we should,
in principle, be able to accurately estimate the con�guration of a nonholonomic wheeled
robot at any time. Unfortunately, the world is not perfect, and there are a lot of elements
that can introduce imprecisions between the reckoning and the true motion of the robot.

First, motors and motor controllers are not ideal, and errors may arise between desired
wheel speed and true speed. For di�erential drive, this problem can be alleviated using
sensors (e.g., encoders) on the driving wheels. For tricycle or car-like platform, sensors can
be added on the steering mechanism, but this solution is more complicated and somehow
less precise than for the di�erential wheeled robot (discretization errors on the steering
angle are more problematic than the ones on the rotation of the wheels2). But, as discussed
in Section 2.1, the trajectories suited for tricycle or car-like platforms correspond to the
ones obtained for a di�erential drive, which implies that using encoders on the two free
�xed wheels is su�cient to estimate the overall motion of the robot.

Next, imprecisions in the modeling of the robot (such as errors on the measured axle
width, on the wheel radius, . . . ) as well as those due to physical assumptions (slippage,
wheel compaction, default of ground planarity, . . . ) are unavoidable. These errors are dif-
�cult to predict, and in order to have a good long term con�guration estimation, other
sensor systems will be required. It is worth noting that the encoders on the free wheels on
a tricycle platform are less vulnerable to slippage than on a di�erential drive, since a free
wheel is less likely to skid than a driven one.

In practice, the odometry processing will of course be discretized. Sensor values are
sampled at regular intervals, assuming, if the time intervals are su�ciently short, that the
wheel speeds are constant between two successive measurements.

As already mentioned, when both wheels rotate at a constant speed, the robot either
follows a straight line or a circular arc, and the estimation of the robot con�guration can
be updated as follows:

dr = rW pr , dl = rW pl (2.21)

where rW denotes the radius of the wheels equipped with sensors and pr , pl are the
measured angular displacements (between time tn and tn+1) of these wheels.

2 Encoder discretization errors for a di�erential drive robot that follows a straight line can lead to position
errors; but discretization errors on the steering angle for a tricycle robot that follows the same line can lead
to position and orientation errors.
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If dr ' dl :

θ (tn+1) = θ (tn ), (2.22)

x (tn+1) = x (tn ) − dl sinθ (tn ), (2.23)

y (tn+1) = y (tn ) + dl cosθ (tn ). (2.24)

If dr , dl :

dθ =
dr − dl

e
, (2.25)

a1 = sinθ (tn ) ·
e

2 ·
dl + dr
dr − dl

, (2.26)

a2 = cosθ (tn ) ·
e

2 ·
dl + dr
dr − dl

, (2.27)

where e denotes the distance between the two wheels, and

θ (tn+1) = θ (tn ) + dθ , (2.28)

x (tn+1) = x (tn ) − a1 sindθ + a2 cosdθ − a2, (2.29)

y (tn+1) = y (tn ) + a1 cosdθ + a2 sindθ − a1, (2.30)

2.2.2 Configuration Space

The workspace (or world), denoted asW, is the space in which the robot moves. It can be
modeled either in �2 or �3. In the case of wheeled mobile robots moving in a relatively
�at environment, a two-dimensional space is su�cient to describe the planning problem
as the robot will be considered to be in permanent contact with the ground. This space
contains a set of obstacles. Let the obstacle region O denotes the set of all points inW that
are covered by those obstacles; hence, O ⊆W.
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A general idea is to represent the position and the orientation of the mobile robot as a
point in a properly modeled space and to map the workspace obstacles in this space. This
space is called the con�guration space or C-space and is denoted by C. The number n of
degrees of freedom (DOF) of a mobile robotA inW is the number of independent parame-
ters that de�ne its con�guration. The con�guration space or C-space, denoted by C, is then
de�ned as the n-dimensional space of all possible con�gurations of A.

Any con�guration of A inW should correspond to only one point in C-space and
a continuous motion inW should correspond to a continuous motion in C-space. The
C-space of a particular mobile robot is then described as a composition of C-spaces that
correspond to each of its degree of freedom. This mapping transforms the motion planning
problem of an object inW into the problem of planning the motion of a point in C-space.

The reason that we could do so was that these con�guration spaces have local topo-
logical and di�erential structures that are identical to those of �n, such spaces are called
smooth manifolds. A subset of �m is a smooth (or in�nitely di�erentiable) n-dimensional
manifold if and only if it is locally di�eomorphic to �n. Lines or circles are examples
of one-dimensional smooth manifolds; planes, spheres or cylinders are examples of two-
dimensional smooth manifolds.

For a rigid mobile platform which can translate and rotate in a two-dimensional space,
the con�guration space3 is the three-dimensional smooth manifold C = �2 × �1. First, the
two DOFs resulting from translation yield to the smooth manifoldM1 = �

2. Next, any an-
gle θ ∈ (−π ,π ] can be applied for the rotational DOF, but the rotation angle does not need
to be limited, as for example θ = 0 yields to the same rotation as θ = 2π . This results in a
“circular” manifoldM2 = �

1, where �1 can be de�ned as the set (−π ,π ] in which the addi-
tion of two numbers a andb corresponds to c = a+b+2kπ where k ∈ � is chosen in order to
have c ∈ (−π ,π ]. The C-space that corresponds to all possible motions of a rigid platform
in two-dimensional workspace is then C =M1 × M2 = �

2 × �1. Similarly, the C-space
of a free-�ying rigid object in three-dimensional workspace4 is C = �3 × SO(3) = SE(3).
Note that, the concept of manifold is only introduced here in order to properly de�ne the
con�guration space, it will not be used further in this document.

The C-space is composed of two parts: the obstacle region and the free space. Let q
denotes the con�guration of the robot A. The obstacle space Cobs is de�ned as

Cobs =
{
q ∈ C ��A (q) ∩ O , ∅

}
. (2.31)

3 N.B.: IfM and N are smooth manifolds then the Cartesian productM × N is a smooth manifold.
Note also that, to be exact, C � �2 × �1 should be used instead of C = �2 × �1 to indicate that C could be
any space di�eomorphic to �2 × �1. However, throughout this thesis, this notation will be avoided.

4 To be exact, SO(3) and SE(3) are Lie groups (i.e. groups that are also smooth manifolds).
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This space corresponds to the set of all con�gurations q, at whichA (q), the robot placement
inW (the set of points ofWoccupied by the robot in con�guration q), touches or intersects
the obstacle region O. The set of con�gurations that are not in the obstacle space is called
the free space, which is de�ned as

Cfree = C \ Cobs . (2.32)

A

(a) Workspace.

A

Cobst

Cfree

Cfree

(b) C-space.

Figure 2.8 – Con�guration space corresponding to the workspace of a rigid, translating
rectangle platform A. C is two-dimensional (C = �2). A is only a point in C-space.

2.2.3 Obstacles and Physical Constraints

A path Π for A is a continuous map Π ∈ [0,1] → C which describes geometrically the
motion of the robot A in the workspace. The points Π(0) and Π(1) are called respectively
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the initial and the �nal con�gurations of Π and we say Π is a path from Π(0) to Π(1). A
path is called collision-free if it fully lies in Cfree, i.e. ∀t ∈ [0,1] : Π(t ) ∈ Cfree. Any closed
bounded interval [a,b] where a < b could of course replace the unit interval [0,1], but,
since [a,b] is homeomorphic to [0,1], this will not represent a gain of generality.

For many applications, in order for example to take into account modeling or lo-
calization errors, a minimum clearance needs to be ensured with respect to obstacles.
A collision-free path Π for A is said to have a path clearance of c from the obstacles
O if c = mint ∈[0,1] dist (A (Π(t )), O), where dist denotes the Euclidean distance in the
workspace.

This notion of clearance can also be used in some cases to simplify the motion plan-
ning problem. Consider a platform that has a cylindrical shape (i.e., a robot at a position O

occupies a region of the space that corresponds to a disk centered inO ). If this robot is in a
safe con�guration (the robot does not touch or intersect any obstacle), any con�guration
with the same position and a di�erent orientation remains safe. Therefore, in order to �nd
a collision-free path, it is not necessary to consider the orientation of the robot, and a robot
consisting of the simple point O with a minimum clearance to the obstacles chosen to be
equal to the radius of this disk will be equivalent to the cylindrically shaped one.

One remarks that a wheeled robot is often symmetrical and it is usually not necessary
to consider its exact shape. For example, a di�erential drive robot is usually well approx-
imated by its smallest covering disk, centered at the midpoint of the segment that links
the two locomotion wheels (the reference point O). This approximation is safe, since a
collision-free path for the covering disk is necessarily collision-free for the real robot, and
it allows to use the point approximation discussed in the previous paragraph.

A trajectory τ for A is a continuous map τ ∈ [tMIN , tMAX ] → C which describes the
motion of the robotA in the workspace as a function of time (within a certain time interval
[tMIN , tMAX ]). A trajectory is admissible (or feasible) forA if it complies with the di�erent
physical constraints of the robot. To be admissible, the trajectory must be collision-free
(i.e. ∀t ∈ [tMIN , tMAX ] : τ (t ) ∈ Cfree ) and must be consistent with the kinematic model of
the robot (nonholonomic constraints, bounds on the admissible velocity, acceleration of
individual wheels, tangential accelerations of its center of mass, . . . ).

It is easy to understand that every collision-free path can not be mapped to an admissible
trajectory, which is why motion planning for mobile robots, and for nonholonomic wheeled
ones in particular, is a di�cult problem.
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2.2.4 Eurobot Framework

As mentioned previously, this work has primarily been motivated by our participation to
the Eurobot5 contest.

Eurobot is an international robotics competition created in 1998 and opened to teams
of students or independent clubs. This event mainly takes place in Europe, but teams from
all over the world are welcome to participate. Nowadays, more than 400 teams from about
30 countries are involved each year in this contest.

In each game, two teams composed of one or two6 autonomous mobile robots, compete
during 90 seconds in a 2 × 3 m2 area strewn with obstacles. The winning team is the one
who scores the most.

Figure 2.9 – Example of Eurobot playground. ©Eurobot — http://www.eurobot.org

The rules for counting points change every year. As an example, we brie�y describe
the 2011 version of the rules. As shown in Figure 2.9, the playground consists mostly of a
6 by 6 red and blue chessboard. Each team may use only one robot and has to move yellow
pawns on the playground. One team plays in red and the other in blue. After 90 seconds,
each yellow pawn fully on a square scores points for the team of the corresponding color.
There are also four special pawns or �gures that score more points, and if these �gures are
stacked on top of one or two regular pawns, they score even more. Finally, some squares
on the playground contain a black dot, which give bonus points if pawns are located on
it at the end of the game. It is also worth noting that the position of the yellow pawns at
the beginning of the game is randomly selected among dozens of options and can not be
communicated to the robots.
5 http://www.eurobot.org
6 Some years, the rules allow only one robot per team, as is the case in the ones presented in this section.

http://www.eurobot.org
http://www.eurobot.org
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Taking into account the random initial con�guration, and the fact that the game situa-
tion changes constantly and quickly, it is easy to understand that it is almost impossible
to build an e�cient autonomous robot by precomputing all possible trajectories. Some
other signi�cant points can also be highlighted. To perform well, robots should be able
to react quickly to changing situations, to move quickly without disturbing well-placed
pawns and without colliding with the opponent, and to catch pawns and construct towers
while moving.

In order to participate to the contest, several di�erential and tricycle robotic platforms
have been developed since 2008 at the University of Liège. Each platform is composed of a
low-cost embedded computer running real-time Linux, together with several custom-made
electronic cards. All those cards are used to pilot the actuators and the di�erent sensors and
are addressed 50 times per second. For example, some of those cards are used to e�ciently
speed control the locomotion motors. These motors are designed to achieve a robot speed
of more than 1.5 m s−1 and acceleration of more than 3 m s−2.

The localization of the robot in the playground is estimated by using odometry (as
seen in Section 2.2.1) and an original global positioning system [Pie13] based on a rotating
turret and a set of three beacons that the Eurobot rules allow to place around the play �eld.
Data are mixed together by an extended Kalman �lter in order to obtain an accurate and
reliable position of the robot at any time. The position of game elements and opponents
are obtained with a certain degree of precision through, for example, the use of 3D cameras
or ultrasound sensors. These positions are regularly updated at the rate of several tens of Hz.

In summary, for this contest, since the game situation changes quickly, it is essential to
plan trajectories in real-time, employing a method with very low computational cost, given
the limited amount of computing power available on the robot. Information about future
locations that will be visited by the robot and their associated timestamps is essential to
e�ciently implement catching objects and building operations while moving (in order to
coordinate the di�erent actuators). Finally, the generated trajectories need to reach quickly
their target while taking into account the obstacles and the physical constraints (limited
speed or acceleration) of the robot.

The developments of this thesis have been successfully implemented and tested in this
framework (for both di�erential and tricycle platforms), where they have proven to o�er
a clear competitive advantage over the designs of other teams.



CHAPTER 3

Paths and Trajectories

This chapter discusses the spatial and temporal properties of paths
and trajectories suited for nonholonomic mobile robots. It shows how to
extract useful information from them, such as, for example, the travel
length, the speed and acceleration of the reference center of the robot, or
the speed and acceleration of its individual wheels. This chapter then
introduces an original data structure that can be used to represent such
paths and trajectories using only a �nite amount of information. This
structure allows to e�ciently extract accurate approximations of the con-
�guration of the robot at all times. It also makes possible to reason about
physical constraints, such as bounds on the speed or acceleration of the
robot or its wheels, and will be used in Chapter 4 in order to compute an
optimal speed pro�le.

As discussed in Section 2.2.3, a path Π describes geometrically how the robot moves from
an initial to a �nal con�guration with respect to the value of some parameter. When this
parameter is time, this path is called a trajectory.

It is worth mentioning that, in this chapter, we merely study the geometrical properties
of trajectories, without taking into account the physical constraints imposed on the speeds
and accelerations of a robot following them. (The problem of computing the speed at which
a given path can be followed will be addressed in Chapter 4.) In this perspective, time can
be seen as an arbitrary parameter, the only requirement on which being that increasing
its value makes the trajectory proceed further, and does not necessarily have to match
physical time. For simplicity sake, at this point, we explicitly forbid the con�guration τ (t )
to remain constant over any interval of non-zero length1, for every trajectory τ .
1 This restriction will be lifted later in Section 3.2.5, in order to allow trajectories in which the robot pauses

for some amount of time, for instance in order to perform some actions.

25
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The coordinate system used for expressing con�gurations is identical to the one used
in Section 2.2.1: the position of the reference point O of the robot is given by its Cartesian
coordinates (x (t ),y (t )), and its orientation by a function θ (t ), such that θ (t ) = 0 corre-
sponds to a direction of motion that follows the y-axis. In this setting, the con�guration
of the robot at time t is thus speci�ed by the tuple τ (t ) = (x (t ),y (t ),θ (t )).

Consider a trajectory τ , mapping each instant t ∈ [tMIN ,tMAX ] onto a con�guration
τ (t ) = (x (t ),y (t ),θ (t )). If this trajectory is physically feasible, then we can assume that
the functions x (t ), y (t ) and θ (t ) admit continuous �rst and second derivatives2 over the
interval [tMIN ,tMAX ]. For every function f (t ), we will use the notations f ′(t ) and f ′′(t ) to
denote respectively its �rst and second derivatives with respect to t .

3.1 Spatial and Temporal Properties

3.1.1 Spatial Properties

At each time t , the vector

~v (t ) =


 x ′(t )

y ′(t )




is either equal to ~0 or tangent to the trajectory. The �rst case can either correspond to a
rotation of the robot around its reference point (a local turn), or to a robot stop (e.g., at the
initial or �nal con�guration). In the latter case, assuming a di�erential or tricycle platform
moving forwards, the orientation of the robot at time t has to follow this vector (due to
nonholonomic constraints, as seen in Section 2.1), which implies

θ (t ) = arctan(−x ′(t ), y ′(t )), (3.1)

where arctan(α , β ) is the usual generalization of arctan α
β that

• takes into account the signs of α and β for producing a value in (−π ,π ], and

• handles the special case β = 0.

Over an in�nitesimal delay dt , the robot moves by the distance

ds =
������

 x ′(t )

y ′(t )


������ dt =

√
x ′2 (t ) + y ′2 (t ) dt .

2 The value of θ (t ) is only actually known up to an integer multiple of 2π . In the following, we assume that
the values of θ (t ) are restricted to the interval (−π ,π ], but nonetheless consider that this function admits
continuous �rst and second derivatives.
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It follows that, during the time interval [a,b], the total linear distance s[a,b] covered by
the robot can be expressed as

s[a,b] =

∫ b

a

√
x ′2 (t ) + y ′2 (t ) dt . (3.2)

Moreover, during the delay dt , the orientation of the robot is increased by

dθ = θ ′(t ) dt .

If the robot is not performing a local turn at time t , introducing (3.1) in the expression of
dθ gives

dθ =
x ′(t )y ′′(t ) − x ′′(t )y ′(t )

x ′2 (t ) + y ′2 (t )
dt .

This expression can be used for computing the curvature κ (t ) of the trajectory at time
t , de�ned as

κ (t ) =
dθ

ds
,

which becomes

κ (t ) =
x ′(t )y ′′(t ) − x ′′(t )y ′(t )(

x ′2 (t ) + y ′2 (t )
) 3

2
. (3.3)

Intuitively, a curvature κ (t ) = 0 induces a constant orientation around time t , corre-
sponding to a straight trajectory. On the other hand, a curvature κ (t ) , 0 describes a
trajectory that performs an instantaneous rotation of radius

r (t ) =
1

κ (t )
, (3.4)

the sign of which follows the convention introduced in Sections 2.1.1 and 2.1.2, a positive
(resp. negative) value of r means that the center of the circle is located on the left (resp.
right) of O. Abusing the notation, we write κ (t ) = +∞ (resp. κ (t ) = −∞) in the case of a
local turn to the left (resp. right) at time t . Note that both cases of local turns correspond
to r (t ) = 0.

Recall that, in the case of a tricycle platform, the orientation θS (t ) of the steering wheel
satis�es

r (t ) = e ′ cotθS (t ),
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if θS (t ) , 0 (where e ′ denotes the wheelbase of the robot), and κ (t ) = 0 if θS (t ) = 0.

This yields

θS (t ) = arctan(e ′κ (t )) , (3.5)

with θS (t ) =
π
2 if κ (t ) = +∞, and θS (t ) = − π2 if κ (t ) = −∞ (these special cases both

correspond to local turns).

3.1.2 Temporal Properties

In the case where the parameter t corresponds to physical time, one can extract from a
trajectory speci�cation the speed v (t ), angular speed θ̇ (t ), and acceleration vector ~a(t ) of
the reference point O :

v (t ) =
ds

dt

=

√
x ′2 (t ) + y ′2 (t ), (3.6)

θ̇ (t ) =
dθ

dt

=
x ′(t )y ′′(t ) − x ′′(t )y ′(t )

x ′2 (t ) + y ′2 (t )

= κ (t )v (t ) if κ (t ) < {−∞,+∞}, (3.7)

~a(t ) =
d2

dt2


 x (t )

y (t )




=


 x ′′(t )

y ′′(t )


 . (3.8)

The acceleration vector ~a(t ) can more conveniently be expressed with respect to a
reference frame that is attached to the robot. This makes it possible, for example, to
check whether the robot is su�ciently supported by its support polygon. The tangential
acceleration aT (t ) and the radial (or centripetal) acceleration aC (t ) are respectively de�ned
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as

aT (t ) = ~a(t ) ·


 − sinθ (t )

cosθ (t )




= − sinθ (t ) x ′′(t ) + cosθ (t )y ′′(t ), (3.9)

and

aC (t ) = ~a(t ) ·


 cosθ (t )

sinθ (t )




= cosθ (t ) x ′′(t ) + sinθ (t )y ′′(t ). (3.10)

Intuitively, the tangential acceleration is the projection of ~a(t ) onto an axis going from
the rear to the front of the robot, whereas the radial acceleration corresponds to the pro-
jection of ~a(t ) onto a left-to-right axis (see Figure 3.1).

O

aT (t )

~v (t )

~a(t )

aC (t )

(a) aT (t ) > 0, aC (t ) > 0.

O

~a(t )

aC (t )

aT (t )

~v (t )

(b) aT (t ) < 0, aC (t ) < 0.

Figure 3.1 – Examples of tangential and radial accelerations.

It is worth noting that:

• If v (t ) = 0:

aT (t ) = aC (t ) = 0. (3.11)
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• If v (t ) , 0:

As already mentioned, the orientation of a nonholonomic platform moving forwards
at time t has to follow the vector ~v (t ), and we have

cosθ (t ) x ′(t ) + sinθ (t )y ′(t ) = 0.

This constraint entails

|aT (t ) | =
��x ′(t ) x ′′(t ) + y ′(t )y ′′(t )��√

x ′2 (t ) + y ′2 (t )
,

and

|aC (t ) | =
��y ′(t ) x ′′(t ) − x ′(t )y ′′(t )��√

x ′2 (t ) + y ′2 (t )
.

It remains to determine the sign of aT (t ) and aC (t ). Since the robot is moving for-
wards, one can remark in Figure 3.1 that the tangential acceleration is positive (resp.
negative) when the dot product ~v (t ) · ~a(t ) = x ′(t ) x ′′(t ) +y ′(t )y ′′(t ) is positive (resp.
negative). Then we have

aT (t ) =
x ′(t ) x ′′(t ) + y ′(t )y ′′(t )√

x ′2 (t ) + y ′2 (t )
=

d

dt
v (t ). (3.12)

Let ~vp (t ) denotes the π
2 clockwise rotation of ~v (t ).

~vp (t ) =


 0 1
−1 0


 ~v (t ) =


 y ′(t )

−x ′(t )


 .

Then, in a similar way, since the robot is moving forwards, one can remark that the
radial acceleration is positive (resp. negative) when the dot product ~vp (t ) · ~a(t ) =

y ′(t )x ′′(t ) − x ′(t )y ′′(t ) is positive (resp. negative). We thus have

aC (t ) =
y ′(t ) x ′′(t ) − x ′(t )y ′′(t )√

x ′2 (t ) + y ′2 (t )
= −κ (t )v2 (t ). (3.13)
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It can also be useful to extract the respective (linear) speeds vL (t ) and vR (t ) of the left
and right wheels (in the case of a di�erential or tricycle platform):

• If v (t ) = 0:

vL (t ) = −
e

2 θ̇ (t ) (3.14)

vR (t ) =
e

2 θ̇ (t ). (3.15)

• If v (t ) , 0:

vL (t ) =

(
1 − eκ (t )

2

)
v (t ) (3.16)

vR (t ) =

(
1 + eκ (t )

2

)
v (t ), (3.17)

where e denotes the axle width of the robot.

Also, the respective tangential accelerations aL (t ) and aR (t ) at the left and right wheels
can be computed, for example to estimate the torque transmitted between the wheels and
the ground with a di�erential drive platform.

• If v (t ) = 0:

aL (t ) = −
e

2 ·
d

dt
θ̇ (t ) (3.18)

aR (t ) = −aL (t ). (3.19)

• If v (t ) , 0:

aL (t ) =
d

dt
vL (t )

=

(
1 − eκ (t )

2

)
d

dt
v (t ) −

e

2 v (t )
d

dt
κ (t ) (3.20)

aR (t ) =
d

dt
vR (t )

=

(
1 + eκ (t )

2

)
d

dt
v (t ) + e

2 v (t )
d

dt
κ (t ). (3.21)
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The next step is to express the linear speed vS (t ) and the tangential acceleration aS (t )

of the steering wheel, in the case of a tricycle platform.

We get:

• If v (t ) = 0:

vS (t ) = e ′ |θ̇ (t ) | (3.22)

aS (t ) =
d

dt
vS (t )

= e ′
d

dt
|θ̇ (t ) |. (3.23)

• If v (t ) , 0:

vS (t ) =
v (t )

cosθS (t )

= v (t )
√

1 + tan2 θS (t )

= v (t )
√

1 + (e ′κ (t ))2 (3.24)

aS (t ) =
d

dt
vS (t )

=
√

1 + (e ′κ (t ))2
d

dt
v (t ) +

d
dt κ (t )v (t ) e

′2 κ (t )√
1 + (e ′κ (t ))2

. (3.25)

where e ′ denotes the wheelbase of the robot.

Finally, the angular speed of steering θ̇S (t ) (which may be useful for reasoning about
constraints in the steering mechanism) is given by:

θ̇S (t ) =
d

dt
θS (t )

=
e ′

1 + (e ′κ (t ))2
d

dt
κ (t ). (3.26)
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3.1.3 Backward Motion

Up to this point, we have only considered trajectories in which the robot either moves
forwards, or performs a local turn. In order to reason about backward moves, a simple
solution consists in considering another robot that follows exactly the same trajectory, but
with an opposite orientation, and to relate the trajectory variables to those of this robot.

Formally, for any function f (t ) describing the evolution of a trajectory variable for a
robot moving forwards (such as a position, velocity, or acceleration component), f (t ) will
denote the corresponding function for a robot performing the same move backwards, i.e.,
reaching the same positions at the same time but with an opposite orientation. In order to
normalize orientations, we also introduce the notation [α] to denote an angle belonging
to the interval (−π ,π ] that is equal to α up to an integer multiple of 2π .

For a con�guration (x (t ),y (t ),θ (t )), we thus have

x (t ) = x (t )

y (t ) = y (t )

θ (t ) = [θ (t ) + π ]
= arctan(x ′(t ), −y ′(t )).

The in�nitesimal distance ds and orientation increment dθ during a delay dt are given by

ds = −ds

dθ = dθ .

Note that we use a signed notion of distance. The value of ds corresponds to an incre-
ment of the linear position of the robot along its trajectory. A negative value of ds thus
simply means that the robot is moving backwards, i.e., that its linear position is decreasing
with time. This leads to

κ (t ) = −κ (t )

r (t ) = −r (t ).

Note that a positive (resp. negative) value of κ (t ) or r (t ) still means that the robot is
performing a left (resp. right) turn, observed from the reference orientation of the robot.
(Intuitively, with a tricycle robot, a left (resp. right) turn is one that can be followed, either
forwards or backwards, by steering left (resp. right).) However, because of the backward
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motion, a positive (resp. negative value) of κ (t ) now implies that the orientation of the
robot is decreasing (resp. increasing) with time.

For a tricycle platform, the orientation of the steering wheel is given by

θS (t ) = −θS (t ) = arctan(e ′κ (t )) ,

with θS (t ) = π
2 if κ (t ) = +∞, and θS (t ) = − π2 if κ (t ) = −∞.

Similarly, one obtains the speed, angular speed, and acceleration vector of the reference
point of the robot moving backwards:

v (t ) = −v (t )

θ̇ (t ) = θ̇ (t )

~a(t ) = ~a(t ).

The tangential and radial components of ~a(t ), and the linear speeds and tangential
accelerations of the left and right wheels can be obtained by reversing the geometry of the
robot:

aT (t ) = −aT (t )

aC (t ) = −aC (t )

vL (t ) = −vR (t )

vR (t ) = −vL (t )

aL (t ) = −aR (t )

aR (t ) = −aL (t ).

Finally, for a tricycle platform, the linear speed, tangential acceleration, and angular
speed of the steering wheel are given by

vS (t ) = −vS (t )

aS (t ) = −aS (t )

θ̇S (t ) = −θ̇S (t )

=
e ′

1 + (e ′κ (t ))2
d

dt
κ (t ).



3.2. Discretization 35

3.2 Discretization

As mentioned in the previous section, a trajectory is de�ned as a function mapping con-
tinuous time onto robot con�gurations. This formalism is well suited for theoretical devel-
opments. However, in order to develop algorithmic tools for synthesizing, analyzing, and
transforming trajectories, it is necessary to introduce a discretized representation system,
in which trajectories are speci�ed using only a �nite amount of information.

Usually, either to extract the con�guration of the robot at a speci�c time, to compute a
speed pro�le or to reason in any other way about a trajectory, an analytical closed-form
formulation of this trajectory is used [LJTM94, CC00, FS04, BP11b, ZT13]. If such a for-
mulation exists, it actually represents a �nite amount of information, but speed pro�le
computation can quickly become di�cult and time-consuming, and, since it requires the
evaluation of a potentially complicated closed form (clothoid arcs, lemniscate curves, . . . ),
even the determination of the robot con�guration at a speci�c time is not trivial.

For the sake of e�ciency, an original discretization procedure, capable of representing
arbitrary trajectories, is introduced. The trajectories thus discretized are used in Chapter 4
in order to develop a new e�cient method for computing a time-optimal speed pro�le
consistent with the physical constraints of the robot. Those discretized trajectories also
allow easy evaluation of the robot con�guration at all time, and therefore limit, for example,
the operations required for trajectory tracking.

It is of course impossible to represent exactly arbitrary trajectories using such a dis-
cretized representation, but the goal is to make the approximation accurate enough for our
intended applications. The main requirements are the following:

• From a discretized representation of a trajectory, it should be possible to extract an
approximation of the con�guration of the robot at all times, and this approximation
should not signi�cantly di�er from its true con�guration.

• Reasoning about constraints such as bounds on the speed or acceleration of the robot
or its wheels at all times should be possible on the basis of a discretized representation
of its trajectory.

• One should be able to discretize a trajectory independently from the speed at which
it is to be followed. The aim is to make it possible, for example, to �rst generate a
trajectory satisfying some given constraints, and afterwards compute the quickest
speed pro�le at which this trajectory can be followed.
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(x1, y1)

θ

θ1

θ2

(x2, y2)

Figure 3.2 – Constant-curvature step.

3.2.1 Constant-Curvature Steps

Let τ be a trajectory de�ned over the time interval [tMIN , tMAX ]. A �rst approach to
discretizing this trajectory consists in sampling its value at a �nite number of instants
t0,t1, . . . ,tm . The trajectory is then represented by the �nite sequence of con�gurations
τ (t0);τ (t1); . . . ;τ (tm ).

The main problem of this solution is that moving from a con�guration τ (ti ) to a con-
�guration τ (ti+1) can generally not be achieved by a simple locomotion action, i.e., by
moving with a constant steering angle, in the case of a tricycle platform. If the precise
way in which such a move is performed is unknown, it becomes di�cult to reason about
the constraints satis�ed by the trajectory, for instance inferring bounds on the speed and
acceleration experienced between τ (ti ) and τ (ti+1) is not easy.

Let us study more precisely the problem of moving with a constant steering angle, or
in other words with constant curvature from a con�guration γ1 = (x1, y1,θ1) to another
one γ2 = (x2,y2,θ2), which we call a constant-curvature step. For simplicity sake, we only
consider forward moves, i.e., we assume that the speed of the reference point of the robot
is non-negative. For the constant-curvature step to be feasible, there must exist a circular
arc (or, as a degenerate case, a straight segment) to which γ1 is tangent at (x1,y1) and γ2 is
tangent at (x2,y2). This situation is illustrated in Figure 3.2.

In the special case where (x1,y1) coincides with (x2,y2), a constant-curvature step is
possible regardless of the values of θ1 and θ2, and takes the form of a local turn.

If, on the other hand, (x1,y1) is distinct from (x2,y2), then θ = arctan(x1 − x2, y2 − y1)

corresponds to the orientation of the segment linking (x1,y1) to (x2,y2). By the symmetry
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of the problem, the di�erences between the orientations θ1 and θ and between θ and θ2
have to be identical. This constraint can be expressed as

[θ1 − θ] = [θ − θ2]. (3.27)

Our aim is to use constant-curvature steps as elementary building blocks for specifying
a trajectory between two successive sampling points. It is thus reasonable to impose bounds
on the value of [θ1 − θ], since a large di�erence between the overall direction of a step
and its initial orientation can always be prevented by choosing su�ciently small sampling
steps. In practice, we will impose

−
π

2 < [θ1 − θ] < π

2 .

This choice is motivated by the fact that, when backward trajectories will also be con-
sidered, the initial orientation of a constant-curvature step will uniquely characterize its
direction of motion.

In summary, we obtain the following criterion:

Theorem 3.2.1. For a di�erential or tricycle platform, there exists a forward constant-curva-
ture step leading from the con�guration (x1,y1,θ1) to the con�guration (x2,y2, θ2) i� either

(x1,y1) = (x2,y2),

or

(x1,y1) , (x2,y2) and −
π

2 < [θ1 − θ] = [θ − θ2] < π

2

where θ = arctan(x1 − x2, y2 − y1).

3.2.2 Approximated Trajectories

For arbitrary trajectories, the hypotheses of Theorem 3.2.1 are generally not satis�ed by
two successively sampled con�gurations. In order to obtain a discretized representation of
those trajectories, a possible strategy could then be to consider only trajectories that can
be expressed as a sequence of constant-curvature steps. In other words, a trajectory would
be represented by a sequence of con�gurations τ (t0);τ (t1); . . . ;τ (tm ) such that for every
i ∈ [0,m − 1], there exists a constant-curvature step leading from the con�guration τ (ti )
to the con�guration τ (ti+1).
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(x1, y1)

θ ′1

(x2, y2)

θ1

θ2

[θ ′1 + δ1]

Figure 3.3 – Discretized trajectory.

This solution has the advantage of precisely specifying the trajectory followed by the
robot between two samplings, which makes it possible to compute variables such as it speed
and acceleration at all times. However, it has the drawback of imposing that the sampling
points necessarily coincide with the origins of the constant-curvature steps. Indeed, with
an arbitrary sampling of such a trajectory, the hypotheses of Theorem 3.2.1 are generally
not satis�ed.

In order to alleviate this drawback, one has to lift some restrictions on the allowable
forms of trajectories. Our solution consists in expressing a discretized trajectory as a se-
quence of constant-curvature steps, but without requiring tangency between the circular
arcs and the robot orientation at the sampled con�gurations. In other words, a discretized
trajectory takes the form of a sequence of arbitrary con�gurations τ (t0);τ (t1); . . . ; τ (tm ).
Between a con�guration τ (ti ) = (xi ,yi ,θi ) and its successor τ (ti+1) = (xi+1,yi+1,θi+1), we
consider that the robot moves along a circle arc from (xi ,yi ,θ

′
i ) to (xi+1,yi+1,[θ ′i + δi ]),

increasing its orientation by the angle δi = [θi+1 − θi ], with orientations θ ′i and [θ ′i + δi ]
that do not necessarily match θi and θi+1. This is illustrated in Figure 3.3.

Note that, in order to satisfy the hypotheses of Theorem 3.2.1, the value of θ ′i is uniquely
determined from the values of xi , yi , xi+1, yi+1 and δi , provided that (xi ,yi ) , (xi+1,yi+1):
we have in this case

θ ′i =

[
θ −

δi
2

]
, (3.28)

where θ = arctan(xi −xi+1, yi+1 −yi ). The curvature κi of the arc followed by the constant-
curvature step is given by

κi =
2
λi

sin δi2 , (3.29)
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where λi is the chord length

λi =
√
(xi+1 − xi )2 + (yi+1 − yi )2. (3.30)

3.2.3 Discretizing a Trajectory

We now address the problem of obtaining a discretized representation (x0,y0,θ0); (x1,y1,θ1);
. . . ; (xm ,ym ,θm ) of a trajectory τ de�ned over [tMIN , tMAX ], with respect to the sampling
times t0, t1, . . . , tm . Once again, we assume that the trajectory τ proceeds forwards.

For i ∈ [0,m − 1], they are several cases to consider:

• If (xi ,yi ) = (xi+1,yi+1). Then, a local turn is performed between ti and ti+1.

• If (xi ,yi ) , (xi+1,yi+1). Then, we have to de�ne a constant-curvature step between ti
and ti+1. Let θ = arctan(xi −xi+1, yi+1 −yi ) be the orientation of the segment linking
(xi ,yi ) to (xi+1,yi+1). As discussed in Section 3.2.2, if the constraints

−
π

2 < [θi − θ] < π

2
and

−
π

2 < [θ − θi+1] < π

2

are not satis�ed, then the sampling of τ is too coarse for the discretization.

Otherwise, in the time interval [ti ,ti+1], the trajectory τ increases the orientation of
the robot by the angle δi = [θi+1 − θi ]. We then de�ne a constant-curvature step
that moves from (xi ,yi ) to (xi+1,yi+1) and increases the current orientation by δi . In
other words, we choose the initial orientation θ ′i of the circular arc and its �nal one
[θ ′i + δi ] so as to have

[θ − θ ′i ] = [θ ′i + δi − θ] = δi
2 ,

which yields (as in the previous section)

θ ′i =

[
θ −

δi
2

]
. (3.31)
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It is worth mentioning that this choice of values is somehow arbitrary. We now moti-
vate this choice, in particular against the alternative consisting in de�ning θ ′i = θi for all i .
As we have just mentioned, a �rst justi�cation is that (3.31) implies the existence from the
con�guration (xi ,yi ,θ

′
i ) of a circular arc to (xi+1,yi+1,[θ ′i + δi ]), i.e., one that reaches the

correct subsequent position in the sampled trajectory and adds the correct increment to
the orientation.

A second justi�cation is provided by the following property. Consider two succes-
sive constant-curvature steps that are physically realizable by a robot, i.e., con�gurations
γA = (xA,yA,θA), γB = (xB ,yB ,θB ) and γC = (xC ,yC ,θC ) such that there exist a constant-
curvature step from γA to γB as well as one from γB to γC , with continuity of position and
orientation ensured at γB . Assume that γA and γC are two successive samples, respectively
in t = ti and t = ti+1, of such a trajectory.

By the discretization process, one obtains

(xi ,yi ) = (xA,yA)

and
θ ′i =

[
θ −

[θC − θA]
2

]
,

where θ = arctan(xA − xC , yC − yA) is the orientation of the segment linking (xA,yA)

to (xC ,yC ). As previously explained, there exists a constant-curvature step moving from
(xA,yA,θ

′
i ) to (xC ,yC ,[θ ′i + (θC − θA)]). The property is that this constant-curvature step

necessarily visits (xB ,yB ), which shows that our notion of discretized trajectories closely
approximates the realistic ones.

Let us establish that the constant-curvature step that we have mentioned does indeed
visit (xB ,yB ). The problem is depicted in Figure 3.4. We de�ne the points A : (xA,yA),
B : (xB ,yB ), C : (xC ,yC ), and the angles θAB and θBC as the respective orientations of the
segments linking A to B and B to C , that is,

θAB = arctan(xA − xB , yB − yA)

θBC = arctan(xB − xC , yC − yB ).

From Theorem 3.2.1, we get

θAB =

[
θA + θB

2

]

θBC =

[
θB + θC

2

]
.



3.2. Discretization 41

θAB

θBC

A C

B

θA

θB

θC

θ

Figure 3.4 – Two successive constant-curvature steps.

We thus obtain

ÂBC = [π + θBC − θAB]

=

[
π + [θC − θA]

2

]
,

which is true if and only if B belongs to a circular arc that links A to C , and such that its
tangent in A has the orientation [

θ −
[θC − θA]

2

]
.

This circular arc corresponds precisely to the one from (xA,yA,θ
′
i ) to (xC ,yC , [θ ′i + (θC −

θA)]) followed by the constant-curvature step, which proves the property.

3.2.4 Backward Motion

The discretized trajectories that we have de�ned so far take the form of sequences of
constant-curvature steps, each of which can either be a local turn, or a forward circular arc.
Precisely, a constant-curvature step originating in the con�guration (xi ,yi ,θi ) and leading
to the position (xi+1,yi+1) is a local turn if (xi ,yi ) = (xi+1,yi+1), and a forward circular arc
otherwise. In the latter case, the constraint

−
π

2 < [θi − θ] < π

2 ,
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has to be satis�ed, where θ = arctan(xi − xi+1, yi+1 − yi ). Intuitively, this constraint ex-
presses that the orientation of the robot at the beginning of the constant-speed step is
consistent with a forward direction of motion.

We now generalize this discretized representation of trajectories by allowing backward
constant-curvature steps, in addition to forward ones and local turns. By the same reason-
ing as in Section 3.1.3, a backward constant-curvature step can be understood in terms of a
forward step performed by another robot oriented in the opposite direction. It follows that
a backward constant-curvature step originating in the con�guration (xi ,yi ,θi ) and leading
to the position (xi+1,yi+1) is characterized by

−π < [θi − θ] < −π2 or π

2 < [θi − θ] ≤ π ,

where θ = arctan(xi − xi+1, yi+1 − yi ).

Note that the situation [θi − θ] = ±π2 is ambiguous and explicitly forbidden. In actual
implementations relying on a non-exact representations of real numbers, one can require
the value of |[θi − θ]| to be signi�cantly distinct from π

2 (recall that this value can always
be reduced by re�ning the trajectory sampling).

Finally, just like forward steps, the orientation at the beginning of the circular arc is
uniquely determined from the values xi , yi , xi+1, yi+1 and δi = [θi+1 − θi ]: we have

θ ′i =

[
π + θ − δi2

]
,

where θ = arctan(xi − xi+1, yi+1 − yi ).

3.2.5 Static Steps

A particular case of constant-curvature step that has not yet been discussed is one during
which the robot does not move, which we call a static step. Such a step is thus characterized
by identical initial and �nal con�gurations

(xi ,yi ,θi ) = (xi+1,yi+1,θi+1).

There are several motivations for including static steps in trajectories. First, a static step
may represent an interval in a trajectory when the locomotion has to pause during the time
needed for performing some action, for instance picking up an object at a speci�c location.
Second, in the case of a tricycle platform, static steps must sometimes be inserted in order to
allow su�cient time for orienting the steering wheel. This happens, in particular, between
local turns (where the absolute steering angle is equal to π

2 ) and forward or backward steps
(where this angle is strictly less than π

2 ).
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3.2.6 Resampling

With this solution, the robot con�gurations are speci�ed at all times, and arbitrary sam-
plings of trajectories are allowed. However, the orientation function θ (t ) de�ned by a
discretized trajectory, corresponding to the direction of the tangent vector at all points,
is generally not continuous. In order to alleviate this drawback, the orientation and the
position of the robot are treated separately. The position during a forward or a backward
constant-curvature step i follows the one of the de�ned circular arc, but the orientation
will be assumed to change linearly with respect to the travelled distance from θi to θi+1.

With this assumption, the orientation function θ (t ) is continuous, but does not neces-
sarily match the true orientation of the circular arcs. This is not necessarily problematic,
for the discretization process was expected to introduce approximations, but it remains to
assess whether this approximation is accurate enough.

First, for a particular forward or backward constant-curvature step i , the maximal error
between the considered orientation and the one of the circular arc is

��[θi − θ ′i ]�� = �����
[
θi + θi+1

2 − θ

] �����
(where θ = arctan(xi − xi+1, yi+1 − yi )) and can be arbitrarily bounded by choosing su�-
ciently small sampling steps.

Next, for the same constant-curvature step, we can compute an upper bound of the
position error. If the curvature of the trajectory is assumed to change monotonously
between κa at time ti and κb at time ti+1 (which is a weak assumption, since it can always
be enforced by choosing su�ciently small sampling steps), the trajectory lies between the
two circular arcs of curvature κa and κb leading from (xi ,yi ) to (xi+1,yi+1) (if one of this
two circular arcs does not exist, then the sampling is too coarse and must be re�ned). By
symmetry, an upper bound of the error is given by the distance between the midpoints of
these two circular arcs, that is,

�������
(

1
κa
−

1
κb

)
−



√(

1
κa

)2
−
λi

2

4 −

√(
1
κb

)2
−
λi

2

4



������� ,

where
λi =

√
(xi+1 − xi )2 + (yi+1 − yi )2.

This bound can also be arbitrarily reduced by choosing su�ciently small sampling steps.
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With this discretization procedure, arbitrary resampling between two sample points
can be computed by similar developments as for odometry (see Section 2.2.1), and the
con�guration of a robot that has travelled a fraction α ∈ [0, 1] of the distance from the
point i to the point i + 1 is given by:

• if κi = 0 (θi = θi+1):

θi+α = θi ,

xi+α = xi − ds sinθi ,
yi+α = yi + ds cosθi ,

where
ds = α ·

√
(xi+1 − xi )2 + (yi+1 − yi )2.

• if κi , 0:

θi+α = [θi + dθ],
xi+α = xi − a1 sindθ + a2 cosdθ − a2,

yi+α = yi + a1 cosdθ + a2 sindθ − a1,

where
dθ = α · [θi+1 − θi ],

a1 =
sinθi
κi
,

a2 =
cosθi
κi
.

3.2.7 Data Structure

We are now ready to de�ne the data structure that will be used for representing symbolically
trajectories. It is worth recalling that, at this point, we are only interested in describing
the spatial properties of trajectories (i.e., the corresponding path); temporal aspects such
as the speed at which a path is to be followed will be addressed in Chapter 4 (leading to
an extended symbolic representation).

De�nition 3.2.2. The representation of a path is a pair (m,σ ), where

• m ∈ � is a number of steps, and

• σ is a function that maps every index i ∈ [0,m] onto a sampled con�guration σ (i ) =
(xi ,yi ,θi ,κi ), where
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– (xi ,yi ) ∈ �
2 is a position,

– θi ∈ (−π ,π ] is an orientation, and

– κi ∈ �∪ {−∞,+∞} is a curvature.

As discussed in Sections 3.2.3 and 3.2.4, representations of paths have to satisfy some
integrity constraints in order to be valid.

De�nition 3.2.3. A path representation (m,σ ) is well-formed i� for all i ∈ [0,m − 1], one
of the following criteria is satis�ed:

• (xi ,yi ) = (xi+1,yi+1) and θi+1 , θi (local turn).

In this case, one must have

κi ∈ {−∞,+∞}.

• (xi ,yi ) = (xi+1,yi+1) and θi+1 = θi (static step).

In this case, the value of κi is unde�ned, and is by convention chosen as

κi =

κi−1 if i > 0,

0 otherwise.

• (xi ,yi ) , (xi+1,yi+1) and − π2 < [θi − θ] < π
2 , where θ = arctan(xi − xi+1, yi+1 − yi )

(forward step).

In this case, one must have

κi =
2
λi

sin δi2 ,

where

λi =
√
(xi+1 − xi )2 + (yi+1 − yi )2,

δi = [θi+1 − θi ].
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• (xi ,yi ) , (xi+1,yi+1) and either −π < [θi − θ] < π
2 or π

2 < [θi − θ] ≤ π , where θ is as
before (backward step).

Like in the previous case, one must have

κi =
2
λi

sin δi2 ,

where λi and δi are as before.

In order to simplify reasoning about path steps, we augment the path representation
with a function ν : [0,m − 1]→ {L,R,F ,B,S } that associates each index with the nature of
the corresponding step. Formally, we have for every i ∈ [0,m − 1]:

• νi = L if κi = +∞, i.e., the (i + 1)-th step is a local turn to the left.

• νi = R if κi = −∞, i.e., the (i + 1)-th step is a local turn to the right.

• νi = F if (xi ,yi ) , (xi+1,yi+1) and − π2 < [θi − θ] < π
2 , where θ = arctan(xi −

xi+1, yi+1 − yi ), i.e., the (i + 1)-th step is a forward step.

• νi = B if (xi ,yi ) , (xi+1,yi+1) and either −π < [θi − θ] < π
2 or π

2 < [θi − θ] ≤ π ,
where θ is as before, i.e., the (i + 1)-th step is a backward step.

• νi = S if (xi ,yi ) = (xi+1,yi+1) and θi = θi+1, i.e., the (i + 1)-th step is a static step.

It then becomes straightforward to describe the semantics associated to a well-formed
path representation (m,σ ). For each i ∈ [0,m − 1], the (i + 1)-th step of the represented
path originates from the con�guration (xi ,yi ,θi ), and

• in the case of a local turn (νi ∈ {L,R}), changes the orientation of the robot without
modifying its position (xi ,yi ), ending in the orientation θi+1. The turn is performed
to the left (resp. right) if κi = +∞ (resp. κi = −∞).

• in the case of a forward or backward step (νi ∈ {F ,B}), follows a circular arc of
curvature κi from (xi ,yi ) to (xi+1,yi+1) in the corresponding direction of motion,
increasing its orientation by the angle δi = [θi+1 − θi ].
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As discussed in Section 3.1.3, the sign of κi provides the turn direction. The distance
|si | travelled by the reference point of the robot during the step is given by

|si | =



�����
δi
κi

����� if κi , 0

√
(xi+1 − xi )2 + (yi+1 − yi )2 if κi = 0.

(3.32)

Following the convention introduced in Section 3.1.3, we consider that we have si > 0
if νi = F , and si < 0 if νi = B.

• in the case of a static step (νi = S ), stays at the con�guration (xi ,yi ,θi ).





CHAPTER 4

Speed Profile Computation

This chapter �rst introduces the notions of speed pro�le and of time-
optimal speed pro�le for the path representation introduced in Chapter 3.
It then presents an algorithm for computing a time-optimal speed pro�le
that minimizes the total time needed by a robot for following such path
representations while being consistentwith various physical constraints of
the robot. This algorithm has a linear computational cost (in the number
of path steps) and is faster and able to take into account a broader class of
physical constraints than other solutions, such as imposing tighter speed
bounds in the vicinity of some obstacles, or expressing the admissible
acceleration of a wheel as a function of its speed. Finally, the chapter
brie�y introduces the notions of trajectory resampling and of braking
trajectories.

In Chapter 3, we have introduced an original data structure for discretizing paths to be fol-
lowed by a nonholonomic mobile robot, which represents such paths by a �nite sequence
of robot con�gurations visited along the paths. We now address the problem of computing
a speed pro�le for such paths, i.e., determining for each discrete step the speed at which
it can be performed. For our intended applications (such as robotics competitions like
Eurobot), it is crucial to move rapidly and since energy e�ciency is not an issue, the goal is
then to generate the speed pro�le that reaches as quickly as possible the destination of the
path, while satisfying at all times physical constraints of the robot such as various speed
or acceleration bounds (in order for the speed pro�le to be physically realizable).

49
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4.1 Speed Profiles

4.1.1 Principles

In Section 3.2.7, discretized paths have been de�ned as sequences of elementary moves
(local turns as well as forward, backward, and static steps) performed with constant cur-
vature. A natural approach would then be to specify for each non-static step of a path the
speed at which it shall be followed. This speed can be de�ned as the speedv of the reference
point of the robot in the case of forward and backward steps, and as the angular speed θ̇
of its reference orientation for local turns. A simpler alternative, that has the advantage of
handling uniformly both cases, consists in specifying for each step the speeds of the left
and right wheels of the robot (in a way that is consistent with the properties of the step,
as discussed in Section 3.1.2).

One could then consider that those speeds are constant during the time that the step is
performed. This solution has the drawback of introducing speed discontinuities between
successive steps. This is not necessarily problematic, since every robot is only practically
able to update the reference speeds of its wheels at discrete time instants (usually separated
by a predetermined control period ). Nevertheless, the presence of speed discontinuities re-
quires that the time needed for performing an elementary step does not exceed that control
period, if moves such as driving straight segments with constant acceleration have to be
described accurately.

Unfortunately, that a path sampling is su�ciently re�ned for satisfying this criterion
can not always be inferred when the path is generated, since the speed at which it will
be followed has not yet been computed at that time. Another problem is the di�culty of
specifying precisely boundary conditions on the speed of the robot; for instance, starting
a path with an initial speed equal to zero does not mean that the �rst path step has to be
performed with zero speed.

In order to alleviate these problems, we re�ne our de�nition of non-static steps and
consider that, in addition of being performed with constant curvature, each of them is carried
out with constant acceleration of the wheels. According to the results of Section 3.1.2, the
constant curvature requirement amounts only to imposing that the ratios between the
linear speeds of the left, right, and steering wheels (if any), are constant throughout the
step, and that the steering angle stays constant as well in the case of a tricycle platform.
The constant acceleration requirement means that the speed of each wheel changes linearly
with time when the step is performed, instead of staying constant within this step. In other
words, the speed of the wheels is linearly interpolated from the speeds speci�ed at the
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beginning and the end of each step.
A technical di�culty is the fact that the curvatures of two successive path steps gener-

ally di�er, which implies that wheel speeds speci�ed at the beginning of a step (consistent
with the curvature of this step) do generally not comply with the geometric properties of
the previous one. This means that, if wheel speeds are only provided at the boundaries
between path steps, then continuity of linear speed can generally not be ensured simulta-
neously for both wheels.

We solve this problem in the following way. First, for the sake of simplicity, and in
order to be able to easily chain paths together, we impose this curvature to be zero at
the origin and endpoint of all paths (except, of course, for those starting or ending with a
local-turn).

Second, one can recall from Chapter 3.2.7, that each step i of a well-formed path rep-
resentation is associated with a value νi ∈ {L,R,F ,B,S }, that represents the nature of the
corresponding move (i.e., respectively, a local turn to the left, a local turn to the right, a
forward step, a backward step or a static step). For the same motivation of simplicity, at
the boundary between two successive path steps that have di�erent natures (i.e., di�erent
values of νi ), the speed of both wheels will be required to be equal to zero.

This requirement is legitimate, since usually a robot must already come to a complete
stop to change its direction of motion. The only cases where a robot does not need to
stop, are for paths switching from a local-turn to forward or backward steps while decreas-
ing (in absolute value) its curvature without discontinuities, or the reverse situation (i.e.,
switching from forward or backward steps to a local turn while increasing its curvature
without discontinuities). Such spiral shaped paths are not really useful for our intended
applications, and will then be explicitly forbidden. As a consequence from these two re-
quirements, each maximal sequence of forward or backward steps of a path must start and
end with zero curvature.

Third, between successive steps sharing the same nature, continuity of speed will only
be required for the reference point of the robot in the case of forward and backward steps.
(For local turns, continuity of speed can, naturally, be achieved for all wheels.)

Finally, we have to consider the static steps. As discussed in Section 3.2.5, those are
mainly introduced for two reasons:

• describing periods during which locomotion is paused in order to perform other
actions (pausing static steps);

• allowing su�cient time for orienting the steering wheel between successive steps
with signi�cantly di�erent curvatures, in the case of a tricycle platform (steering
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static steps).

In a speed pro�le, a static step can be handled by simply specifying its duration. If the
goal is to compute the fastest speed pro�le for a given path, then only the steering static
steps have to be considered (since the pausing ones systematically will be assigned a zero
duration).

We can add the following de�nitions to the ones from Chapter 3.2.7:

De�nition 4.1.1. A path representation (m,σ ) is acceptable i� it is well-formed, and

• if ν0 ∈ {F ,B}, we have κ0 = 0,

• if νm−1 ∈ {F ,B}, we have κm−1 = κm = 0,

• for all i ∈ [1,m − 2] such that νi ∈ {F ,B} , νi+1 or νi ∈ {F ,B} , νi−1, we have κi = 0.

De�nition 4.1.2. A path representation (m,σ ) is steerable i� it is acceptable, and for all
i ∈ [0,m − 2] such that νi , νi+1, we have

νi = S , or νi+1 = S .

In other words, a steerable path is one into which a static step has been inserted be-
tween two consecutive steps that do not share the same nature. Indeed, at this point, as a
result from De�nition 4.1.1, the robot must come to a complete stop.

In the following, for simplicity sake, we will consider only paths that are steerable, even
with a di�erential drive platform (in which case in the absence of steering constraints, the
duration of all static steps will end up being equal to 0).

Last but not least, in order to be able to accurately compute constraints, knowing the
curvature of each steps will not be su�cient. Indeed, if we consider that this curvature
changes linearly from κi at the beginning of the (i + 1)-th step, to κi+1 at the end, results
will strongly depend from the length of the step (intuitively, κi is a measure of the mean
curvature during this step). A better choice, that will be less in�uenced by the length of
the discretization step, is to compute the instantaneous curvature κ̃i for each con�guration i .

There are two ways of extracting κ̃i from the path representation. First, if the exact
path is known, it can be computed without approximation during the discretization process.
Another approach is to accurately approximate κ̃i from the discretized path as follows:

• κ̃0 = 0
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• κ̃m = 0

• For every i ∈ [1,m − 1]:

– if κi = 0 or κi−1 = 0 (beginning or end of a straight line step).

κ̃i = 0,

– otherwise
κ̃i = κi−1 + κi − κi−1

|si | + |si−1 |
· |si−1 |,

where |si | is the distance travelled by the robot during the (i+1)-th step (cf. Equa-
tion 3.32), and assuming that the curvature change linearly with the travelled
distance, from κi−1 to κi , between the middle points of the two steps.

4.1.2 Formalization

Formally, a speed pro�le for a di�erential drive or a tricycle robot is de�ned as follows:

De�nition 4.1.3. Given a steerable path representation (m,σ ), a speed pro�le associated to
this path is a pair (ρ,µ ), where:

• The function ρ : [0,m] → �2 maps every path index i ∈ [0,m] onto a pair ρ (i ) =
(vLi ,vRi ) of speeds for the left and right wheels of the robot at that index.

• The function µ : {i ∈ [0,m − 1] | νi = S } → �≥0 maps every static step i onto the
duration µ (i ) of that step.

In order to be valid, a speed pro�le has to satisfy some integrity constraints, expressed
by the following de�nition.

De�nition 4.1.4. A speed pro�le (ρ,µ ) associated to a path representation (m,σ ) is well-
formed i� for every i ∈ [0,m − 1]:

• If νi = R ( right local turn), then
0 ≤ vLi = −vRi .

• If νi = L ( left local turn), then
vLi = −vRi ≤ 0.
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• If νi ∈ {F ,B} ( forward or backward step), then

vLi

(
1 + eκ̃i

2

)
= vRi

(
1 − eκ̃i

2

)
.

where, as before, e denotes the axle width (i.e., the distance between the contact patches
of the left and right wheels).

• If νi = S ( static step), then
vLi = vRi = 0

vLi+1 = vRi+1 = 0.

4.1.3 Semantics

We are now ready to describe precisely the semantics of a well-formed speed pro�le (ρ,µ )

associated to the representation (m,σ ) of a path. For each i ∈ [0,m − 1], we have:

• If νi ∈ {L,R}. Then, during the step, the left and right wheels move at the same speed
but in opposite directions. Let us focus on the left wheel, and denote by ��sLi �� > 0 the
(absolute) distance driven by this wheel during the (i + 1)-th step, i.e., the length of
the circle arc followed by the wheel when the robot moves from σ (i ) to σ (i + 1).

We consider that the step is performed by accelerating linearly (with time) the left
wheel from the speed vLi to the speed vLi+1 . In other words, at the beginning of the
step, the distance driven by the left wheel is zero and its speed is vLi . At the end of
the step, the distance driven by the wheel is |sLi | and its speed isvLi+1 . It follows that
the amount of time ∆ti needed for driving the step is given by

∆ti =
2 ��sLi ����vLi +vLi+1

�� .
In between, after a time ∆t such that 0 ≤ ∆t ≤ ∆ti , the speed vL of the wheel is
given by

vL = vLi + (vLi+1 − vLi )
∆t

∆ti
,

and the distance |sL | driven by the wheel from the beginning of the step is equal to

|sL | =
�����vLi t + (vLi+1 − vLi )

∆t2

2∆ti

����� .
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From these results, it is immediate to derive the speed vR of the right wheel after
time ∆t , and the distance |sR | driven by that wheel. We have

vR = −vL

|sR | = |sL |.

• If νi ∈ {F ,B}. Then, since the curvatures of successive steps generally di�er, con-
tinuity of speed can not be simultaneously achieved for both left and right wheels.
We focus on the speed v of the reference point of the robot, and apply the same
reasoning as in the case of local turns, i.e., we consider that the reference point ac-
celerates linearly from its speed vi at σ (i ) to its speed vi+1 at σ (i + 1). Let |si | denote
the distance driven by the reference point during the (i + 1)-th step.

We obtain

∆ti =
2|si |

|vi +vi+1 |

v = vi + (vi+1 − vi )
∆t

∆ti

|s | =
�����vit + (vi+1 − vi )

∆t2

2∆ti

����� ,
where v is the speed reached after spending the time ∆t into the step, and |s | is the
distance driven from the beginning of the step.

Once the speed of the reference point has been established, the speed of each wheel
can easily be computed using the formulas obtained in Section 3.1.2. Note that, with
this scheme, the wheel speeds are generally discontinuous at the end of a step. In
situations where a continuous approximation of the wheel speeds is needed (for
instance, in order to reason about tangential accelerations), we will consider that
the speed of each wheel increases with constant acceleration during the step. This
approximation is not exact, since the curvature of the step then becomes inconsistent
with the speed of the wheels. But, as discussed in Section 3.2.6, in order to keep the
position error under a certain bound, the discretization process produces successive
steps with curvatures that are su�ciently close to each other, and this approximation
is usually quite precise.
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• If νi = S . Then, the robot keeps the con�guration

(xi ,yi ,θi )

during the duration

∆ti = µ (i ).

4.1.4 Data Structure

We are now ready to describe the data structure that will be used for representing the
properties of trajectories.

De�nition 4.1.5. The representation of a trajectory is a tuple (m,σ ,ρ,µ ) such that (m,σ ) is a
path representation, and (ρ,µ ) is a corresponding speed pro�le. The representation (m,σ ,ρ,µ )

is well-formed is (m,σ ) is steerable and (ρ,µ ) is well-formed.

In other words, a trajectory representation (m,σ ,ρ,µ ) maps every index i ∈ [0,m] onto:

• a position (xi ,yi ) ∈ �,

• an orientation θi ∈ (−π ,π ],

• a curvature κi ∈ � ∪ {−∞,+∞},

• a left-wheel speed vLi ∈ �,

• a right-wheel speed vRi ∈ �,

• a step duration ∆ti ∈ �≥0 (for (i ∈ [0,m − 1]).

In practice, in order to speed up some computations, one can also store in the trajectory
representation additional derived data for each step, such as:

• its nature νi ∈ {L,R,F ,B,S } (for i ∈ [0,m − 1]),

• the distance travelled by the reference point |si | ∈ �≥0 (for i ∈ [0,m − 1]),

• the instantaneous curvature κ̃i ∈ � ∪ {−∞,+∞},
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• its time instant

ti =
∑

0≤j<i
∆tj

(for i ∈ [0,m]),

• the steering-wheel orientation θSi ∈ [− π2 ,
π
2 ] that corresponds to κ̃i (for i ∈ [0,m]),

• the steering-wheel speed vSi ∈ � (for i ∈ [0,m]).

Note that, in the case of a tricycle platform, the semantics introduced in Section 4.1.3
does not describe the behavior of the steering wheel during static steps, since it does not
in�uence the movement of the robot. In practice, we will consider that the steering wheel
moves with a constant angular rate during static steps.

4.1.5 Problem Statement

Let us now address the problem of computing a time-optimal speed pro�le (i.e., the speed
pro�le that reaches as quickly as possible the destination) for a given path representation
(m,σ ). We �rst introduce temporal constraints on the initial and �nal con�gurations of
such a trajectory:

• The initial speed of the robot, i.e., the speed v of its reference point at the origin
σ (0) of the trajectory, is given by v0. Note that, if the �rst step of the trajectory is a
local turn or a static step, then one must necessarily have v0 = 0 in order for a speed
pro�le to exist. If, on the other hand, the �rst step is a forward (resp. backward) step,
then one must have v0 ≥ 0 (resp. v0 ≤ 0).

The motivation behind imposing an initial speed is that trajectories are meant to be
followed one after another: the initial con�guration of a trajectory, including the
speed of the robot, has to match the �nal con�guration of the previous one, or the
actual physical con�guration of the robot.

• The initial angular speed of the robot, i.e., the angular speed θ̇ atσ (0) is, for simplicity
sake, required to be equal to 0. Note that, in order to be able to follow sequences
of trajectories, a similar constraint will have to be imposed on �nal angular speeds.
Moreover, if the �rst step of the trajectory (m,σ ) is a forward or backward step, then
this requirement implies κ0 = 0 (as already required by De�nition 4.1.1).
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• The maximum �nal speed of the robot, i.e., the maximum (in absolute value) speed
v of its reference point at the endpoint σ (m) of the trajectory, is given by vfm. As for
the initial speed, if the last step of the trajectory is a local turn or a static step, then
one must havevfm = 0. In the case of a forward (resp. backward) step, the constraint
becomes vfm ≥ 0 (resp. vfm ≤ 0).

Note that, unlike the case of the initial speed, only an upper bound is imposed on
the �nal speed of the robot.

• The �nal angular speed of the robot, i.e., the angular speed θ̇ at σ (m), is required to
be equal to 0, as already discussed in the context of the initial angular speed. If the
last step of the trajectory is a forward or backward one, then this constraint implies
κm = 0 (also already required by De�nition 4.1.1).

In addition, we de�ne some number of physical constraints that need to be satis�ed
at all times, such as lower and upper bounds on the velocity or acceleration of individual
wheels, the speed, angular speed, tangential and radial accelerations measured at the center
of mass or some other reference points, on the rate of variation of the steering angle for
a tricycle robot, . . . Some of those constraints may be context-sensitive, such as imposing
tighter speed bounds in the vicinity of some obstacles, or expressing the admissible angular
velocity of the steering wheel as a function of the robot speed.

In this work, we consider 16 distinct physical constraints, which have proved to be
the more relevant ones for the Eurobot case study, but other constraints can also be con-
sidered, as long as they comply with the requirements that will be expressed in Section 4.2.3.

First, we specify constraints on the speed and acceleration of the reference point of the
robot, that must hold throughout the trajectory:

• Functions vmin : [0,m] → �≤0 and vmax : [0,m] → �≥0 associate to each index
i ∈ [0,m] of the path the minimum and maximum speeds vmin (i ) and vmax (i ) of
the reference point. Note that, in order for a speed pro�le to exist, one must have
vmin (0) ≤ v0 ≤ vmax (0).

The reason why the minimum speed is not systematically chosen to be the opposite of
the maximum one is to be able to cope with robots that have asymmetrical locomotion
capabilities. Furthermore, the minimum and maximum speeds are expressed as
functions instead of constant bounds in order to be able to specify more stringent
constraints when the path brings the robot close to obstacles or opponents, and to
relax them in open areas.
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• A function θ̇max : [0,m] → �≥0 provides the maximum (absolute) angular speed
θ̇max (i ) for each index.

• Lower and upper bounds aTmin ∈ �<0 and aTmax ∈ �>0 are imposed on the tan-
gential acceleration aTi , for every i ∈ [0,m − 1]. Similarly, lower and upper bounds
aCmin ∈ �<0 and aCmax ∈ �>0 are imposed on the radial acceleration aCi for all i .
These bounds make it possible to reason about the stability of the robot with respect
to its support polygon, for instance in order to insure that it does not tip over in tight
turns.

Next, we de�ne constraints related to the physical limitations of the locomotion mech-
anisms. First, the reachable speed of each driving wheel is bounded. Then, in order for
such a wheel to develop traction, the force exchanged between the wheel and the ground
must stay within speci�ed bounds. This translates into constraints over the tangential
acceleration at that wheel (assuming that when the wheel rotates, it displaces a constant
mass).

Additionally, one must ensure that the torque that has to be developed at a wheel can
be produced by the corresponding locomotion motor, which again amounts to imposing
bounds on the tangential acceleration at the wheel. Since the torque developed by a motor
may depend on its rotational speed, we choose to express those bounds as functions over
the linear speed at the wheel. Furthermore, for the steering wheel of a tricycle platform,
we impose bounds on the rate of variation of the steering angle.

We obtain the following constraints:

• In the case of a di�erential drive platform, lower and upper bounds vLRmin ∈ �≤0
and vLRmax ∈ �≥0 are imposed on the linear speeds vLi and vRi of the left and right
wheels.

In addition, a function aLRmin : [vLRmin,vLRmax] → �≤0 speci�es for each possi-
ble value of the speed vLi or vRi the minimum value of the corresponding tangen-
tial acceleration aLi or aRi , for every i ∈ [0,m − 1]. Similarly, a function aLRmax :
[vLRmin,vLRmax]→ �≥0 de�nes the maximum tangential acceleration with respect to
the linear speed of the left or right wheel. Note that, for simplicity sake, we assume
the constraints discussed here to by symmetrical over the left and right wheels.

• For a tricycle platform, lower and upper bounds vSmin ∈ �<0 and vSmax ∈ �>0 are
imposed on the linear speed vSi of the steering wheel. An upper bound θ̇Smax ∈

�>0 is imposed on the (absolute) rate of variation θ̇Si of the steering angle, for all
i ∈ [0,m − 1]. In addition, two functions aSmin : [vSmin,vSmax] → �<0 and aSmax :
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[vSmin,vSmax] → �>0 specify respectively the minimum and the maximum values
of the tangential acceleration aSi at the steering wheel, with respect to the linear
speed vSi at that wheel, for every i ∈ [0,m − 1].

We are now ready to precisely de�ne the time-optimal speed pro�le computation prob-
lem. Given a discretized path representation (m,σ ), parameters v0, vfm, vLRmin, vLRmax ,
vSmin, vSmax , aTmin, aTmax aCmin, aCmax and θ̇Smax , and functions vmin, vmax , θ̇max , aLRmin,
aLRmax , aSmin and aSmax , the time-optimal speed pro�le computation problem consists in
computing a speed pro�le that makes it possible to follow this path as fast as possible,
while satisfying all the constraints that have been speci�ed.

4.2 Solution

From De�nitions 4.1.2 and 4.1.4, we know that the speeds vLi and vRi of the robot wheels
must be equal to 0 between steps of di�erent nature, i.e., when i > 0 and νi , νi−1. It
follows that the problem of computing a time-optimal speed pro�le can be solved sepa-
rately for each maximal sequence of left-turn, right-turn, forward, backward, and static
steps composing the path (which we call a segment of this path).

We have the following boundary constraints:

• for the �rst segment, the initial values vL0 = vR0 are imposed by the initial speed v0;

• for the last segment, the �nal values vLm = vRm are constrained by the �nal speed
vfm;

• for any index i located at the boundary between two successive segments, i.e., such
that i > 0 and νi , νi−1, one has vLi = vRi = 0.

From now on, we will thus address w.l.o.g. the problem of computing a time-optimal
speed pro�le for a path composed of a single segment, i.e., one in which all the steps share
the same nature ν ∈ {L,R,F ,B,S }.

The main strategy employed to solve our speed pro�le problem is identical for every
kind of segment, but details di�er. Those are fully developed in Appendix A for the 16
distinct physical constraints that we consider for the Eurobot application.

Solving the time-optimal speed pro�le computation problem for a well-formed non-
static path segment representation (m,σ ) amounts to computing for each i ∈ [0,m] an
optimal value of the speeds vLi and vRi . These speeds can not be chosen independently
from each other; indeed, it follows from De�nition 4.1.4 that their ratio is �xed, and de-
pends only on the nature of the segment as well as on the instantaneous curvature of the
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path.

In fact, one can recall from Chapter 3.1.2 that, for di�erential-drive, tricycle or car-like
robots, all the speeds of interest (i.e., measured at various locations on the robot) can be
expressed as functions of a single parameter and the geometry of the path, the optimal
value of which has to be computed. A natural choice would be to de�ne this parameter
as the speed of the robot measured at its center. This solution turns out to be problematic
for reasoning about parts of paths where the absolute curvature is high, which intuitively
corresponds to rotations of the robot around its center. In such a case, even though the
robot is in motion, its center moves only slowly, or not at all. A second choice for the
parameter could be the speed of the fastest wheel, but this approach leads to complex
developments when this fastest wheel switches sides.

We choose instead to express all speeds of interest in terms of a parameter zi that we
call the velocity at the current index i of the path, de�ned as the quadratic mean of the
respective speeds vLi and vRi of the left and right wheels:

zi =

√
v2
Li

+v2
Ri

2 . (4.1)

This parameter has the advantage of being always positive, and nonzero whenever
the robot is not stationary. Knowing the geometry of the robot, one can easily compute
the speeds at its center, center of mass, individual wheels, or other locations of interest,
from the velocity zi and the instantaneous curvature κ̃i at the current path index. When
the curvature is zero, such as at the extremities of paths, all those speeds become equal to zi .

For static path segments, the problem is di�erent and consists in computing their du-
ration. This problem will be addressed separately from the computation of the optimal
values of the parameters zi (see Section 4.2.6).

4.2.1 Problem Reduction

The time-optimal speed pro�le computation problem for non-static path segment can thus
be restated as follows. The goal is to compute for all i ∈ [0,m] the maximum value of
zi ≥ 0 satisfying some given set of constraints.

Schematically, these constraints can be classi�ed as follows:

• The initial value z0 = zinit is imposed by the initial speed of the robot.

• A �rst group of constraints that translate into an upper bound on the velocity zi
at a path index i . We call them local state constraints. Those are, for example, con-
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straints imposed on the speed of the robot, its angular speed or the speed of its wheels.

Let us illustrate this situation with a simple example. Assume that the robot moves
in the forward direction and that the speeds of its right and left wheels (vRi and vLi )
are constrained to belong to the interval [−vimax ,vimax] at the path index i , with
vimax > 0.

From Equations 3.16 and 3.17, we can express the wheel speeds in term of zi .

For each i ∈ [0,m], we have

vLi

(
1 + eκ̃i

2

)
= vRi

(
1 − eκ̃i

2

)
.

where e denotes, as previously, the axle width of the robot (i.e., the distance between
the left and right wheels contact patches).

By de�ning

ωi = arctan
(
1 + eκ̃i

2 , 1 −
eκ̃i
2

)
, (4.2)

we get
vLi = zi

√
2 cosωi ,

vRi = zi
√

2 sinωi .

Note that, from Equation 2.5 we have

vi =
vLi +vRi

2 ≥ 0

and thus
sinωi + cosωi > 0,

since we assume that the robot is moving forward.

As a consequence, we have

−
π

4 < ωi <
3π
4 ,

for every i ∈ [0,m].

The relations between vRi , vLi , zi and ωi are illustrated in Figure 4.1.
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ωi

forward

left wheel speed vLi

ωi =
3π
4

ωi = −
π
4

motion
backward

motion

zi
√

2

right wheel speed vRi

Figure 4.1 – Relations between speeds.

Our constraint then gives out the upper bound

zi ≤
vimax
√

2 cosωi
if − π

4 < ωi ≤
π

4 ,

zi ≤
vimax
√

2 sinωi
if π

4 < ωi <
3π
4 .

Parameters vfm, vLRmin, vLRmax , vSmin, vSmax , aCmin, aCmax , θ̇Smax , and the functions
vmin, vmax and θ̇max all translate into upper bounds on the velocity zi , and if, zmaxi

is de�ned as the smallest of these upper bounds at the path index i , the local state
constraints can be resumed as

zi ≤ zmaxi ,

for all i ∈ [0,m].

Of course, the initial value zinit must satisfy

zinit ≤ zmax0 .

Note that, all the developments related to these parameters and functions are pro-
vided (for every kind of segment) in Appendix A.

• A second group of constraints, that we call transition constraints, contains those that
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jointly involve the velocity at successive path indices (e.g., constraints that involve
the velocities zi and zi+1 at two successive indices i and i + 1 of the path). This group
mainly includes constraints expressed in terms of acceleration, like constraints im-
posed on the tangential acceleration of the robot or the acceleration of its wheels.

Let us give an example. If, as explained in Section 4.1.1, we assume constant-accel-
eration motion during a step, then the amount of time ∆ti needed for travelling the
distance si of the (i + 1)-th step is given by

∆ti =
2si

vi +vi+1
.

The tangential acceleration aTi of the reference point of the robot during this step
can thus be estimated, from Equation 3.12, as

aTi =
vi+1 − vi

∆ti

=
v2
i+1 − v

2
i

2si
.

Since we have

vi =
vRi +vLi

2
for all i , this expression becomes

aT i =
(sinωi+1 + cosωi+1)

2 z2
i+1 − (sinωi + cosωi )

2 z2
i

4si
,

where ωi is de�ned as previously.

One easily sees that imposing bounds on this acceleration amounts to enforcing a
constraint over both zi and zi+1. At all every path index i ∈ [0,m − 1], we denote by
ϕi (zi ,zi+1) the conjunction of all physical constraints that jointly involve zi and zi+1.

For simplicity, we can divide the constraint ϕi (zi ,zi+1) in two parts. First, due to
constraints on the acceleration of the robot, the value of zi at the beginning of the
(i + 1)-th step determines an upper bound on the value of zi+1 at the end of this step
(i.e., the largest value of zi+1 that makes the constraint ϕi (zi ,zi+1) satis�able). If this
upper bound is denoted by zmaxFi (zi ), we have

zi+1 ≤ zmaxFi (zi ),
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where
zmaxFi : [0,zmaxi ]→ �≥0,

for all i ∈ [0,m − 1].

Similarly, the value of zi at the end of the i-th step determines an upper bound on
the value of zi−1 at the beginning of this step, due to constraints on the deceleration
of the robot. Let zmaxPi (zi ) denotes this upper bound, we then have

zi−1 ≤ zmaxPi (zi ),

where
zmaxPi (zi ) : [0,zmaxi ]→ �≥0,

for all i ∈ [1,m].

Note that, parameters aTmin, aTmax , and the functions aLRmin, aLRmax aSmin and aSmax

all translate into constraints over the velocities at two successive path indices and
therefore belong to the transition constraints group. As for local state constraints, all
the developments related to these parameters and functions are provided (for every
kind of segment) in Appendix A.

Unfortunately, one can remark that the constraint ϕi (zi ,zi+1) may not be satis�able
for every zi ∈ [0,zmaxi ] (or similarly for every zi+1 ∈ [0,zmaxi+1]). Figure 4.2 illustrates an
example of this issue. With a valid �xed value of zi ≤ zmaxi , it could be impossible, due
to the geometry of the path, to assign a suitable value of zi+1 that takes into account both
transition constraints on the right and left wheels.

In Figure 4.2(a), constraints on both left and right wheels are consistent and ϕi (zi ,zi+1)

is satis�able, but in Figure 4.2(b), the intersection of the set of values of zi+1 that satisfy
acceleration on the left wheel and the set of values of zi+1 that satisfy acceleration on the
right one is empty and therefore ϕi (zi ,zi+1) is unsatis�able.

In order to always be able to reduce the speed of the robot, it is then legitimate to require
the constraint ϕi (zi ,zi+1) to have the following properties:

∀i ∈ [0,m − 1], ∀zi ,z ′i ,zi+1 : z ′i ≤ zi ∧ ϕi (zi ,zi+1) ⇒ ∃z ′i+1 : z ′i+1 ≤ zi+1 ∧ ϕi (z
′
i ,z
′
i+1),

∀i ∈ [1,m], ∀zi ,z ′i ,zi−1 : z ′i ≤ zi ∧ ϕi−1 (zi−1,zi ) ⇒ ∃z ′i−1 : z ′i−1 ≤ zi−1 ∧ ϕi−1 (z
′
i−1,z

′
i ).

Intuitively, these properties ensure that a value of zi , that makes the constraints ϕi (zi ,zi+1)

and ϕi (zi−1,zi ) satis�able, can always be lowered while still allowing the two constraints
to be satis�able (i.e., with z ′i+1 ≤ zi+1 and z ′i−1 ≤ zi−1).
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(a) Satis�able.

vR

possible values
for vRi+1

vL
ωi+1

possible values
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(
vLi ,vRi

)

(b) Unsatis�able.

Figure 4.2 – ϕi (zi ,zi+1) may be unsatis�able.

4.2.2 Optimization Algorithm

We are now ready to describe our procedure for computing the fastest physically-feasible
speed pro�le for a given path. This procedure has originally been introduced in [Len08]. It
di�ers from [CC00, BP11b, KS12] by the much broader range of physical constraints that
it supports, such as context-sensitive constraints, and constraints on individual wheels.

The problem of computing an optimal value for each zi ∈ [0,m] is solved by the
algorithm given in Algorithm 4.1. If the initial value satis�es zinit < zmax0 , then this
algorithm proceeds in three main stages:

1. Lines 3–8:
It assigns for every index i , an initial value to each zi corresponding to its upper
bound zmaxi (i.e., the largest possible value allowed by the local state constraints at
that point) or the initial value zinit .

It is also essential to make sure that the constraints that belong to the second group
(i.e., the transition constraints) remain satis�able: if zmaxi is such that the constraint
ϕi (zmaxi ,zi+1) does not hold for at least one zi+1, then zmaxi has to be lowered into the
largest value that makes the constraint satis�able. In the same way, zmaxi must be
su�ciently small for the constraint ϕi−1 (zi−1,zmaxi ) to be satis�able in zi−1. These
operations can be carried out numerically, a simple strategy being to perform a bi-
nary search until the required precision is reached.
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1 Function Optimize-z(m, zinit , zmaxi [1 : m], zmaxFi [0 : m − 1], zmaxPi [1 : m])
2 if zmax0 < zinit then fail;
3 z0 := zinit ;
4 for i := 1,2, . . . ,m do
5 zi := zmaxi ;
6 if i < m and zmaxFi (zi ) fails then zi := SearchLargestZiF(zmaxFi , zi );
7 if zmaxPi (zi ) fails then zi := SearchLargestZiP(zmaxPi , zi );
8 end
9 for i := 0,1, . . . ,m − 1 do

10 z := zmaxFi (zi );
11 if z < zi+1 then zi+1 := z;
12 end
13 for i :=m,m − 1, . . . ,1 do
14 z := zmaxPi (zi );
15 if z < zi−1 then zi−1 := z;
16 end
17 if z0 < zinit then fail;
18 else return zi [0 : m];

Algorithm 4.1 – Algorithm for assigning optimal values to the parameters zi .

2. Lines 9–12:
It lowers the value of all zi+1 whenever the constraint

zi+1 ≤ zmaxFi (zi ) (4.3)

is not satis�ed. Since this constraint de�nes an upper bound on zi+1 that depends on
the value of zi , this procedure is carried out with i increasing from 0 tom − 1.

3. Lines 13–16:
It lowers the value of all zi−1 whenever the constraint

zi−1 ≤ zmaxPi (zi ) (4.4)

is not satis�ed. Since this constraint de�nes an upper bound on zi−1 that depends
on the value of zi , this procedure is carried out with i decreasing fromm to 1.

After completing the third stage, the computed values of zi at all path indices are such
that constraints of both groups are satis�ed, and it remains to check that the computed
initial velocity z0 corresponds to the initial speed of the robot (Line 17). In the case of a
mismatch (meaning that z0 had to be lowered during third stage), it is then impossible to
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follow the path with the speci�ed initial speed while satisfying all physical constraints, and
the speed pro�le computation returns an error.

Otherwise, one can straightforwardly compute, from the value of zi at all indices and
the geometry of the path, the instant ti at which the corresponding con�guration will be
reached.

Indeed, in the case of a forward or backward path segment, the amount of time ∆ti
needed for travelling the distance si of the (i + 1)-th step is given by

∆ti =
2 |si |

|vi +vi+1 |
=

2
√

2 |si |
(sinωi + cosωi ) zi + (sinωi+1 + cosωi+1) zi+1

,

for all i ∈ [0,m − 1], where ωi is de�ned as in Equation 4.2.

In the case of a local turn path segment, if θi denotes the orientation of the robot at the
path index i , the length of the circular arc driven by the left wheel during the (i + 1)-th is
given by ��sLi �� = e

2 |[θi − θi+1]| ,

and the amount of time ∆ti needed for performing this step is given by

∆ti =
2 ��sLi ����vLi +vLi+1

�� =
2 ��sLi ��

zi + zi+1
.

Let us remind that the instant ti is given by

ti =
∑

0≤j<i
∆tj ,

for all i ∈ [0,m].

The computational cost of this algorithm is linear in the number of path steps, provided
that all constraints can be solved in bounded time.

Figure 4.3 shows an example of the execution of this algorithm for a given discretized
path and some set of physical constraints. This �gure depicts:

• In blue: the velocities assigned after the �rst stage of the algorithm. They are such
that they all satisfy the local state constraints.

• In green: the velocities assigned after the second stage. They now also satisfy the
constraints zi+1 ≤ zmaxFi (zi ) (i.e., an upper bound on the acceleration of the robot).
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• In red: the velocities assigned after the third stage. They now satisfy all the given
physical constraints.

zi

0 m

step

Figure 4.3 – Execution of the algorithm.

4.2.3 Correctness, Optimality and Completeness of the Algorithm

Constraints Properties

In order to prove that Algorithm 4.1 is correct and optimal, it is essential to de�ne some
properties that need to be ful�lled by our set of physical constraints. In Section 4.2.4, we
will prove that the 16 physical constraints considered for the Eurobot application actually
satisfy these properties.

1. Local state constraints (i.e., constraints that only involve the velocity zi at a given
path index i ) should all translate into a positive upper bound on the velocity zi . In
other words, this means that a velocity of zero should satisfy the local state con-
straints for all i ∈ [0,m].

This implies, for example, that constraints that impose a minimal positive speed
can not be processed by this algorithm, and therefore this method is not suited for
computing an optimal speed pro�le for an airplane or other vehicles that need a
minimum speed to operate properly.

2. As already discussed in Section 4.2.1, the conjunction of all transition constraints
ϕi (z,zi+1) (i.e., constraints that involve the velocities zi and zi+1 at two successive
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indices i and i + 1 of the path) should satisfy the following properties:

∀i ∈ [0,m − 1], ∀zi ,z ′i ,zi+1 : z ′i ≤ zi ∧ ϕi (zi ,zi+1)

⇒ ∃z ′i+1 : z ′i+1 ≤ zi+1 ∧ ϕi (z
′
i ,z
′
i+1), (4.5)

∀i ∈ [1,m], ∀zi ,z ′i ,zi−1 : z ′i ≤ zi ∧ ϕi−1 (zi−1,zi )

⇒ ∃z ′i−1 : z ′i−1 ≤ zi−1 ∧ ϕi−1 (z
′
i−1,z

′
i ). (4.6)

This means that, if zi makes the constraints ϕi (zi ,zi+1) and ϕi−1 (zi−1,zi ) satis�able,
then this value can always be lowered while still allowing the two constraints to be
satis�able, which is physically sound.

3. As a legitimate requirement, we also impose that

ϕi (0,0) (4.7)
holds for all i ∈ [0,m].

This means that, with an in�nite amount of time, it should always be possible to
move from one con�guration to another. This also means, for example, that this
method can not handle physical constraints that impose a positive minimal acceler-
ation when the robot is stationary.

4. In order to be able to prove the optimality of the algorithm, the conjunction of all
transition constraints should also have these properties:

∀i ∈ [0,m − 1], ∀zi ,zi+1 : ϕi (zi ,zi+1) ∧ :z ′i+1 : z ′i+1 > zi+1 ∧ ϕi (zi ,z
′
i+1)

⇒ :z ′i ,z
′
i+1 : z ′i ≤ zi ∧ z

′
i+1 > zi+1 ∧ ϕi (z

′
i ,z
′
i+1), (4.8)

∀i ∈ [1,m], ∀zi ,zi−1 : ϕi−1 (zi−1,zi ) ∧ :z ′i−1 : z ′i−1 > zi−1 ∧ ϕi−1 (z
′
i−1,zi )

⇒ :z ′i ,z
′
i−1 : z ′i ≤ zi ∧ z

′
i−1 > zi−1 ∧ ϕi−1 (z

′
i−1,z

′
i ). (4.9)

This means that if zi+1 (resp. zi−1) is the largest achievable velocity from zi , lowering
zi will never allow to achieve a velocity z ′i+1 larger than zi+1 (resp. z ′i−1 larger than
zi−1). In other words, if we assume, for example, that the robot is moving forward,
lowering (resp. increasing) the speed at the beginning of a step can not allow to
accelerate (resp. decelerate) to a larger (resp. slower) speed while travelling the step,
which is physically sound.
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As a consequence from all these requirements, we can also derive the following properties:

• For the local state constraints, we have

zmaxi ≥ 0, (4.10)
for all i ∈ [0,m].

• If zmaxLi denotes the velocity at the path index i after the �rst stage of the algorithm,
from Property 4.7 and Property 4.10, we have

zmaxLi ≥ 0, (4.11)
for all i ∈ [0,m].

• If we recall that we have de�ned zmaxFi (z) as the largest value of zi+1 that makes
the constraint ϕi (z,zi+1) satis�able, and similarly zmaxPi (z) as the largest value of
zi−1 that makes the constraint ϕi−1 (zi−1,z) satis�able, as we know that after the �rst
stage, zmaxLi is such that ϕi (zmaxLi ,zi+1) and ϕi−1 (zi−1,zmaxLi ) are satis�able for at
least one zi+1 and one zi−1, by using Properties 4.5 and 4.6, we have

∀z : 0 ≤ z ≤ zmaxLi ⇒ zmaxFi (z) ≥ 0, (4.12)

for all i ∈ [0,m − 1], and

∀z : 0 ≤ z ≤ zmaxLi ⇒ zmaxPi (z) ≥ 0, (4.13)
for all i ∈ [1,m].

• Also from the de�nitions of zmaxFi (z) and zmaxPi (z), and by combining Properties 4.8,
4.9, 4.12 and 4.13, we can derive:

∀i ∈ [0,m − 1], ∀z,z ′ : 0 ≤ z ′ ≤ z ≤ zmaxLi ⇒ zmaxFi (z
′) ≤ zmaxFi (z), (4.14)

∀i ∈ [1,m], ∀z,z ′ : 0 ≤ z ′ ≤ z ≤ zmaxLi ⇒ zmaxPi (z
′) ≤ zmaxPi (z). (4.15)

• Note that, from the de�nitions of zmaxFi (z) and zmaxPi (z), we can also derive the
following properties:

∀i ∈ [0,m − 1], ∀z : 0 ≤ z ≤ zmaxLi ⇒ z ≤ zmaxPi+1 (zmaxFi (z)), (4.16)

∀i ∈ [1,m], ∀z : 0 ≤ z ≤ zmaxLi ⇒ z ≤ zmaxFi−1 (zmaxPi (z)). (4.17)

Indeed, as zmaxPi (z) is the largest value of zi+1 that makes the constraint ϕi (z,zi+1)

satis�able, the largest value z ′ that makes the constraint ϕi (z ′,zmaxPi (z)) satis�able
is at least equal to z (because ϕi (z,zmaxPi (z)) is satis�able), which prove the Prop-
erty 4.16. A similar reasoning can be used to prove Property 4.17.
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Note that, as discussed previously, constraints in both groups may be context-sensitive:
The constraints involving zi and zj at two di�erent locations i and j can di�er, or be
expressed with respect to di�erent values of parameters. This makes it possible, for instance,
to impose tighter speed limits in the close vicinity of obstacles, or to express the admissible
angular velocity of a wheel as a function of the robot speed.

Correctness

To prove correctness of Algorithm 4.1, we show that after its three stages, the computed
values of zi at all path indices are such that all the physical constraints are satis�ed.

In other words, we prove that the computed values of zi satisfy:

∀i ∈ [0,m] : zi ≤ zmaxi (4.18)

∀i ∈ [0,m − 1] : zi+1 ≤ zmaxFi (zi ) (4.19)

∀i ∈ [1,m] : zi−1 ≤ zmaxPi (zi ). (4.20)

After completing the �rst stage of the algorithm, the constraints zi ≤ zmaxi are satis�ed.
Further operations performed by the algorithm will only be able to decrease the value of
the variable zi or to leave it unchanged, hence guaranteeing that the constraint zi ≤ zmaxi

will stay satis�ed.

After the second stage, all the constraints zi+1 ≤ zmaxFi (zi ) are satis�ed.

At the end of the third stage, all the constraints zi−1 ≤ zmaxPi (zi ) are satis�ed. It is
however not obvious that the constraint zi ≤ zmaxFi−1 (zi−1), which was satis�ed at the end
of the second stage, still holds. We prove that the validity of this constraint is preserved
during third stage by considering the two possible scenarios:

• If the value of zi−1 computed during the second stage has not been modi�ed during
the third stage, then the constraint zi ≤ zmaxFi−1 (zi−1) still holds, since the value of
zi has not been increased during the third stage.

• If the value of zi−1 computed during the second stage has been lowered during the
third stage, then the �nal value of zi−1 satis�es

zi−1 = zmaxPi (zi ).

From Property 4.17, we have

zi ≤ zmaxFi−1 (zmaxPi (zi )),
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hence
zi ≤ zmaxFi−1 (zi−1),

which establishes that the constraint 4.19 is still satis�ed for all i ∈ [0,m − 1].

Optimality

In this section, we prove that this optimization algorithm yields a time-optimal speed pro-
�le. This can be done by showing that increasing the speed of the robot at any location on
the path would lead to violating at least one physical constraint.

Indeed, after executing the three main stages of this algorithm, there is four possible cases
for the computed values of zi :

1. z0 corresponds to the initial speed of the robot. This velocity can not be increased
since this value can not be modi�ed.

2. For all i ∈ [1,m] : zi has been lowered for the last time in the �rst stage of the
algorithm (i.e., in order to satisfy zi ≤ zmaxi or to allow ϕi (zi ,zi+1) and ϕi−1 (zi−1,zi )

to be satis�able). This velocity can not be increased, since increasing it would lead
to violating at least one local state constraint, or preventing at least one transition
constraint to be satis�able.

3. For all i ∈ [1,m] : zi has been lowered for the last time in the second stage (i.e., in
order to satisfy zi ≤ zmaxFi−1 (zi−1)). From Property 4.14, we know that this velocity
can only be increased if zi−1 is increased.

4. For all i ∈ [0,m − 1] : zi has been lowered for the last time in the third stage (i.e., in
order to satisfy zi ≤ zmaxPi+1 (zi+1)). From Property 4.15, we know that this velocity
can only be increased if zi+1 is increased.

Furthermore, if a value of zi is lowered for the last time in the second stage, then zi neces-
sarily satis�es

zi = zmaxPi−1 (zi−1).

From Property 4.16, we have
zi−1 ≤ zmaxPi (zmaxFi−1 (zi−1)),

hence
zi−1 ≤ zmaxPi (zi ),

which establishes that zi−1 has not been lowered during the third stage, and thus that it
will never exist cycle situations where zi may only be increased if zi−1 is increased, and
where at the same time zi−1 may only be increased if zi is increased.
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Therefore, for all i ∈ [0,m], we can construct for zi a list of dependencies that will
always stop in z0 or in a value that has been lowered for the last time in the �rst stage.
Since this value can not be increased without violating a constraint, going through the
list, no value can be increased. Hence, as a consequence, zi can not be increased without
violating at least one constraint. Therefore, the value of zi at the end of the algorithm is
optimal.

Completeness

Let, as previously, zmaxLi denote the velocity at the path index i after the �rst stage of the
algorithm. Since all other operations (i.e., after the �rst stage) performed by the algorithm
will only be able to decrease the value of the variable zi or leave it unchanged, we can prove
from Properties 4.11, 4.12 and 4.13, that the di�erent stages of the algorithm will never fail,
and therefore that this algorithm will always terminate, provided that all constraints can
be solved in bounded time.

There are, actually, four possible execution scenarios:

1. The algorithm fails before the �rst stage because zmax0 < zinit , and it is trivial to
show that there is no speed pro�le that satisfy the constraints.

2. The algorithm fails after the third stage because z0 < zinit , and because the algorithm
is correct and time-optimal, we can show that z0 can not be increased, hence there
is no speed pro�le that satisfy the constraints.

3. The algorithm computes a speed pro�le where two or more consecutive velocities
are equal to zero. In this case the robot need an in�nite amount of time to reach
the destination, and from the same arguments of correctness and optimality, we can
show that there is no speed pro�le that satisfy the constraints and that reaches the
destination in bounded time.

4. In all other cases, the algorithm computes a speed pro�le that is correct and time
optimal.

4.2.4 Constraints Considered for the Eurobot Application

We now show that the 16 physical constraints (de�ned in Section 4.1.5), that we consider
for the Eurobot application, comply with the requirements that we have de�ned in Sec-
tion 4.2.3.
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All the developments related to these constraints are provided (for every kind of seg-
ment) in Appendix A.

First, the parameters vfm, vLRmin, vLRmax , vSmin, vSmax , aCmin, aCmax , θ̇Smax , and the
functions vmin, vmax and θ̇max all translate into a positive upper bounds on the velocity
zi , and therefore a velocity of zero satis�es all the local state constraints for all i ∈ [0,m],
which ful�lls our �rst requirement.

Second, the parameters aTmin, aTmax , and the functions aLRmin, aLRmax aSmin and aSmax

all translate into constraints over the velocities at two successive path indices.

For simplicity, we will only show here that these transition constraints comply with our
requirements in the case of forward path segments. A similar reasoning straightforwardly
applies to backward or local turns path segments.

From Appendix A, we have:

aTi =
(sinωi+1 + cosωi+1)

2 z2
i+1 − (sinωi + cosωi )

2 z2
i

4si

aLi =
(cosωi+1 zi+1 − cosωi zi ) (sci zi + sci+1 zi+1)

2si

aRi =
(sinωi+1 zi+1 − sinωi zi ) (sci zi + sci+1 zi+1)

2si

aSi =

(
sci+1 zi+1
cosθSi+1

−
sci zi

cosθSi

)
(sci zi + sci+1 zi+1)

4si
,

where

sci = sinωi + cosωi ,

sci+1 = sinωi+1 + cosωi+1,

aTi , aLi , aRi and aSi denote respectively the tangential acceleration of the robot, and the
tangential acceleration of left, right and steering wheels during the (i + 1)-th step of the
trajectory, and where ωi and θi are as previously de�ned.
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These translate into the following transition constraints:

aTmin ≤ aTi ≤ aTmax

aLRmin ≤ aLi ≤ aLRmax

aLRmin ≤ aRi ≤ aLRmax

aSmin ≤ aSi ≤ aSmax .

From Section 4.1.5, we know that all the lower bounds are always lower or equal to
zero, and similarly that all the upper bounds are always larger or equal to zero, then, all
these constraints are satis�ed with the velocities zi = 0 and zi+1 = 0.
Therefore

ϕi (0,0)
holds for all i ∈ [0,m].

Constant Transition Constraints

For now, we will assume that the functions aLRmin, aLRmax aSmin and aSmax , that describe
the constraints, are constant (i.e., they do not depend on the wheel speeds).

We �rst show that if the transition constraints are satis�ed with zi and zi+1, they are
also satis�ed with z ′i = k zi and z ′i+1 = k zi+1, for all k ∈ [0,1].

Indeed, for the tangential acceleration, we have

a′Ti =
(sinωi+1 + cosωi+1)

2 z ′2i+1 − (sinωi + cosωi )
2 z ′2i

4si

=
(sinωi+1 + cosωi+1)

2 k2 z2
i+1 − (sinωi + cosωi )

2 k2 z2
i

4si

= k2 aTi ,

and similarly, for the other accelerations, we have

a′Li = k
2 aLi

a′Ri = k
2 aRi

a′Si = k
2 aSi .
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Since k ∈ [0,1], and since all the transition constraints are satis�ed with zi and zi+1,
the new transition constraints

aTmin ≤ a′Ti ≤ aTmax

aLRmin ≤ a′Li ≤ aLRmax

aLRmin ≤ a′Ri ≤ aLRmax

aSmin ≤ a′Si ≤ aSmax .

are necessarily satis�ed, which proves by construction that the transition constraints com-
ply with Properties 4.5 and 4.6.

It remains to prove that the transition constraints also comply with the two last Proper-
ties 4.8 and 4.9. We prove this in the following way: if zi+1 is the largest achievable velocity
from zi that satisfy the transition constraints, this means that at least one of the transition
constraint is such that increasing zi+1 leads to increasing its corresponding acceleration in
absolute value, and at the same time, leads to violating the constraint.

Let, for instance, this constraint be the one on the tangential acceleration of the robot,
we have

��aTi �� =
���(sinωi+1 + cosωi+1)

2 z2
i+1 − (sinωi + cosωi )

2 z2
i
���

4si
,

since we know that increasing zi+1 leads to increasing ��aTi ��, we know that

(sinωi+1 + cosωi+1)
2 z2

i+1 ≥ (sinωi + cosωi )
2 z2

i ,

and thus, whatever the geometry of the path, since ��aTi �� can not be increased without vio-
lating the constraint, lowering zi leads to a lower or equal value of zi+1.

If this constraint is, on the other hand, for example, the one involving the tangential
acceleration of the left wheel, this property becomes less obvious, but since this acceleration
can also be estimated in the following way

��aLi �� = ��vLi+1 − vLi
��

∆ti

'

���v2
Li+1
− v2

Li
���

2 ��sLi ��
=

���cos2ωi+1 z
2
i+1 − cos2ωi z

2
i
�����sLi �� ,
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where ��sLi �� is the distance1 driven by the left wheel during the (i + 1)-th step, this leads to
the same conclusion.

With a similar reasoning for the right and for the steering wheels, we prove that if zi+1
is the largest achievable velocity from zi that satis�es the transition constraints, lowering
zi will not allow to achieve a velocity z ′i+1 that is larger than zi+1, which proves that the
transition constraints comply with the Property 4.8.

Symmetrically, If zi−1 is the largest velocity that allows to achieve zi while satisfying
the transition constraints, this means that at least one of the transition constraints is such
that increasing zi−1 leads to increasing its corresponding acceleration in absolute value,
and at the same time, leads to violating the constraint.

Let, for instance, consider the constraint involving the tangential acceleration of the
robot. We have

��aTi−1
�� =

���(sinωi + cosωi )
2 z2

i − (sinωi−1 + cosωi−1)
2 z2

i−1
���

4si−1
,

since we know that increasing zi−1 leads to increasing ��aTi−1
��, we know that

(sinωi−1 + cosωi−1)
2 z2

i−1 ≥ (sinωi + cosωi )
2 z2

i ,

and thus, whatever the geometry of the path, since this ��aTi−1
�� can not be increased without

violating the constraint, lowering zi leads to a lower or equal value of zi−1.

Once again, we can follow a similar reasoning for the acceleration on the various
wheels, which proves that the transition constraints also comply with the Property 4.9.

Transition Constraints That Depend on the Speed

If the minimum and maximum accelerations of a wheel depend of its speed, the problem
of computing a time-optimal speed pro�le is more complicated. Indeed, as we assume
constant-acceleration motion when we are travelling a step, the speed of this wheel usually
changes throughout the step.

As a consequence, knowing the maximal and minimal acceleration of the wheel as a
function of the speed is not enough, and we will need a way to estimate the maximal and
minimal mean acceleration of that wheel as functions of its initial speed and of the distance

1 Note that this distance can be equal to zero. In this case the corresponding transition constraint naturally
always holds, and thus can not be the limiting one.
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travelled by that wheel.

Figure 4.4 shows the typical curve for the maximal acceleration (as a function of the
wheel speed vw ) of a wheel driven by a DC electrical motor. For low speeds, the accelera-
tion is bounded by amax and when the absolute value of the speed exceeds a certain limit,
the acceleration decreases linearly when the absolute value of the speed increases.

a0 − bvw

a0

amax

a0 + bvW

a0 − amax

b

a0
b

amax − a0
b

−
a0
b

vWmaxvWmin

acceleration

vW

Figure 4.4 – Maximal acceleration in function of the wheel speed.

With this kind of acceleration curve, it is also possible to prove that the transitions
constraints comply with Properties 4.5, 4.6, 4.8 and 4.9.

Assume, for instance, that the speed of the wheel at the beginning of the (i + 1)-th step
is equal to vwi , and that swi is the distance that must be driven by that wheel during this
step.
If we have

a0 − amax

b
≤ vwi ≤

a0
b
,

and if vwmaxi+1 denotes the maximal speed of the wheel (i.e., satisfying the maximal accel-
eration curve) at the end of the step, then we also have

a0 − amax

b
≤ vwmaxi+1 ≤

a0
b

We can then focus, on the positive part of the acceleration function that is not constant,
that is
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a(vw ) = a0 − bvw (4.21)

with a0 > 0 and b > 0.

Let us �rst express the travelled distance as a function of the wheel speed. Since the
acceleration a of an object over a period of time is de�ned as its change in velocity divided
by the duration of the period, we have

a =
dv

dt
,

and, since the speedv of an object over a period of time is de�ned as its change in position
divided by the duration of the period, we have

a =
dv

dt
·
ds

ds
=
ds

dt
·
dv

ds
= v

dv

ds
,

thus, we obtain

ds =
v

a
dv,

∫
ds =

∫
v

a
dv .

Let ŝi (vw ) denotes the function that compute the distance travelled by the wheel when
the speed of that wheel reached vw ≥ vwi with maximal acceleration, starting from an
initial wheel speed of vwi . We have

ŝi (vw ) =

∫ vw

vwi

v

a(v )
dv

=
b

(
vwi − vw

) + a0 log a0−b vwi
a0−b vw

b2 .

We can calculate (see Appendix A.5) the reciprocal of this function. Let v̂i (sw ) denote the
function that compute the speed reached by the wheel with maximal acceleration after
travelling the distance sw , starting from an initial wheel speed of vwi . We have

v̂i (sw ) =
a0
b

(
1 +W0

((
b

a0
vwi − 1

)
e
(
b
a0 (vwi −b sw )−1

) ))
,

whereW0 is the main branch of the LambertW -function.
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The Lambert W -function2 W (x ), depicted in Figure 4.5, is de�ned as the reciprocal
function of f (W ) = W eW . The Lambert W -function is de�ned for all x ≥ − 1

e , and is
double-valued for x ∈ [− 1

e ,0[. The constraintW (x ) ≥ −1 de�nes the functionW0 (x ) (i.e.,
the main branch of the LambertW -function), the constraintW (x ) ≤ −1 de�nes the lower
branchW−1 (x ).

Figure 4.5 – The LambertW -functionW (x ).

Finally, the maximal mean acceleration of the wheel for the (i + 1)-th step satisfying
the acceleration curve, is given by

âwmax (vwi ,swi ) =
v̂2
i (swi ) − v

2
wi

2swi

(4.22)

where vwi ≥
a0−amax

b is the speed of the wheel at the beginning of the step, and swi is the
distance that is driven by that wheel during this step.

The maximal acceleration constraint for that wheel becomes

awi ≤ âwmax (vwi ,swi )

where awi denotes the tangential acceleration of the wheel.

We can see3 in Figure 4.6 that for a �xed value of swi , v̂i (swi ) decreases monotonously

2 Note that very e�cient numerical approximations are known for computing the LambertW -function [Fuk13],
note also that functions for computing the two branchesW0 (x ) andW−1 (x ) are available in the GNU Scienti�c
Library (GSL).

3 Knowing that dW (x )
dx =

W (x )
x (1+W (x )) , we can even prove, for all a0 > 0, b > 0, swi > 0 and vwi ∈ [0, a0

b ], that
dv̂i (swi )
dvwi

∈ [0,1], and thus that dâwmax (vwi ,swi )
dvwi

∈ �≤0.
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whenvwi decreases, and that âwmax (vwi ,swi ) increases monotonously whenvwi decreases,
which is exactly what is needed in order to comply with the required properties.

Indeed, �rst, if the constraint is satis�ed withvwi andvwi+1 , then it is also satis�ed with
v ′wi
= k vwi and v ′wi+1 = k vwi+1 , and second, since v̂i (swi ) = vwmaxi+1 is the largest achiev-

able velocity fromvwi that satisfy the constraint, and since v̂i (swi ) decreases monotonously
when vwi decreases, lowering vwi will not allow to achieve a velocity v ′wi+1 that is larger
than vwmaxi+1 .

Therefore, if we do similar calculations for vwi <
a0−amax

b and for the minimal ac-
celeration, dealing with the various transitions inside the curves, we can prove that the
transitions constraints, in cases of acceleration curves like in Figure 4.4, also comply with
Properties 4.5, 4.6, 4.8 and 4.9.

vwi

(a) v̂i (swi ) (b) âwmax (vwi ,swi )

Figure 4.6 – a0 = 2, b = 1, swi = 0.25.

It is worth mentioning that similar results can be established for other acceleration
curves, like, for example, the ones corresponding to internal combustion engines.

4.2.5 Improvements of the Optimization Algorithm

As already mentioned, provided that all constraints can be solved in bounded4 time, the
computational cost of our optimization algorithm is linear in the number of path steps. But
as e�ciency is one of our major concerns, we can further improve our algorithm to reduce
its time cost in most of the cases.

4 Which is, as we show in Appendix A, the case for the 16 physical constraints considered for the Eurobot
case.



4.2. Solution 83

First, in Algorithm 4.2, we introduce two improvements that do not negatively a�ect
the properties of correctness, optimality and completeness of Algorithm 4.1:

1. The �rst two stages of the previous algorithm can be mixed in the same loop, and
since, for all i ∈ [1,m − 1], the values of zi will now already satisfy the constraint
ϕi−1 (zi−1,zi ), they will be, in most cases, smaller than zmaxi . Therefore, zmaxFi (zi ) is
less likely to fail (i.e., ϕi (zi ,zi+1) is more likely to be satis�able for at least one zi+1)
than in the �rst version of the algorithm, reducing the computation time.

Note also that, since ϕi−1 (zi−1,zi ) is satis�ed and since further operations will only
be able to decrease zi , from Property 4.6, we know now that zmaxPi (zi ) will never
fail.

2. From the optimality proof, we know that if in the last stage zi = zmaxPi−1 (zi−1)

(i.e., if zi has been lowered by the transition constraints in the �rst loop), using
Property 4.16, we have

zi−1 ≤ zmaxPi (zmaxFi−1 (zi−1)),

zi−1 ≤ zmaxPi (zi ),

which establishes that zi−1 can not be lowered in the last stage, thus we can avoid
computing zmaxPi (zi ) in this case, which will also likely reduce the computation time.

Note that, we can even do better, and only compute zmaxPi (zi ) when zi is smaller
than the smallest z ′i that makes the constraint ϕi−1 (zi−1,z

′
i ) satis�able.

A second improvement strategy is to notice that, for transition constraints that depend
on the speed, if the sampling steps are su�ciently small, then it is not necessary anymore
to compute the maximal and minimal mean acceleration. Indeed, for su�ciently small steps
(in regards to the derivative of the acceleration functions), the distances that are travelled
by the wheels are small and we will have

âwmax (vwi ,swi ) ' awmax (vwi ),

âwmin (vwi ,swi ) ' awmin (vwi ).

One can remark that, if for zmaxFi (zi ) we use this approximation with zi to compute
the transitions constraints, and if for zmaxPi+1 (zi+1) we use this approximation with zi+1,
then Property 4.6 may no longer be valid.

Indeed, for a wheel driven by an electrical motor, we see in Figure 4.4, that the acceler-
ation decreases monotonously with the wheel speed, thus if zi+1 > zi , ϕi (zi ,zi+1) could be
satis�ed when we approximate the constraints with zi and in the same time not satis�ed
when we approximate the constraints with zi+1.
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1 Function Optimize2-z(m, zinit , zmaxi [1 : m], zmaxFi [0 : m − 1], zmaxPi [1 : m])
2 if zmax0 < zinit then fail;
3 z0 := zinit ;
4 for i := 0,1, . . . ,m − 1 do
5 zi+1 := zmaxi+1 ;
6 z := zmaxFi (zi );
7 if zmaxFi (zi ) fails then
8 zi := SearchLargestZiF(zmaxFi , zi );
9 reducedByFi[i] := false;

10 z := zmaxFi (zi );
11 end
12 if z < zi+1 then
13 zi+1 := z;
14 reducedByFi[i + 1] := true;
15 else
16 reducedByFi[i + 1] := false;
17 end
18 end
19 for i :=m,m − 1, . . . ,1 do
20 if reducedByFi[i] then
21 z := zmaxPi (zi );
22 if z < zi−1 then
23 zi−1 := z;
24 reducedByFi[i − 1] := false;
25 end
26 end
27 end
28 if z0 < zinit then fail;
29 else return zi [0 : m];

Algorithm 4.2 – Improved algorithm for assigning optimal values to zi .

This problem can easily be solved: in the forward stage (i.e., when we compute zmaxFi ),
one can approximate the constraints using the value of zi and in the backward stage (i.e.,
when we compute zmaxPi+1 ), to ensure satis�ability, use the minimum between zi+1 and zi
(i.e., the least restrictive velocity). Providing that the steps are su�ciently small, since the
error induced by this approximation is at most equal to the e�ect of one step, the computed
values remain close to the exact ones.
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4.2.6 Static Steps

The case of static steps is much easier to handle than forward, backward or local turn path
segments. Since the robot is stationary, we do not need to compute an optimal value for
the velocity of the robot, but only the duration of the steps.

First, since a sequence of static steps is semantically equivalent to a single one, we can
assume w.l.o.g. that every static segment is composed of a single static step (i.e., that the
path segment (m,σ ) under analysis is such that m = 1 and ν0 = S ). The problem then
reduces to computing the delay µ (0) associated to this step. There are two situations to
consider:

• With a di�erential drive locomotion platform. No speci�c constraint has to be satis�ed,
hence one has

µ (0) = 0.

• With a tricycle locomotion platform. In this case, the maximum rate of variation of
the steering angle must not be exceeded. The angle steered during the step is given
by

[θS1 − θS0],

where for each i ∈ {0,1}, we have

θSi =



arctan(e ′κ̃i ) if κ̃i , {−∞,+∞}
π

2 if κ̃i = +∞

−
π

2 if κ̃i = −∞.

The constraint

��[θS1 − θS0]��
∆t0

≤ θ̇Smax

then yields

µ (0) = ∆t0 =
��[θS1 − θS0]��

θ̇Smax
.

4.2.7 Experimental Results

In order to illustrate the e�ciency of our method, we report in Figure 4.7 the time needed for
running the speed pro�le algorithm on a few sample trajectories experienced in the Eurobot
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application, considering 16 distinct physical constraints of robots with di�erential as well as
tricycle drive. The computational cost typically amounts to less than quarter a millisecond
of CPU time on an i5-460M processor running at 2.53 GHz, which is several orders of
magnitude faster than techniques such as [SM85, CC00, VT08, BP11b, ZT13, KS12].

Nb. of path steps Path length Computation time Total time to travel
1 292 1.439 m 84.9 µs 2.543 s
2 520 2.570 m 156.0 µs 4.165 s
3 632 3.118 m 192.9 µs 4.967 s
4 656 3.215 m 209.8 µs 5.400 s
5 690 3.386 m 246.5 µs 6.478 s
6 1368 3.386 m 483.4 µs 6.480 s

Figure 4.7 – Experimental results.

0

m

(a) Path #5.
zi

0 m
step

(b) Execution of the algorithm for path #5 (with v0 = vfm = 0).

Figure 4.8 – Example of Eurobot trajectory.

Note that the sixth path is the same as the �fth, but with smaller sampling steps. This
path is depicted in Figure 4.8. As expected, the optimization algorithm returns very close
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results for those two inputs.

4.3 Trajectory Resampling

For each well-formed trajectory representation (De�nition 4.1.5), arbitrary resampling be-
tween two sample points can be computed by similar developments as for path resampling
(see Section 3.2.6). Therefore, for every t such that 0 ≤ t < tm , we can estimate accurately
the con�guration of the robot (xt ,yt ,θt ), the speeds of its left and right wheels (vLt ,vRt )
and, for a tricycle robot, the orientation and the speed of its steering wheel (θSt ,vSt ).

If ti ≤ t < ti+1, we already have travelled the (i + 1)-th step during
dt = t − ti .

And, as we assume constant acceleration motion during this step, we then have:
• If νi ∈ {F ,B}:

vi =
vLi +vRi

2 , vi+1 =
vLi+1 +vRi+1

2 ,

a =
vi+1 − vi

∆ti
,

v = vi + a dt ,

ds = dt vi + a
dt2

2 ,

– if κi = 0 (θi = θi+1):
xt = xi − ds sinθi ,

yt = yi + ds cosθi ,

θt = θi , θSt = θSi ,

vLt = vRt = vSt = v .

– if κi , 0:
xt = xi − a1 sindθ + a2 cosdθ − a2,

yt = yi + a1 cosdθ + a2 sindθ − a1,

θt = θi + dθ , θSt = θSi + dθS ,

vLt = v

(
1 − eκ̃

2

)
, vRt = v

(
1 + eκ̃

2

)
,

vSt =
v

cosθSt
,

where
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a1 =
sinθi
κi
, a2 =

cosθi
κi
,

dθ =
ds

si
· [θi+1 − θi ] ,

dθS =
ds

si
·
[
θSi+1 − θSi

]
,

κ̃ = κ̃i + ds

si
· (κ̃i+1 − κ̃i ) .

• If νi ∈ {L,R}:
a =

vLi+1 − vLi
∆ti

,

v = vLi + a dt ,

ds = dt vLi + a
dt2

2 ,

dsi = ∆ti vLi + a
∆t2

i

2 ,

xt = xi , yt = yi , θSt = θSi , θt = θi + dθ ,

vLt = v, vRt = −v,

vSt =
�����
2e ′
e
v
����� ,

where
dθ =

ds

dsi
· [θi+1 − θi ] .

• If νi = S :
xt = xi , yt = yi , θt = θi ,

θSt = θSi + dθS ,

vLt = vRt = vSt = 0,

where

dθS =
dt

∆ti
·
[
θSi+1 − θSi

]
.

4.4 Emergency Braking

In Section 4.2, we have shown how to solve the problem of computing a time-optimal
speed-pro�le for a given path representation, but in practical applications, one also need
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1 Function Braking-z(m, zinit , zminFi [0 : m − 1])
2 z0 := zinit ;
3 for i := 0,1, . . . ,m − 1 do
4 if zi == 0 then
5 zi+1 := 0;
6 else
7 zi+1 := zminFi (zi );
8 end
9 end

10 return zi [0 : m];

Algorithm 4.3 – Algorithm to compute an optimal braking trajectory.

to tackle the problem of reaching as fast as possible a speed of zero on a given path.

For instance, suppose that we are following a previously computed time-optimal speed
pro�le, and that, after some time and for some emergency reason, this trajectory has to
be aborted. The problem then consists in stopping as fast as possible the robot while still
satisfying its physical constraints.

Assuming that we have already computed a time-optimal speed pro�le for a path, we
show in this section how to compute an optimal braking speed pro�le for that path.

We consider w.l.o.g. that we start to brake at the index 0 of a path segment with an
initial velocity zinit

5.

Similarly to the de�nition of zmaxFi (zi ), due to constraints on the acceleration of the
robot, the value of zi at the beginning of the (i + 1)-th step also determines a lower bound
on the value of zi+1 at the end of this step (i.e., the smallest value of zi+1 that makes the
constraint ϕi (zi ,zi+1) satis�able). Let zminFi (zi ) denote this lower bound.

The problem of computing an optimal braking pro�le6 is then solved by the algorithm
given in Algorithm 4.3.

5 Note that from De�nition 3.2.7, forward and backward path segments are supposed to have a curvature of
zero at their origin. For the �rst path segment of a braking trajectory, since the initial velocity is �xed by
the state of the robot, we will naturally drop this requirement.

6 Note that, if the path is not long enough, it could be impossible to reach a velocity of zero at the end of the
last path segment. (In this case, in the Eurobot application, we arbitrarily decide to continue to brake while
following a straight line.)
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Indeed, from Property 4.5, we have

∀i ∈ [0,m − 1], ∀z,z ′ : 0 ≤ z ′ ≤ z ≤ zi ⇒ zminFi (z
′) ≤ zminFi (z), (4.23)

and since we already have computed a time-optimal speed pro�le, we know that before
computing our braking pro�le, all the velocities satisfy the physical constraints. Thus,
before computing the braking pro�le, we also have

zi+1 ≥ zminFi (zi ),

for all i ∈ [0,m − 1].

As a consequence, the new computed values of zi will be smaller or equal to the previ-
ous ones, and thus will also satisfy the local state constraints, which prove the correctness
of the algorithm. From the same Property 4.5, this also show that zminFi will never fail,
which prove the completeness of the algorithm.

Additionally from Property 4.23, by following a similar reasoning as for the optimality
of the time-optimal speed pro�le, we can also prove the optimality of this algorithm.

Note that, it is often reasonable to use less stringent physical constraints during the
computation of an emergency braking pro�le. But he who can do more can do less, and this
will not change the properties of correctness, optimality and completeness of the algorithm.



CHAPTER 5

Path Interpolation

This chapter addresses the problem of interpolating collision-free
paths expressed as a sequence of straight line segments, such as those
produced by planning algorithms, into smooth paths that can be precisely
followed by nonholonomic robots without slowing down excessively. The
solution that is presented in this chapter has the advantage of being sim-
pler than other existing approaches, and has a low computational cost
that allows a real-time implementation. It produces paths on which cur-
vature and variation of curvature are bounded at all points, and preserves
obstacle clearance. It aims at reducing the time needed for robots to reach
the destination while still avoiding the di�erent obstacles. Such paths
are constructed out of clothoids, which are curves with a curvature that
varies linearly with travelled distance.

5.1 Introduction

As we will see in Chapter 6, the general problem of moving a mobile robot from a con�gu-
ration to another while avoiding a given set of obstacles can be tackled by several methods,
such as cell decomposition [BLP85], roadmap [KWP+11], rapidly-exploring random trees
(RRT) [LKJ00], or potential �eld techniques [GC02].

In two-dimensional space, these path-planning algorithms usually produce obstacle-
free paths that are expressed as broken lines, i.e., sequences of straight line segments,
between the initial and �nal con�gurations.

A di�erential-drive robot, for example, cannot follow such a path without stopping
at the junction points between adjacent line segments in order to change its orientation,

91
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which wastes time. In fact, path-planning methods focus on the obstacle avoiding problem,
but usually do not consider the physical constraints of the robots.

This problem can, in particular, be alleviated by interpolating broken lines into smooth
curves along which the orientation of the robot and the curvature remain continuous ev-
erywhere.

This chapter addresses the problem of computing such interpolations, so as to obtain
paths that can be physically followed by a nonholonomic robot without the need for stop-
ping or slowing down excessively. We develop an interpolation algorithm that guarantees
that the obstacles cleared by a broken line are avoided as well by the resulting smoothed
out path.

Note that, in this chapter, we consider only the case of di�erential-drive robots, but
our results also apply to tricycle or car-like1 platforms.

5.2 Problem Statement

The problem that we consider consists of smoothing out a path expressed as a broken line.

We de�ne a broken line path as a sequence p0,p1, . . .pn of points, with n ≥ 1, such that

• each point pi , with i ∈ [0,n] is de�ned by its coordinates (xi ,yi ) in two-dimensional
space, and

• each intermediate pointpi , with i ∈ [1,n−1], is associated with a clearance parameter
ci ∈ �>0 ∪ {+∞}. The goal of this parameter is to give information about the nearest
obstacles of pi . It will be de�ned formally in the next paragraphs.

The path is composed of the successive straight line segments [p0,p1], [p1,p2], . . . ,
[pn−1,pn].

In this chapter, in order to deal with obstacles, we assume that robots have zero mea-
sure, in other words, that a path clears a set of obstacles i� the intersection between its
line segments and the union of all these obstacles is empty.

Note that the case of a robot with a cylindrical geometry of diameter d (i.e., a robot at a
position P occupies a region of the plane that corresponds to a disk of diameter d centered
1 For car-like platforms, since the curvature of the physically feasible paths is usually bounded, some restric-

tions may apply (see Section 5.4.4).
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safe zone

βi

pi : (xi ,yi )

pi−1 : (xi−1,yi−1)

pi+1 : (xi+1,yi+1)

ci

Di

obstacles

Figure 5.1 – Safe zone between adjacent segments.

in P , where d is a parameter of the robot) can straightforwardly be handled by growing
obstacles by d/2 (i.e., by computing the Minkowski sum of the obstacles with a disk of
diameter d ).

The purpose of the clearance parameter ci is to provide additional information about
the location of the obstacles that are avoided when moving along the segments [pi−1,pi ]
and [pi ,pi+1]. This is achieved by considering a disk Di that is tangent to both segments
(which implies that its center belongs to the inner bisector of the angle formed by these
segments), and that fully covers the obstacles cleared by the pair of segments.

This latter property precisely means that the area located between the disk Di and the
segments [pi−1,pi ] and [pi ,pi+1] is free from obstacles; we call this area the safe zone of
this pair of segments2. The point is that any interpolation of the path that is con�ned to
safe zones is guaranteed to avoid obstacles. The safe zone across pi is characterized by the
parameter ci , de�ned as the distance between pi and the points of tangency between Di

and the segments [pi−1,pi ] and [pi ,pi+1]. An illustration is provided in Figure 5.1.

The parameter ci may be left unde�ned (ci = +∞), in which case its value can be
replaced by the smallest of the lengths of the two segments. (In other words, Di is then
the largest disk simultaneously tangent to both segments.)

For each i ∈ [1,n − 1], we de�ne βi as the angle between the vectors −−−−→pi−1pi and −−−−→pipi+1,
which corresponds to the change in orientation of the robot when it moves from the seg-
ment [pi−1,pi ] to the segment [pi ,pi+1]. Without loss of generality, we assume βi , 0.

2 By extension, we consider that the segments themselves also belong to their safe zone.
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It is also natural to impose an upper bound on |βi |. Indeed, with a large value of βi , the
segments [pi−1,pi ] and [pi ,pi+1] can be followed in opposite directions, and it is not always
appropriate in such cases to interpolate the path into one that remains close to the seg-
ments. In this work, we arbitrarily impose the upper bound |βi | ≤ π/2 for all i ∈ [1,n − 1].
In the case of adjacent segments forming an acute angle, it then becomes necessary to
interleave an intermediate segment between them.

A di�erential-drive robot subject to physical constraints cannot follow a broken line
path without stopping at junction points. As we have seen in Chapter 4, such constraints
usually take the form of lower and upper bounds on the velocity and acceleration of the
robot measured at speci�c locations, such as its individual wheels, center of mass, or other
reference centers.

The speed that can be reached by the robot at some point of a path is then, among
others, bounded by a function of the absolute curvature |κ | at this point, as well as the rate
of variation ���dκds ��� of this curvature with respect to the linear travelled distance.

We are now ready to de�ne precisely the interpolation problem. Given a broken line
path, the goal is to compute a curve that leads from its origin to its endpoint staying within
safe zones, and such that the absolute curvature and variation of curvature remain small
at all points.

Note that, as already mentioned in previous chapters, for our Eurobot application, it is
essential to be able to carry out this operation with a low computational cost.

5.3 Related Work

Various solutions were proposed to generate smooth feasible paths for nonholonomic
robots. First, Dubins paths [Dub57] (paths composed of circular arc segments of maxi-
mum curvature and straight lines) are still commonly used for path smoothing. These
paths are easy to compute but have curvature discontinuities which cause robots to slow
down (and even stop) every time the curvature abruptly changes.

Other methods often use cubic splines [KH97], Bezier’s curves [CCE08], B-splines
[ESJ15] or NURBS (Non-Uniform Rational B-Splines) curves [AC05] to solve this issue, but
they do not necessarily result in tight bounds on the variation of curvature of the resulting
smoothed paths.

Clothoids, which are curves with a curvature that varies linearly with travelled distance,
manage to avoid this problem. Existing solutions usually only interpolate paths between
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con�gurations with zero curvatures [KM85] or use complex constructions of three clothoids
to interpolate between two con�gurations with di�erent curvatures [SS90, BP11a]. Meth-
ods like [SF96, FS04], also rely on clothoids, but since they are, in particular, able to deal
with complex maneuvers that require the change of the direction of motion, they are usu-
ally complex.

It is also worth mentioning that, in the majority of literature, it is proclaimed that
the evaluation of clothoids is computationally expensive, which motivates using splines or
Bezier curves. As we will see in Section 5.4.2, clothoids are expressed in term of Fresnel inte-
grals, for which very e�cient numerical approximations are known [Mie00]. Therefore, we
consider this problem to be a non-issue (or, at least, no more an issue on modern hardware).

Another interesting property of clothoids is that they correspond to the time-optimal
trajectories of di�erential-drive robots (i.e., the paths followed by di�erential-drive robots
when their wheels are driven at respectively their minimum and maximum acceleration,
as a result, for instance, of bang-bang control.). For these various reasons, we choose to
construct our paths out of clothoids.

5.4 Solution

We solve the interpolation problem in two steps, the �rst one being aimed at producing a
path in which the absolute curvature is bounded at all points, and the second one modifying
this path in order to now bound the rate of variation of curvature. In both steps, the
interpolated path has to stay within safe zones in order to clear obstacles.

5.4.1 Bounding Curvature

The �rst main problem is that at the junction point between two non collinear adjacent
segments of a broken line path, the curvature is in�nite, which cause the robot to stop at
this point.

In order to bound the absolute curvature throughout the path, we build a curve com-
posed of straight line segments (with zero curvature) and circle arcs (with constant curva-
ture), connected in such a way that continuity of the tangent vector is ensured everywhere.
On such a curve, the curvature can be expressed as a piecewise constant function with
respect to travelled distance.

We construct such a curve by computing, for each pair of adjacent segments ([pi−1,pi ],
[pi ,pi+1]) a value `i specifying the distance from pi at which the curve transitions from
the segments to a circle arc. In other words, `i corresponds to the distance between pi and
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`i

`i+1

pi+2

r
βi

pi−1

pi

pi+1
βi+1

Figure 5.2 – Segments tangent to a common circle.

each point of tangency between that circle arc and the segments. Of course, in order to
clear obstacles, it is necessary to have `i ≤ ci for all i ∈ [1,n − 1].

We compute `i by applying the following principle: If three or more consecutive seg-
ments are all tangent to a common circle, then the arcs that interpolate these segments
must belong to that circle, provided that they are located within safe zones. This solution
has the desirable property of keeping the curvature constant across two or more interpola-
tion steps, which is likely to reduce the time needed to travel the path by a speci�c robot.

We now show how to carry out this computation. Consider a path in which all seg-
ments are tangent to a common circle of radius r . This situation is illustrated in Figure 5.2.

At the points pi and pi+1, one has respectively

`i = r
�����tan βi

2
�����

and

`i+1 = r
�����tan βi+1

2
�����

Since, in this case, the constraint `i + `i+1 = ��pipi+1�� is satis�ed, we obtain

`i =
τi ��pipi+1��
τi + τi+1

(5.1)

`i+1 =
τi+1 ��pipi+1��
τi + τi+1

, (5.2)
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where

τi =
�����tan βi

2
�����

for all i .

Note that these expressions do not involve r , and that Equation 5.1 can be rewritten at
the point pi into

`i =
τi ��pi−1pi ��
τi−1 + τi

. (5.3)

For general paths, successive segments are not tangent to a common circle, and Equa-
tions 5.1 and 5.3 then provide di�erent values for `i .

Our strategy is, for all i ∈ [1,n − 1], to de�ne `i as the smallest value among those
expressed by Equations 5.1 and 5.3, and the clearance parameter ci .

This solution also applies to pairs of adjacent segments that turn in opposite directions;
in such a case, small values of ��βi �� (which represent small changes of direction) lead to
small circle arcs, and large values of ��βi �� to large arcs, which is geometrically sound.

First Results

This bounding curvature step has two e�ects: it reduces the total length of the path, and
it bounds, as most as possible, the curvature at all points of the path, while still clearing
obstacles. These two e�ects naturally reduce the total time needed for following the path
by a robot. This can be experimentally veri�ed using the time-optimal speed pro�le devel-
oped in Chapter 4. Figures 5.3 and 5.4 show these results for one of the robots used in the
context of the Eurobot contest.

For this robot, due to its physical constraints, we need 22.5 s to follow the 3.57 m of the
broken line, but only 11.53 s to follow the 3.34 m of the same path with bounded curvature.
This is a great improvement, but we see on Figure 5.4 that the robot still does need to nearly
stop every time the curvature abruptly changes, which is ine�cient.

5.4.2 Bounding Curvature Variations

We now turn to the problem of modifying the path produced at the previous step, which has
a curvature that is piecewise constant, into one in which the rate of variation of curvature
with respect to travelled distance remains bounded. Clearing obstacles is achieved by
constraining the interpolation to remain within safe zones. The resulting path must have
a curvature that is continuous, bounded, and of bounded slope, at all points.
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0

m

(a) Broken line path (3.57 m).

0

m′

(b) Same path with bounded curvature (3.34 m).

Figure 5.3 – Example of path with bounded curvature.

zi

0 m

step

(a) Speed pro�le computation for the broken line (v0 = vfm = 0).
zi

0 22.51s
time

(b) Time-optimal speed pro�le for the broken line.

zi

0 m′
step

(c) Speed pro�le computation with bounded curvature (v0 = vfm = 0).
zi

0 11.53s
time

(d) Time-optimal speed pro�le with bounded curvature.

Figure 5.4 – Associated speed pro�les.
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As already discussed, we construct such curves out of clothoids, which, as already
said, correspond to the time-optimal trajectories of di�erential-drive robots (i.e., the paths
followed by di�erential-drive robots when their wheels are driven at respectively their
minimum and maximum acceleration).

Clothoids

Clothoids are formally de�ned as curves with a curvature that varies linearly with travelled
distance.

Figure 5.5 – The unit clothoid3.

The curvature κ of the clothoid is given by

κ (s ) = κ0 + cs, (5.4)

whereκ0 is the initial curvature, c is the clothoid sharpness (i.e., rate of change of curvature),
and s denotes the travelled distance.

3 The curve converges to the points marked with a red cross, as s tends to positive or negative in�nity.
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Recall from Chapter 3 that the curvature of a path is de�ned by

κ (t ) =
dθ

ds
,

where θ (s ) denotes the tangential angle of the path, we have

θ (s ) = θ0 + κ0s + 1
2cs

2, (5.5)

where θ0 is the initial tangential angle.

The general4 parametric expression of a clothoid is then


x (s ) = x0 +

∫ s

0
cos

(π
2 + θ0 + κ0u + 1

2cu
2
)
du

y (s ) = y0 +
∫ s

0
sin

(π
2 + θ0 + κ0u + 1

2cu
2
)
du .

(5.6)

Figure 5.5 shows the unit clothoid (x0 = y0 = κ0 = 0, θ0 = −
π
2 , c = 1).

The coordinates of the points visited by a clothoid are thus expressed in terms of the
integrals S (x ) and C (x )

S (x ) =

∫ x

0
sin t2 dt ,

C (x ) =

∫ x

0
cos t2 dt ,

which are known as the Fresnel integrals.

These integrals cannot be evaluated analytically, but, as already mentioned, can be
very e�ciently approximated [Mie00].

Note that, from Equations 2.5, 2.6, 2.18, 2.19 and 2.20, one can easily establish that
a di�erential robot with its wheels driven at respectively their minimum and maximum
acceleration actually follows a clothoid curve.

Computing a Pair of Clothoids

We now show how we use clothoids in order to construct a smooth path that clears obstacles.
Consider a circle arc with curvatureκC , interpolating two successive line segments [pi−1,pi ]
and [pi ,pi+1] within their safe zone. Let ti1 and ti2 denote the points of tangency between

4 Note that, as in the previous chapters, the orientation is chosen such that θ = 0 corresponds to a direction
that follows the y-axis.
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this circular arc and receptively the lines segment [pi−1,pi ] and [pi ,pi+1]. Let also θ1 and
θ2 denote the tangential angles at these two points. Assuming w.l.o.g. κC > 0 (the case
κC < 0 is handled symmetrically), we have established the following result.

Theorem 5.4.1. For every rotation angle βi ∈ ]0, π2 ] and for every pair of curvatures κ1,κ2
such that 0 ≤ κ1 < κC and 0 ≤ κ2 < κC , there exist two clothoids arcs moving respectively
from the curvatures κ1 to κM and from κM to κ2, with κM > κC , the concatenation of which
interpolates the path from ti1 to ti2 within the safe zone, with initial and �nal tangential
angles of respectively θ1 and θ2 = θ1 + βi and with continuity of the tangent vector at the
junction point between the two curves. The parameters of these two clothoids arcs are uniquely
determined by κ1, κ2, κC , and the rotation angle βi .

Our method for characterizing the two clothoids arcs consists in reasoning on a diagram
expressing the curvature of the interpolated path as a function of travelled distance. The
problem is illustrated in Figure 5.6 (exaggerating the curvatures in order to make the
interpolated path stand out from the circle arc). A proof of this theorem is provided in
Appendix B.

`i`i

pi+1
pi−1 βi

pi

κ1
κ2ti2

κC

κM

ti1

(a) Path geometry.

κM

sF

absolute
curvature |κ |

sM0
0
κ1

κ2

κC

slope c1 slope −c2

distance s

(b) Curvature graph.

Figure 5.6 – Interpolation with two clothoid arcs.
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Let sM denote the distance travelled along the �rst arc, and sF the total distance trav-
elled over both arcs. The linear rate of variation of curvature for these arcs are respectively
denoted by c1 and −c2. In the graph depicted in Figure 5.6(b), the grayed out area below
the curvature line must be equal to βi .

Note that κM , c1 and c2 can be expressed in terms of the other variables, since, from Equa-
tion 5.4, one has

κM = κ1 + c1sM = κ2 + c2 (sF − sM ) ,

and from Equation 5.5, one has

κ1sM + 1
2c1s

2
M = βi − κ2 (sF − sM ) −

1
2c2 (sF − sM )2 .

It thus remains to compute sM and sF given κ1, κ2, κC and βi .

We solve this problem numerically, observing empirically that the initial estimates

sF
sM
= 1 + κC − κ1

κC − κ2
, sF =

βi
κC

lead to very fast convergence with Newton-Raphson’s method5.

In practice, we �rst perform a variable change operation by de�ning

a =
c1 − c2
c1 + c2

and

cm =
c1 + c2

2 ,

and then carry out the search over the variables a and sF (while ensuring that c1 > 0 and
c2 > 0 in order to always turn in the same direction).

Intuitively, a is a measure of the asymmetry between the two clothoids arcs, and re-
mains small when κ1 and κ2 are reasonably balanced.

5 By exhaustively computing all the possible cases using a reasonably small discretization (i.e., 10−3rad for
βi and 10−4m−1 for curvatures), we have established that for βi ∈ ]0, π2 ], κC ∈ [0.01,1000], 0 ≤ κ1 < κC
and 0 ≤ κ2 < κC , we need at most 4 iterations to converge with an absolute position error less than 10−8m
and an absolute orientation error less than 10−8rad. Note that this even drops to at most 2 iterations for
κ1 ≤ 0.9κC and κ2 ≤ 0.9κC , which are always satis�ed in our Eurobot application (see next subsection).
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The value of sF is con�ned to an interval with a lower bound

βi
κC

equal to the distance travelled on the circle arc. Its upper bound corresponds to the mini-
mum value among

2
κC

tan βi
2 ,

which is the combined length of the line segments, and

βi
min(κ1,κ2)

,

which is the largest distance that can be travelled without lowering the curvature below
κ1 and κ2.

It is also worth mentioning that, in the particular case κ1 = κ2 = 0, this procedure can
be simpli�ed into one that does not rely on approximations [BP11a], except for evaluating
Fresnel integrals.

Indeed, w.l.o.g., we can assume that for the �rst clothoid segment we have θ0 = 0.
Because of symmetry, we also have c1 = c2 (i.e., a = 0) and the tangential angle at the end
of the �rst clothoid segment is given by

θM =
βi
2 .

From Equation 5.5, for a clothoid with a rate of variation of curvature equal to 1, we have

s ′F = 2s ′M = 2
√
βi ,

which we can use to compute the curvature κ ′C of the corresponding circular arc.

From Equations 5.5 and 5.6, we can observe that C de�ned as

C2 =
1
c
,

acts as a scaling factor for the clothoid.

Therefore, since we need a circular arc of κC instead of κ ′C , we �nally have

cm =

(
κC
κ ′C

)2
, sF = 2

√
βi

(
κ ′C
κC

)
.
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Choosing Curvature at the Extremities

Finally, in order to apply Theorem 5.4.1, it remains to choose values for κ1 and κ2 at the
extremities of interpolated curves. We use the following strategy:

• At the junction between a straight line segment and an arc, or between two arcs
turning in opposite directions, a natural choice is κi = 0.

• If we need to connect two arcs turning in the same direction, with respective cur-
vatures κC1 and κC2 which we assume w.l.o.g. to be positive, we have to choose a
curvature κi that satis�es κi < min(κC1,κC2).

This can be achieved by de�ning κi = f min(κC1,κC2), where 0 < f < 1 is a
reduction factor that can be arbitrarily chosen. For the Eurobot application, we have
observed that selecting f = 0.75 leads to paths along which both the curvature and
variation of curvature stay within acceptable bounds.

In fact, we can observe that increasing f leads to shorter paths with smaller interme-
diate maximum absolute curvatures (i.e., κM ), but with bigger maximum curvature
variations (i.e., max(c1,c2)). The real optimal value for f depends of the physical
constraints of the robot, but selecting f = 0.75 seems to be a good trade-o� for the
various robots considered in the Eurobot application.

5.4.3 Bounding Curvature Variations Results

As for the bounding curvature step, one can experimentally verify, using the time-optimal
speed pro�le developed in Chapter 4, that our method for interpolating paths with clothoids
usually reduces the total time needed for following the paths by a robot (even if the inter-
polated path is slightly longer). Figures 5.7 and 5.8 show these results for one of the robots
used in the context of Eurobot.

0

m

(a) Path with bounded curvature (3.34 m).

0

m′

(b) Same path (in green) with additional bounded
curvature variation (3.39 m).

Figure 5.7 – Example of path with bounded curvature and bounded curvature variation.
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zi

0 m

step

(a) Speed pro�le computation with bounded curvature (v0 = vfm = 0).

zi

0 11.53s

time

(b) Time-optimal speed pro�le with bounded curvature.

zi

0 m′
step

(c) Speed pro�le computation with bounded curvature variation (v0 = vfm = 0).

zi

0 6.48s

time

(d) Time-optimal speed pro�le with bounded curvature variation.

Figure 5.8 – Associated speed pro�les.
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For this robot, due to its physical constraints, we need (as in Section 5.4.1) 11.53 s to
follow a path of length 3.34 m with bounded curvature (i.e., composed of straight lines and
circle arcs), but only 6.48 s to follow the same path now smoothed out into one of length
3.39 m with bounded curvature variation, which is again a great improvement.

Note that this path was computed using f = 0.75, and that more precisely we need
6.478 s to follow its 3.386 m. If we use instead, for example, f = 0.5, we will need 6.510 s
to follow the 3.394 m of this new interpolated path, and if we use f = 0.9, we will need
6.780 s to follow 3.380 m.

A large number of other tests have been performed on hundreds of trajectories. These
tests show that, in order to reduce as most as possible the travel time in most of the cases,
f = 0.75 is actually a good trade-o� for the robots considered in our application.

Finally, it also worth noting that the computational cost of our complete interpolation
procedure is linear in the number of segments in the broken line path.

5.4.4 Car-Like Platforms

For a car-like platform, as the curvature of the physically feasible paths is usually bounded,
it could be impossible to bound the curvature of the broken line below this limit in the �rst
step. In this case, as the �rst step aims at reducing as most as possible the curvature at
all points of the path, no feasible path can be computed for the car-like platform (i.e., the
clearance parameters are not su�cient to compute a feasible path).

In the second step, we need to ensure that kM stays below the curvature limit imposed
by the platform, this can be achieved, for instance, by increasing f and/or by interleaving
intermediate segments when necessary.

5.5 Experimental Results

Compared with methods such as [SS90, FS04, BP11a] that also rely on clothoids for inter-
polating paths, our approach of joining only two arcs of clothoids for moving from one
curvature to another has the advantage of being simpler and computationally cheaper. The
generated curves are clearly not guaranteed to be optimal (i.e., the ones the correspond the
fastest associated speed-pro�les), but optimality is not guaranteed either by other methods.

In order to illustrate the e�ciency of our method, we report in Figure 5.9 the time
needed for running the interpolation algorithm on a few sample trajectories experienced
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Discretized points Synthesis time Discretization time Total time
1 292 7.6 µs 30.1 µs 37.7 µs
2 521 11.8 µs 49.8 µs 61.6 µs
3 630 16.5 µs 63.9 µs 80.4 µs
4 656 12.8 µs 68.1 µs 80.9 µs
5 690 22.4 µs 85.0 µs 107.4 µs

Figure 5.9 – Experimental results.

in the Eurobot application. We distinguish the costs of the curve synthesis and path dis-
cretization (i.e., as described in Chapter 3). The total computational cost typically amounts
to a hundred of microseconds of CPU time on an i5-460M processor running at 2.53 GHz,
which is signi�cantly faster than techniques such as [FS04, BP11a].

Note that the �fth path considered in this experiment is the same as the one in Figure 5.7.





CHAPTER 6

Path Planning

This chapter addresses path planning for nonholonomic robots mov-
ing in two-dimensional space. The problem consists in computing a se-
quence of line segments that leads from the current con�guration of the
robot to a target location, while avoiding a given set of obstacles. This
chapter discusses the construction of such paths in the case of a set of
point obstacles. The method relies on a search in a Voronoi diagram (or,
more speci�cally, in its dual graph, the Delaunay triangulation) that
characterizes the possible ways of moving around obstacles, followed by
a string-pulling procedure, based on a generalization of the funnel algo-
rithm, aimed at improving the resulting path. The resulting sequences of
line segments can directly be used as inputs to the algorithm described in
Chapter 5, in order to produce short smooth paths that avoid obstacles.

6.1 Introduction

We consider the general problem of planning the motion of an autonomous nonholonomic
robot in two-dimensional space, the goal being to reach a given con�guration while avoid-
ing some set of obstacles. As already mentioned, this problem is di�cult and often compu-
tationally expensive.

For many applications, such as Eurobot, the ability of the robot to react quickly is crucial,
and a strong emphasis must be placed on the e�ciency of motion planning, which often
has to be carried out with the limited amount of computing power available on the robot.
The objective is then not necessarily to �nd an optimal solution to the motion planning
problem, but to develop a method that can very quickly synthesize a trajectory for reaching
the target in acceptable time, and that is consistent with the physical limitations of the
robot.

109
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In order to develop an e�cient method, the general idea that was followed in this work,
was to divide the motion problem in two distinct subproblems. The �rst one is aimed at
�nding a path that avoids obstacles and manages to reach the destination, without tak-
ing into account nonholonomic constraints. Such a path takes the form of a sequence of
straight line segments that clears the obstacles at a speci�ed safety distance. The second
step is to convert this path into a smooth trajectory that can be followed by the robot,
taking into account its physical constraints.

Chapters 4 and 5 already discuss in details how to carry out e�ciently the later step.
In this chapter, we focus on the former, introducing a method for computing piecewise
linear paths that lead from an origin to a destination while avoiding obstacles with a given
clearance.

6.2 Related Work

This chapter studies path planning for robots moving in two-dimensional space in the
presence of obstacles. There exist a large number of methods for solving this problem;
these methods can broadly be classi�ed into three major approaches: cell decomposition,
roadmap and potential �eld [Lat91, CLH+05, LaV06, SSVO09]. They all have di�erent pros
and cons; none of them solves the problem completely, optimally, and e�ciently.

6.2.1 Cell Decomposition

Cell decomposition methods consist in decomposing the setCfree of the con�gurations that
stand clear from obstacles, into simpler regions called cells. If this decomposition can be
made in such a way that paths can easily be generated between any two con�gurations
in a cell, then motion planning reduces to �nding paths in a graph that represents the
connectivity between those cells.

The decomposition of Cfree into cells can be performed exactly, for instance using the
trapezoidal decomposition method [Cha87, BCKO08], suited for convex polygonal obsta-
cles, or by introducing approximations, such as the quadtree decomposition algorithm
described in [KD85].

It has been established that the exact cell decomposition of a set of disjoint convex
polygonal obstacles can be computed in O (n logn) time, where n is the number of edges
in the obstacles representation [BCKO08]. This method has the advantage of being com-
plete, but it does not easily extend into one that takes into account the size of the robot.
Approximate methods, on the other hand, may not be complete but, by increasing the grid
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resolution, can produce results that are nearly optimal at arbitrary precision levels, at the
expense of a high computation time.

6.2.2 Roadmap

The main principle behind roadmap methods is to capture the connectivity between the
con�gurations inCfree within a graph called the roadmap. The path planning problem then
reduces to computing three subpaths: one that leads from the initial con�guration to a
node of the roadmap, another moving within the roadmap, and a �nal one connecting a
node of the roadmap with the target con�guration.

There exist several methods to build a roadmap. A �rst approach is to construct a visi-
bility graph, the nodes of which correspond to points located at the boundaries of obstacles,
with an edge connecting two nodes i� the line segment that connects the underlying points
does not con�ict with obstacles (i.e., is entirely contained inCfree ). In the case of polygonal
obstacles, the nodes correspond to their vertices.

For more general convex sets, one can de�ne edges as the free bitangents between
obstacles, and the vertices as the points of tangency. The visibility graph can be computed
in O (k + n logn) time, where k is the number of edges in the graph and n the number of
obstacles [PV95]. The main drawback of this approach is the fact that a visibility graph
can admit as many as O (n2) edges.

If obstacles have to be cleared at a given safety distance (i.e., for instance, when the
robot has non-zero measure), then the visibility graph can be constructed after dilating
obstacles, but one then needs to check whether these are still disjoint from each other after
the operation. A procedure is introduced in [WBH05] for constructing a roadmap that is
complete and optimal (in terms of travelled distance), with respect of a given clearance.
The computation time is O (n2 logn) where n is the total number of vertices, which is not
always e�cient enough for our intended applications.

Another e�cient strategy for obtaining a suitable roadmap is to build the Voronoi di-
agram of the set of obstacles [ÓY85, BCKO08]. In the case of a set of individual points
(called sites), this diagram partitions the plane into convex cells that are each associated
to one site, containing all the points that are closer (with respect to Euclidean distance) to
this site than the others. Voronoi diagrams can be generalized to more complex types of
sites such as line segments or polygons; in this case, borders of Voronoi cells are no longer
necessarily line segments, but can also take the form of parabolic arcs.

Other names for methods based on Voronoi diagrams are Retraction Methods or Ma-
ximum-Clearance Roadmaps. In a Voronoi diagram, an edge separating two cells clears,
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by de�nition, the corresponding sites at the largest possible distance. As a consequence,
Voronoi-based path planning methods are complete, and can easily be extended so as to
take into account the size of the robot. On the other hand, paths extracted from roadmap
graphs are generally not optimal, and need to be further re�ned.

Finally, there exist other strategies for obtaining roadmaps, such as Probabilistic Road-
maps [O+92, KSLO96, GO04] and Rapidly-exploring Random Trees [LaV98, KWP+11].
These methods are usually very e�cient as their cost mainly depends on the complexity of
the generated paths, but do not generally produce optimal paths, and are only probabilisti-
cally complete.

6.2.3 Potential Field

The idea behind this approach, �rst mentioned in [Kha86], is to view the robot as a particle
moving under the in�uence of an arti�cial potential �eld. If the target location generates
a strong attractive potential, and the obstacles produce a repulsive potential in order to
avoid collisions, a path leading to the target can be found by following the direction of the
fastest descent of the potential.

This reduces the path planning problem to an optimization problem and therefore
we can use all the classical optimization methods to solve it (e.g., simulated annealing,
genetic algorithm, ant colony, . . . ). This approach can be very e�cient and can sometimes
be computed in real time. However, like other optimization techniques, those methods
usually rely on parameters that must be �nely tuned to the actual application [KB91].

6.3 Path Planning Algorithm

This chapter tackles the problem of generating piecewise linear paths for robots moving
in a region of two-dimensional space constrained by a �nite set of obstacles. We consider
robots that have a cylindrical shape, i.e., a robot at a position P occupies a region of the
plane that corresponds to a disk of diameter d centered in P , where d is a parameter of the
robot.

The described method is based on the Voronoi diagram roadmap approach outlined in
Section 6.2.2. As discussed in [For87, AK00], Voronoi diagrams can e�ciently be computed
in O (n logn) time and O (n) space, where n is the number of sites.

Note that dealing with sites that are more complex than single points can be di�cult in
practice. For many applications, this problem can, for instance, be avoided by approximat-
ing such sites by �nite sets of points. In Chapter 7, we will present an original approach
to tackle this problem.
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6.3.1 Voronoi Diagram

An edge separating two Voronoi cells clears the corresponding sites at the largest possible
distance. Therefore, in order to reason about the possible moves of a robot around obstacles,
we only have to check the minimal distance between those edges and the obstacles. The
graph constructed from all the separating edges (i.e., the borders of all the Voronoi cells)
then forms a complete and valid roadmap for our path planning problem [BCKO08].

6.3.1.1 Voronoi Diagram of a Set of Points

The simplest case is the Voronoi diagram of a �nite set of points in an Euclidean plane. In
this case, each site is simply a point, and its corresponding Voronoi cell is a convex polygon
and contains all the points that are closer (with respect to Euclidean distance) to this site
than the others.

An example of Voronoi diagram is depicted in Figure 6.1; the sites (i.e., the points) are
represented in blue and the borders of the Voronoi cells in red.

Figure 6.1 – Example of Voronoi diagram.

6.3.1.2 Approximation of Voronoi Diagram

Voronoi diagrams are easy to obtain for obstacles represented by single points. In the case
of polygonal obstacles, the main drawback is that the edges of the Voronoi cells can take
the form of parabolic arcs, that are more tricky to work with than line segments.
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(a) Generalized Voronoi diagram. (b) Diagram approximation.

Figure 6.2 – Example of discretized Voronoi diagram.

A workaround consists in approximating the diagram by discretizing the obstacles. It
is shown in [HIKL+99] that good approximations can be obtained by placing sites at the
boundaries of obstacles, and then deleting the Voronoi edges that appear between di�erent
sites of a common obstacle (see Figure 6.2). The remaining issue is to approximate su�-
ciently precisely these shapes with �nite sets of points.

In order to be able to compute e�ciently a roadmap, the goal is to create as few sites as
possible without sacri�cing too much accuracy. Consider for instance, as in Figure 6.3(a),
the case of two obstacles respectively represented by a straight line `, and a point p that
does not belong to `. If the center of the robot needs to clear the obstacles at a distance c
(which is equivalent to reasoning about a robot of diameter d = 2c that can graze obsta-
cles), there exists a path moving between this pair of obstacles provided that the distance
between p and ` is at least equal to 2c .

Assume now that the line is approximated by discrete points sampled at the resolution s .
By remaining at a distance greater or equal to c from those points, it may now be possible
to have a path that only clears p and ` at the distance

√
16c2−s2

4 . This worst case, depicted in
Figure 6.3(b), corresponds to p forming an isosceles triangle with the two nearest discrete
points on `.

It follows from this expression that choosing s = c
2 leads to a relative error that is

less than 1%. This approximation is usually precise enough for a lot of practical applica-
tions, since an additional safety margin is usually required anyway to take into account
positioning or sensor errors.
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Figure 6.3 – Approximation error.

It is worth mentioning that the shape of the paths obtained with this discretization of
obstacles does not always match those found in exact Voronoi diagrams. For instance, a
path going between two parallel lines sampled at uniform resolution may take the form of
a jagged line. This is not at all problematic for our path planning method, since such paths
will be smoothed out later in the procedure, by the string-pulling operation that will be
discussed in Section 6.3.5.

6.3.2 Delaunay Triangulation

Consider a �nite set Obst = {A1,A2, . . . ,Ap } of points representing obstacles that must be
avoided. A triangulation of these points is a �nite set {T1,T2, . . . ,Tq } of triangles taking
their vertices in Obst, such that their union exactly covers the convex hull of A1, A2, . . .Ap ,
and the intersection between any pair of triangles can either be empty, equal to a single
vertex Ai , or equal to a segment [AiAj ] linking two points in Obst.

In addition, such a triangulation is said to be Delaunay if, for every triangle Ti , all the
points in Obst are located outside or on the circumcircle of Ti [Ber04].

It has long been known that the Delaunay triangulation of the �nite set of points Obst
corresponds1 to the dual graph of the Voronoi diagram for Obst [BCKO08].

As depicted on Figure 6.4, the Delaunay Triangulation is obtained from the Voronoi
diagram by connecting sites in Obst i� they are located in adjacent Voronoi cells. Recipro-
cally, the Voronoi diagram can be obtained from the Delaunay triangulation by connecting
the centers of the circumcircles of the triangles that share a common edge.

1 Providing that Obst contains at least three points that are not collinear. Note also that, if four or more points
in Obst are cocyclic (i.e., lie on a same circle), then the Delaunay triangulation is not unique.
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Figure 6.4 – Duality between the Voronoi diagram and the Delaunay triangulation.
(Obstacles are represented by blue dots, the triangulation is represented

in black, the centers of the circumcircles are represented by red dots
and the Voronoi diagram is represented in red.)

Thanks to this duality argument, the exact same roadmap (as from the Voronoi di-
agram), can be constructed starting from a Delaunay triangulation of the set of points.
Therefore, since e�cient Voronoi (of points) implementations often �rst create the Delau-
nay triangulation and use it to generate the Voronoi diagram in O (n) time (where n is the
number of points) [GKS92, SLYD14], and since reasoning with triangles will turn out to be
helpful for the rest of this work, from now on we will only discuss Delaunay triangulations.

6.3.3 Roadmap

As seen in the previous subsection, from a Delaunay triangulation of a set Obst of obstacles,
one can extract a roadmap representing the possible paths around them. This is done by
building a graph G whose nodes correspond to the triangles Ti (technically, to the center
of their circumcircle), and in which two nodes are linked if and only if their underlying
triangles Ti and Tj share a common edge.

An interesting property of this graph is that it can be used for reasoning about the
possible moves of a cylindrical robot with an arbitrary diameter d , even though the graph
is de�ned independently from the robot dimension. Let us de�ne a feasible position P of the
robot as a location (of the center of the robot) at which none of its interior points con�icts
with points in Obst, in other words, such that |P − Ai | ≥ d/2 for all i . A feasible path is
de�ned as a path that only visits feasible positions. A feasible triangle is one that contains
at least one feasible point.
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Theorem 6.3.1. There exists a path in G from a feasible triangle Ti to another one Tj that
traverses only edges of length at least equal to d i� there exists a feasible path leading from a
point in Ti to a point in Tj , for a robot of diameter d .

This theorem intuitively expresses that the feasible paths that can be followed around
the obstacles are exactly represented by the paths of G, being careful of only traversing
edges that have a length consistent with the size2 of the robot. The graphG thus represents
a roadmap that can be searched for paths leading from a triangle to another, using for
instance algorithms such as Dijkstra’s or A∗ [WW07], and weighting, for example, the arcs
of the graph with the distance between the centers of the circumcircles of the underlying
triangles of their two nodes.

It is worth mentioning that a path ofG that visits a sequence of trianglesTi1 ,Ti2 ,Ti3 , . . .
does not always translate into a feasible path of the robot that exactly follows this sequence
of triangles. It may indeed be the case that moving fromTik toTik+1 requires to pass through
an intermediate triangle that is not represented in the path, which is not problematic. How-
ever, the sequence of triangles successively visited by any feasible path must necessarily
correspond to a path that exists in G.

6.3.4 Origin and Destination

The origin and the destination location do not, in general, correspond to the center of the
circumcircle of triangles in the Delaunay triangulation. Therefore, in order to be able to use
the roadmap that we have built for discovering paths with arbitrary origin and destination
locations, a �rst step is to connect these locations to the nodes of the graph.

Obviously, both the origin and destination locations must clear the obstacles by a dis-
tance that is a least equal to d/2 (i.e., these two positions must be feasible), otherwise the
path planning problem does not admit a solution. Recall that the edges of the roadmap
graph correspond exactly to the borders of the Voronoi cells of the obstacles, hence we
only need to check the distance between a position and the underlying obstacle of its cell
to e�ciently determine whether this position is feasible.

If the origin and destination are feasible, then we start by �rst identifying, for each of
these two points, the triangle3 of the triangulation to which they belong. This operation
can be performed e�ciently, for instance, by a local search in the triangulation [DPT02].
2 Note that undesirable edges, generated by the approximation of obstacles by a �nite set of points, have a

length inferior or equal to c
2 =

d
4 (if we use the discretization step s = c

2 ), therefore they are naturally not
considered during this step.

3 It is natural to require that the robot remains con�ned in an area fully delineated by external obstacles.
Hence, a feasible position necessarily belong to the convex hull of the obstacles, and thus to a triangle of the
triangulation.
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An arbitrary origin or destination point can then be taken into account by connecting
this point to the node (i.e., the center of the circumcircle) that corresponds to the triangle
in which it is located. Intuitively, since the center of the circumcircle of a triangle (in a
Delaunay triangulation) locally maximizes the distance to its nearest obstacles, following
a straight line from a feasible position located in a triangle to the center of its circumcircle
can only increase the distance to the nearest obstacle and therefore will always only visit
feasible positions.

6.3.5 String Pulling

As explained in Section 6.3.3, Delaunay-based methods guarantee that a feasible path will
be obtained whenever one exists. But paths Ti1 ,Ti2 , . . . ,Tim that lead from an origin O in
Ti1 to a destination D in Tim extracted from the roadmap G, for a robot of diameter d , are
usually far from being optimal. Technically, such paths are sequences of line segments that
start from O , then visit the center of the circumcircle of each triangle in the sequence, and
end at D.

In addition to the artefacts that might have been introduced by the approximations
discussed in Section 6.3.1.2, such a computed path may contain lots of unneeded direction
changes, and usually clears obstacles at unnecessarily large distances. This is not at all
surprising, since the edges of the roadmap are such that they maximize the clearance to
obstacles. After having computed a path, we thus need an additional optimization step
aimed at simplifying this path and lowering its length, which usually also reduces the time
needed for following it.

This problem can be solved in the following way. The sequence4 of trianglesTi2 ,Ti3 , . . . ,
Tim−1 as well as the origin and destination points (located respectively in Ti1 and Tim ) rep-
resents a channel, i.e., a triangulated region of the plane in which the robot can move from
a triangle Tik to its successor Tik+1 by traversing their common edge. The vertices of the
interiors triangles (i.e., those that do not contain O or D ) that compose a channel precisely
represent the obstacles that must be cleared when the robot moves along this channel.
Figure 6.5 shows an origin and destination point, a sequence of triangles, and the resulting
channel.

Note that, since each of the interior edges (i.e., the edges separating the triangles of
the channel) is traversed in a particular direction, its endpoints can be associated to the
left or the right (relatively to this direction). All the left endpoints form the left side of the
channel, and symmetrically, all the right endpoints form the right side of the channel.

4 Note that, since the shortest sequence of triangles is extracted from the roadmap using algorithms such as
Dijkstra’s or A∗, this sequence never contain multiple occurrences of triangles.
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. . .

Figure 6.5 – Origin and destination locations, sequence of triangles and the resulting
channel.

Given a channel obtained for a robot of diameter d , the shortest feasible path from
origin to destination that follows this channel, i.e., such that each channel vertex is cleared
at a distance at least equal to d/2, can be computed thanks to a simple generalization of the
funnel algorithm [DB06, Dem07]. This operation conceptually consists in placing a solid
disk of radius d/2 on each channel vertex, and of pulling an elastic cord taunt between
these disks, from the origin to the destination.

6.3.5.1 Funnel Algorithm

The original funnel algorithm [Cha82, LP84, HS94] �nds the shortest path within a channel
composed of n triangles in O (n) time. This algorithm considers that the moving object is a
point (i.e., a robot with zero measure) and produces the shortest sequence of line segments
from origin to destination that lies entirely in the channel.

The funnel algorithm works with three structures: the path, the apex, and the funnel.
The path is the sequence of line segments forming the part of the shortest path currently
known by the algorithm. The funnel consists of two series of line segments, one (on the
right side) turning clockwise and one (on the left side) counterclockwise, which represent
the area in which all shortest paths leading to the unprocessed part of the channel must lie.
Finally, the apex is the point which joins the path and the funnel. These three structures
are depicted in Figure 6.6.

The pseudocode for the funnel algorithm is given in Algorithm 6.1. At the start, the
path is empty, the apex is set to the origin and the funnel corresponds to the two segments
connecting the origin and the endpoints of the �rst interior edge.
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1 Function FindShortestPath(m, edges[1 : m − 1], O , D)
2 if m = 1 then
3 path.init(O ); path.append(D ); return path;
4 end
5 path.init(O ); funnel.init(); funnel.setApex(O );
6 ProcessVertex(path, funnel, edges[1].leftEndPoint(), Left);
7 ProcessVertex(path, funnel, edges[1].rightEndPoint(), Right);
8 for i := 2,3, . . . ,m − 1 do
9 if edges[i].leftEndPoint() = edges[i − 1].leftEndPoint() then

10 ProcessVertex(path, funnel, edges[i].rightEndPoint(), Right);
11 else
12 ProcessVertex(path, funnel, edges[i].leftEndPoint(), Left);
13 end
14 end
15 ProcessVertex(path, funnel, D, Left);
16 for each segment [−−−→v1v2] in funnel left side do
17 path.append(v2);
18 end
19 return path;

20 Function ProcessVertex(path, funnel, v , side)
21 if side = Left then
22 loop
23 [−−−→v1v2] := last segment on funnel left side;
24 if [−−−→v1v2] does not exist then
25 [−−−→v1v2] := �rst segment on funnel right side;
26 if [−−−→v1v2] does not exist or v is located on the left of [−−−→v1v2] then
27 funnel.leftSide.append(v );
28 break;
29 else
30 funnel.rightSide.removeFirstVertex();
31 funnel.setApex(v2);
32 path.append(v2);
33 end
34 else
35 if v is located on the left of [−−−→v1v2] then
36 funnel.leftSide.append(v );
37 break;
38 else
39 funnel.leftSide.removeLastVertex();
40 end
41 end
42 end
43 else if side = Right then
44 {symmetrical procedure}
45 end

Algorithm 6.1 – Funnel algorithm.
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Figure 6.6 – Path, apex and funnel during the execution of the algorithm.

Then, each interior edge is processed one after the other. One endpoint of this edge
corresponds to a vertex v that has not been processed yet, let us assume that this one is
on the left side of the channel (the other case is handled symmetrically). Consider the last
(oriented) segment on the left side of the funnel, v can be either on the left or on the right5

of this segment.

If v is on the left, the current funnel is not going to be narrowed by v and we add v at
the end of the left side of the funnel. But, if v is on the right, the current funnel is going to
be narrowed by v . Thus, the last vertex on the left side of the funnel is removed, and we
restart by checking on which side v is located with respect to the new last segment of the
left side of the funnel.

If the left side of the funnel becomes empty (i.e., contains no more segment) during
this operation, then, we consider the �rst segment on the right side of the funnel and check
on which side v is located. If v is on its left, the funnel is going to be narrowed by v but
we also know that the resulting channel will not be empty. Hence, we add v at the end of
the left side of the funnel.

But, if the vertex is on its right, addingv to the left side of the funnel would result in an
empty funnel. Thus, the �rst vertex (di�erent from the apex) on the right side of the funnel
is necessarily part of the shortest path. Therefore, it becomes the new apex, a segment
connecting the old apex and the new one is added the path, and we restart by checking on
which side v is located with respect to the new �rst segment of the right side of the funnel.

5 If the vertex lies exactly on the line supported by this segment, we consider arbitrarily that the vertex is on
the right of the segment.
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Once the �nal interior edge of the channel has been processed, we proceed with the
destination point, considering it as an edge of zero length and assuming arbitrarily, for
instance, that this destination vertex is on the left side of the channel. Finally, we combine
the path together with the left side of the funnel to form the shortest path.

It is straightforward to see that each time we check whether an unprocessed vertex
is on the left or on the right of a segment, we add or remove one vertex to the funnel.
As each vertex can not be added or removed more than once to the funnel, the number
of operations of the algorithm is linear in the number of vertices, or equivalently to the
number of triangles in the channel.

Figure 6.7 shows a representative example (i.e., that shows all the possibles cases) of
the execution of the funnel algorithm.

D
(a)

D
(b)

D
(c)

D
(d)

D
(e)

D
(f)

Figure 6.7 – Execution of the funnel algorithm.
(From (a) to (b), each transition corresponds to processing one new interior edge.)
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Note that if the origin and destination points are located in the same triangle, then the
number of edges to be traversed is obviously equal to zero, and the shortest path between
the two is simply the segment that joins them.

6.3.5.2 Generalized Funnel Algorithm

We know now how to e�ciently obtain the shortest path, between origin and destination
within a channel, for a point robot (i.e., with a diameter d = 0). The more general case
d > 0 can be handled by adapting the funnel algorithm. Intuitively, instead of searching
for paths that connect vertices of the channel, one now needs to consider the segments
that are tangent to disks of radius d/2 centered on these vertices (except for the origin
and destination points, which still need to be considered as points). This generalization is
illustrated in Figure 6.8.

O

D

path

apex

funnel

Figure 6.8 – Generalized funnel algorithm.

The adapted funnel algorithm is very similar to the original one, but instead of checking
whether the next unprocessed vertexv is on the left or on the right of a particular segment
[−−−→v1v2], we need to check instead whether the segment (consistent6 with the channel) that
is tangent to the two disks respectively centered in v1 and v is oriented CCW or CW from
the segment tangent to the two disks centered in v1 and v2.

Since we now consider disks instead of points, an other modi�cation should be made
in order to make the algorithm correct. When the addition of the vertex v on one side of
the funnel would result in an empty funnel, it is not necessarily anymore the vertex v2
(i.e., the �rst vertex, di�erent from the apex, on the opposite side of the funnel) that should
become the new apex. Indeed, as illustrated in Figure 6.9, the segment tangent to the two
disks centered in v1 (i.e., the apex) and in v2 can traverse the disk centered in v .

6 There are at most four segments tangent to the two disks, but only one is consistent with the channel (i.e.,
the one that pass on the right of a vertex that is located on the left side of the channel and vice versa). From
now on we will consider only this one. Note also that all the disks are of radius d/2, except for the origin
and destination points which correspond to disks of zero radius.
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apex
v

v1

v2

Figure 6.9 – Case where v should become the new apex instead of vk .

This situation occurs whenever the segment tangent to the two disks centered in v1
and in v is shorter than the segment tangent to the two disks centered in the v1 and in v2.
In this case the shortest path must necessarily turn around v , and v thus becomes the new
apex.

These modi�cations clearly do not a�ect the complexity of the algorithm and this gener-
alized funnel algorithm thus also runs in O (n) time in terms of the number n of triangles in
the channel. Algorithm 6.2 presents the pseudocode for this generalized funnel algorithm.

1 Function FindShortestPath(m, edges[1 : m − 1], O , D, radius)
2 if m = 1 then
3 path.init(O ); path.appendSegmentTowards(D ); return path;
4 end
5 path.init(O ); funnel.init(); funnel.setApex(O , −);
6 ProcessVertex(path, funnel, edges[1].leftEndPoint(), Left, radius);
7 ProcessVertex(path, funnel, edges[1].rightEndPoint(), Right, radius);
8 for i := 2,3, . . . ,m − 1 do
9 if edges[i].leftEndPoint() = edges[i − 1].leftEndPoint() then

10 ProcessVertex(path, funnel, edges[i].rightEndPoint(), Right, radius);
11 else
12 ProcessVertex(path, funnel, edges[i].leftEndPoint(), Left, radius);
13 end
14 end
15 ProcessVertex(path, funnel, D, Point, radius);
16 for each segment [−−−→v1v2] in funnel left side do
17 [−−→t1t2] := consistent tangent to the two disks centered in v1 and v2;
18 if [−−−→v1v2] is the �rst segment on funnel left side then
19 path.appendCircArcTowards(t1, funnel.appexDir() around v1);
20 else
21 path.appendCircArcTowards(t1, CCW around v1);
22 end
23 path.appendSegmentTowards(t2);
24 end
25 return path;
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26 Function ProcessVertex(path, funnel, v , side, radius)
27 if side = Left then
28 loop
29 [−−−→v1v2] := last segment on funnel left side;
30 if [−−−→v1v2] does not exist then
31 [−−−→v1v2] := �rst segment on funnel right side;
32 if [−−−→v1v2] does not exist then
33 funnel.leftSide.append(v );
34 break;
35 end
36 [−−→t1t2] := consistent tangent to the two disks centered in v1 and v2;
37 [

−−→
t ′1tv ] := consistent tangent to the two disks centered in v1 and v ;

38 if [
−−→
t ′1tv ] is oriented CCW from [−−→t1t2] then

39 funnel.leftSide.append(v );
40 break;
41 else
42 if distance(t ′1, tv ) < distance(t1, t2) then
43 funnel.setApex(v , CCW);
44 path.appendCircArcTowards(t ′1, funnel.appexDir() around v1);
45 path.appendSegmentTowards(tv );
46 break;
47 else
48 funnel.rightSide.removeFirst();
49 funnel.setApex(v2, CW);
50 path.appendCircArcTowards(t1, funnel.appexDir() around v1);
51 path.appendSegmentTowards(t2);
52 end
53 end
54 else
55 [−−→t1t2] := consistent tangent to the two disks centered in v1 and v2;
56 [

−−→
t ′1tv ] := consistent tangent to the two disks centered in v1 and v ;

57 if [
−−→
t ′1tv ] is oriented CCW from [−−→t1t2] then

58 funnel.leftSide.append(v );
59 break;
60 else
61 funnel.leftSide.removeLast();
62 end
63 end
64 end
65 else if side = Right then
66 {symmetrical procedure}
67 else if side = Point then
68 {same procedure as for Left but using a zero radius for the disks centered in v}
69 end

Algorithm 6.2 – Generalized funnel algorithm.
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It is worth mentioning that the shortest path resulting from the generalized funnel
algorithm does not always stay entirely within the channel. As already mentioned in Sec-
tion 6.3.3, it may be the case that moving from Tik to Tik+1 requires to pass through an
intermediate triangle that is not represented in the path, which is not at all problematic.

6.3.5.3 Departure and Arrival Clearance

Since the two triangles at the extremities of a channel (i.e., those that contain O or D
as vertex) are generally not triangles of the triangulation, they do not satisfy the Delau-
nay criterion. Therefore, even if this case is uncommon (and is actually not mentioned
in [Dem07]), there may exist obstacles that could interfere with the shortest path at the
beginning and the end of the channel (i.e., before the �rst and after the last interior edge).

In fact, due to the Delaunay criterion, all the possible segments (consistent with the
channel) tangent to two disks centered in two interior vertices of a channel (extracted from
G for a robot of diameter d ) are feasible. But this may not be the case for the tangents
passing by O and/or D. Figure 6.10 shows an example of this issue, where the robot in
positionO does not con�ict with obstacles, but the path tangent to the disk centered in vR1

and passing by O con�icts with vp (which is not a vertex of the channel).

O
vR1

vp

Ti1

Ti2
channel

Figure 6.10 – Case where a vertex vp , that is not part of the current channel,
interferes with the shortest path before the �rst interior edge of the channel.

In such a case, a vertex is problematic (i.e., could interfere with the shortest path) forO
(the case for D is handled symmetrically) i� it is located between the two segments tangent
to the circleCO of radius d/2 centered in O and passing respectively by the �rst vertex vR1

on the right side and by the �rst vertex vL1 on the left side of the channel, but outside of
CO (since O is feasible) and outside of the circumcircle ofTi1 (sinceTi1 satis�es Delaunay’s
criterion). An illustration is provided in Figure 6.11.
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Figure 6.11 – Areas where the problematic vertices for O can be located.

This provides (at most) two small zones that can be searched for problematic vertices.
Note that, due to the Delaunay criterion, if one such zone contains a problematic vertex,
then the other one (if any) will necessarily be empty.

Assume that there exist some problematic vertices on one side of O . Since we know
that there is at least one feasible path that avoid obstacles traversing the interior edges of
the channel, this path should also traverse the edges7 connecting each of the problematic
vertices and the �rst interior vertex vi on the other side of the channel. The solution is
then to update the channel to take into account these edges by adding them before its �rst
interior edge (in clockwise order if vi is on the right side of the channel and in counter-
clockwise order if vi is on the left side).

Note that if the origin and destination points are located in the same triangle, then the
area to be searched is the one between the two outer tangents to the two disks of radius
d/2 centered in O and in D, but from which we exclude the two disks and the circumcircle
of the triangle. One can then easily construct a channel to take into account these potential
problematic vertices, if any8.

The generalized funnel algorithm can then be applied to the updated channel (i.e., the
one that take into account the potential problematic vertices for both O and D ) to produce
the shortest path in the channel from the origin to destination that clears all the obstacles
in Obst with a distance at least equal to d/2.

6.3.5.4 Broken Line Generation

While the original funnel algorithm produces a sequence of lines segments between the
origin and destination that connect several interior vertices of the channel, the generalized
algorithm results in a path that consists in circular arcs of radius d/2 around these vertices
and line segments tangent to them.
7 Strictly speaking, the center of the robot do not necessarily cross these edges, but at least some points of

the robot do. Thus, in the generalized Funnel algorithm, we will process these edges before the �rst interior
edge of the channel, even if they are located on the other side of O from this �rst interior edge.

8 If there is no problematic vertex, the shortest path between O and D is simply the segment that joins them.
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The �nal step consists of replacing the circle arcs with straight line segments in order
to obtain a path represented by a broken line. This operation is performed by ensuring that
the deviations between circle arcs and the line segments that approximate them remain
small. This can be achieved by imposing an upper bound on the absolute di�erence of
orientation between adjacent segments. For Eurobot, we set this bound at π

2 in order to
satisfy the requirements9 of our path interpolation method, presented in Chapter 5.

Note that, in very narrow passages, the sequence of line segments, that replaces a
circular arc turning around a vertex v with a given upper bound, could interfere with one
of the opposite vertex of an interior edge to which v is attached. The easiest solution is
then to locally reduce this upper bound.

6.3.6 Illustration

We illustrate all the successive steps of the presented path planning method in Figure 6.12,
on a simpli�ed case study taken from the Eurobot contest. Figure 6.12(a) shows the area
with the obstacles, origin O and destination D locations (along with the required safety
distance). Figure 6.12(b) shows how the obstacles and the borders of the area are approxi-
mated by a �nite set of points and their Delaunay triangulation. Figure 6.12(c) illustrates
the graph that corresponds to this triangulation. Note that, only the arcs of the graph that
have su�cient clearance are drawn.

This graph is searched and the shortest path from origin to destination is highlighted in
green. Figure 6.12(d) shows the channel that correspond to the shortest path in the graph.
The result of the generalized funnel algorithm performed on this channel is illustrated in
Figure 6.12(e), and the �nal sequence of line segments (i.e., the broken line) is shown in
Figure 6.12(f). Figure 6.12(f) also shows the smoothed path produced by our interpolation
method, described in Chapter 5.

6.4 Refinements

6.4.1 Misled Searches

Using a Delaunay-based (or Voronoi-based) method has many advantages, but since edges
of the resulting roadmap are located at the largest possible distance from obstacles, this
approach has the drawback of distorting the length of paths. This can sometimes mislead
the search algorithm, since the shortest path in the roadmap does not necessarily translate
into the optimal one after applying the funnel algorithm.
9 The interpolation method, presented in Chapter 5, also requires that each point of the broken line provides

a clearance parameter ci . One can naturally easily compute these parameters from the circular arcs.
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(a) Problem statement.
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(b) Delaunay triangulation of the (discretized) obstacles.
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(c) Feasible arcs of the corresponding graph (shortest path highlighted in green).

O
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(d) Extracted channel.
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(e) Shortest path in the channel.

O

D

(f) Broken Line (in blue) and smoothed path (in green).

Figure 6.12 – Illustration of the path planning method.
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(a) Roadmap. (b) Shortest path in the roadmap.

(c) Shortest path in the channel. (d) Global shortest path

Figure 6.13 – Issue with the Delaunay-based search.

This issue is illustrated in Fig. 6.13, which shows an instance for which our path plan-
ning algorithm generates a path that is not optimal. This problem is especially noticeable
when Cfree contains large zones that are free from obstacles.

The optimal path (using various criteria) can be extracted from the roadmap by using,
for instance, an augmented version of Dijkstra’s shortest path algorithm which allows edge
weights to be de�ned relative to the current path by using Markov-like states [KPA03]. The
drawback is that this method is complex and computationally expensive.

In fact, since the global shortest path in the plane does not necessarily correspond to
the fastest trajectory, it is usually su�cient to use an approximation. Indeed, reducing the
length of a path usually reduce the time needed for following it, but can also lead to sharper
turns where the robot will need to slow down, or other similar issues.

One simple improvement that we can make to our search algorithm is to tune it by
using a heuristic that reduces the weight of the edges that are far from obstacles, since such
edges are likely to bene�t the most from reductions by the funnel algorithm. This solution
has the advantage of being easy to implement, but, of course, does not guarantee optimality.

[Kal10] presents other metrics and heuristics to e�ciently extract a short path from
a roadmap. It also shows that even using the metric that we have already discussed (i.e.,
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weighting the edges of the graph with the distance between the centers of the circumcircles
of the underlying triangles) usually su�ces for most applications.

6.4.2 Orientation

We have de�ned the origin O and destination D of a path as the locations initially and
�nally taken by the robot but, in most applications dealing with nonholonomic robots, one
additionally needs to impose the orientation at that points. One can, of course, just start
and end the trajectory with local turns in order to take into account these initial and �nal
orientations, but this solution is usually not e�ective since it is likely to waste time.

For Eurobot, an e�cient solution was obtained by constructing small line segments
[OO ′] and [D ′D] that are travelled in the appropriate directions, and that will respectively
be prepended and appended to a broken line computed from O ′ to D ′. The lengths of such
segments are computed to be consistent with the physical constraints imposed on the robot,
for instance, a reasonable strategy is to make |OO ′ | at least equal to the braking distance of
the robot at its initial speed. These segments must also clear obstacles. This approach has
the advantage of generating paths with zero initial and �nal curvatures, which simpli�es
chaining successive paths.

6.4.3 Improved Smoothing

As illustrated in Figure 6.14(a), discretizing an obstacle, like a circle or a circular arc, by a
set of points can sometimes result in a trajectory that is not well smoothed by our interpo-
lation method. In fact, the funnel algorithm computes the shortest path that avoids the set
of points (and not the circle), and thus the situation is as if the robot must avoid a regular
polygon instead of a circle.

(a) Using exact clearance parameters. (b) Using increased clearance parameters.

Figure 6.14 – Interpolation.
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The interpolation method smoothes the path as much as possible in order to satisfy
the (exact) computed clearance parameters ci , but this results in a path with undesirable
straight line pieces. For Eurobot, we solve this small problem by judiciously increasing
these clearance parameters in order to increase the �exibility of the interpolation algorithm.
In this way, all the segments, that turn around a particular circular arc, will be allowed to
be tangent to a common circle10 in the �rst step of the interpolation method. Figure 6.14(b)
shows the smoothed path that result from this re�nement.

6.5 Experimental Results

The main advantage of the approach presented in this chapter is its e�ciency: Triangulat-
ing a set of points and searching for the shortest path in a �nite graph can be performed
in O (n logn) time, where n denotes the number of obstacles, and the generalized funnel
algorithm runs in O (n) time. One drawback is the fact that the shortest path in the roadmap
does not necessarily correspond to the shortest feasible one in the plane, but using a suit-
able metric, the approximation usually su�ces for most applications [Kal10].

In order to illustrate the e�ciency of this approach, we report in Figure 6.15 the time
needed for running the complete path planning algorithm on a few sample cases experi-
enced in the Eurobot application. We distinguish the costs of the Delaunay triangulation,
the shortest-path search (along with the origin and destination insertion), and the gener-
alized funnel algorithm. The total computational cost typically amounts to less than half
a millisecond of CPU time on an i5-460M processor running at 2.53 GHz, which allows
near-optimal path planning in real-time.

Point obstacles Triangles Delaunay Search Funnel Total time
1 194 274 127.9 µs 21.4 µs 7.4 µs 156.7 µs
2 206 298 144.4 µs 21.7 µs 11.5 µs 177.6 µs
3 291 422 202.2 µs 21.8 µs 6.7 µs 230.7 µs
4 366 522 239.9 µs 34.5 µs 7.7 µs 282.1 µs
5 493 752 359.7 µs 49.9 µs 10.4 µs 420.0 µs

Figure 6.15 – Experimental results.

Note that the �rst case considered in this experiment corresponds to the problem depicted
in Figure 6.12.

10This common circle is smaller than the one we need to avoid (i.e., the real obstacle is the circumcircle of the
points, but the obstacle that will be avoided instead is the inscribed circle of the convex hull of these points),
but this is usually not a problem due to safety margins. If it was the case, all we need to do is to su�ciently
dilate the obstacle.



CHAPTER 7

Path Planning with Polygonal Obstacles

Chapter 6 discussed the computation of a roadmap for a robotmoving
in two-dimensional space, in the presence of a �nite set of point obsta-
cles. This chapter addresses an original generalization of this method
for sets of obstacles that include line segments in addition to individ-
ual points, which is useful for e�ciently delineating polygonal obstacles
without prior discretization. The method starts from a constrained De-
launay triangulation of the obstacles, and re�nes it by adding a carefully
selected set of Steiner points. From the re�ned triangulation, one can
straightforwardly extract a roadmap graph suited for motion planning,
for cylindrically shaped robots of arbitrary diameter. Themethod does not
require to store additional information in triangles, i.e., only the length of
traversed edges has to be checked, which makes searching for paths very
e�cient. Compared to other solutions, our approach has the advantage
of being simpler, as well as signi�cantly faster.

7.1 Introduction

The path planning method presented in Chapter 6 runs in O (n logn) time, where n denotes
the number of point obstacles. Therefore, as discussed in Section 6.5, this method is often
e�cient enough to allow near-optimal path planning for cylindrically shaped robots in
real-time.

The only main drawback is that it can only process set of points obstacles. For more
general obstacles, such as polygons, a straightforward workaround consists in discretizing
obstacles into �nitely many individual points. For small cases, this is easily feasible, but
for larger ones, it can become di�cult to �nd a good trade-o� between a �ne discretization
level, which may yield an unnecessarily large roadmap graph, and a coarse one, which
might result in an imprecise approximation.

135
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Clearly, discretizing line segments into lots of points is not the most e�ective way
to determine whether a robot can move safely between them. This chapter tackles this
drawback, and shows how the procedure for building of a roadmap can be generalized to
sets of obstacles that include line segments in addition to individual points, which allows
to e�ciently delineate polygonal obstacles.

As in the previous chapter, we consider robots that have a cylindrical shape, i.e., a
robot at a position P occupies a region of the plane that corresponds to a disk of diameter
d centered in P , where d is a parameter of the robot.

7.2 Related Work

As already discussed in Chapter 6, a �rst possible solution for building a roadmap with
respect to polygonal obstacles is to compute a generalized Voronoi diagram, which parti-
tions the points of the plane according to their nearest point or line obstacle [Ger10]. The
main drawback is that the edges of such diagrams can take the form of parabolic arcs, that
are more tricky to work with than line segments.

The most widely used workaround, presented in the previous chapter, consists in dis-
cretizing line obstacles into �nitely many individual points [BG08], but this can lead to
unnecessarily large roadmap graphs, which is ine�cient.

A third strategy is to build a visibility-Voronoi complex [WBH05], which produces a
graph from which a roadmap can easily be extracted, but this technique turns out to be
costly, requiring a computation time that is more than quadratic in the number of obstacles.

By only constructing the relevant subgraph of the visibility graph for a given path query
(i.e., for given origin and destination locations), the strategy presented in [KMM97] is often
more e�cient than the one based on the visibility-Voronoi complex, but still requires a
computation time that is quadratic in the number of obstacles.

We can also cite methods based on the continuous Dijkstra paradigm [Mit93, HS99,
IKM10], which simulate the expansion of a wavefront from a point source in the presence
of polygonal obstacles. These methods are usually subquadratic in time, but are tricky to
implement and, as they merely try to directly �nd the global shortest path in the plane
(which is a more complex problem), are still computationally expensive in practice.

Another strategy is to start from a constrained Delaunay triangulation, in which the
line obstacles are required to appear as edges of the triangles [Che89]. A roadmap can then
be extracted from such a triangulation using the same method as for (classical) Delaunay



7.3. Point and Line Obstacles 137

ones. Unfortunately, exploiting such a roadmap for planning the paths of a robot of known
size is not as straightforward as before: The existence of a path from a triangle to another
that only traverses edges of length at least equal to d does not necessarily imply that a cor-
responding path can be followed by a robot of diameter d without colliding with obstacles.

In [Kal14], this problem is solved by augmenting the triangulation with parameters
known as clearance values that have to be taken into account when the roadmap is searched
for paths. In addition, some parts of the triangulation have to be re�ned in order for this
mechanism to behave correctly.

An other approach is to determine the width of narrow passages by re�ning the con-
strained edges that have orthogonal projections of vertices on the opposite side of a pas-
sage [LD04]. But this method is only suited for simple situations.

The contribution of this work is to show that a roadmap graph can be derived from a
constrained Delaunay triangulation by simply re�ning this triangulation according to a
carefully selected set of additional Steiner points. The resulting graph has the property that
the paths traversing edges of length at least equal to d exactly correspond to the feasible
paths of a robot of diameter d , for arbitrary values of d . In other words, this roadmap is
suited for motion planning of robots with an arbitrary size.

The method does not require to store additional information in triangles, i.e., only the
length of traversed edges has to be checked, which makes searching for paths very e�cient.
Our algorithm has been implemented and experimentally evaluated on randomly generated
sets of obstacles, obtaining signi�cantly lower execution times than [BG08, Ger10, Kal14].

7.3 Point and Line Obstacles

Our aim is to generalize the results of the previous chapter (Section 6.3) to sets of obstacles
that include line segments in addition to individual points. The motivation is to be able
to deal with obstacles that have a polygonal shape. We �rst adapt triangulations to this
setting, and then investigate how to build roadmaps out of them.

7.3.1 Constrained Delaunay Triangulations

Let us consider a set of obstacles Obst = {A1,A2, . . .Ap ,L1,L2, . . . ,Lq } composed of a �nite
number of points Ai as well as a �nite set of line segments Li . We assume w.l.o.g. that each
segment links two points Ai and Aj that belong to Obst, and that the intersection of any
pair of segments is either empty, or limited to a point Ai belonging to Obst.



138 Chapter 7. Path Planning with Polygonal Obstacles

For such a set of obstaclesObst, a constrained triangulation is a triangulation in which ev-
ery segment Li ∈ Obst (called a constrained segment ) forms the edge of at least one triangle.

Note that, if the goal is to reason about the possible moves of a robot, the notion of
triangulation can somehow be slightly extended. First, it is not mandatory for regions that
cannot be reached by the robot, such as the interior of polygonal obstacles, to be covered by
triangles. Second, since constrained segments cannot be traversed, we allow an edge of a
triangle to be composed of a series of collinear constrained segments instead of a single one.
An example of constrained triangulation is given in Figure 7.1, in which an unreachable
region is grayed out, and constrained segments are represented in red.

Figure 7.1 – Example of constrained triangulation.

The Delaunay criterion can readily be adapted to constrained triangulations [Ber04].
Given a set Obst of obstacles, a point P2 is said to be visible from a point P1 if the intersec-
tion between the segment [P1P2] and every constrained segment [AiAj ] ∈ Obst is either
empty, or is equal to one of its extremities P1 or P2. A constrained triangulation is then
Delaunay if for each of its triangles AiAjAk , all the points in Obst that are visible from Ai ,
Aj or Ak are located outside or on its circumcircle. It is easily shown that this criterion is
equivalent to imposing that, for every pair (AiAjAk ,A`AjAi ) of adjacent triangles, with
Ak , A` , either [AiAj ] is a constrained segment, or one has ÂiAkAj + ÂiA`Aj ≤ π . An
example of constrained Delaunay triangulation is given in Figure 7.2.

A1
A4

A3

A5
A2

A6

A8

A7

Figure 7.2 – Example of constrained Delaunay triangulation.
A5 and A7 are not visible from A1, but all the other points are.
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It is also natural to require1 that the robot remains con�ned in an area fully delineated
by external obstacles. Hence, every potential position of the robot belongs to the convex
hull of the obstacles, and thus to a triangle of the triangulation.

7.3.2 Refining Constrained Delaunay Triangulations

A roadmap can be derived from a constrained triangulation by a procedure similar to the
one outlined in Section 6.3.3: One builds a graph whose nodes are associated to triangles,
and links the nodes corresponding to pairs of adjacent triangles. However, in the presence
of constrained segments, Theorem 6.3.1 does not hold anymore. The problem is illustrated
in Figure 7.3(a), where a robot of diameter d = min( |A1A2 |, |A1A3 |) would not be able to
traverse the gap between the point A1 and the constrained segment [A2A3].

A2 A3

A1

(a)
A3

A1

A2 A4
(b)

Figure 7.3 – Constrained triangulation re�nement.

Our solution to this problem is to re�ne the constrained triangulation by inserting addi-
tional obstacle points known as Steiner points, until we obtain a constrained triangulation
for which a result similar to Theorem 6.3.1 can be established. Adding a Steiner point
amounts to splitting a constrained segment in two components connected at that point,
fragmenting one of the two triangles adjacent to this segment.

For instance, Figure 7.3(b) shows that adding the orthogonal projection A4 of A1 onto
[A2A3] as a Steiner point2 decomposes the triangle A1A2A3 into {A1A2A4,A1A4A3}, yield-
ing a channel for which Theorem 6.3.1 now applies. Indeed, a robot is able to traverse the
sequence of edges [A1A2]; [A1A4]; [A1A3] if and only if its diameter d is at most equal to
min( |A1A2 |, |A1A4 |, |A1A3 |).

Since inserting a Steiner point splits a triangle in two, this operation may result in a
re�ned constrained triangulation that does not satisfy anymore Delaunay’s criterion. It
then becomes necessary to update the triangulation so as to restore this property, which
will be essential to the correct computation of Steiner points.
1 If this constraint is not satis�ed, this can straightforwardly be achieved by adding a su�ciently large bound-

ing box to all the points.
2 We assume that the Steiner point A4 added on the segment [A2A3] is only visible from A2, A3 and the points

that are on the same side of this segment as A1.
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A1

A2 A3A4

A5

(a)

A1

A2 A3A4

A5

(b)

Figure 7.4 – Flipping procedure.

This update procedure can be carried out as follows. Consider a triangle A1A2A3 that
has been split into {A1A2A4,A1A4A3} by the addition of a Steiner point A4 inside the seg-
ment [A2A3]. If the segment [A1A2] is unconstrained and joins two triangles A1A2A4 and
A1A5A2, one has to check whether they satisfy Delaunay’s criterion. If not, as illustrated in
Figure 7.4(a), the quadrilateral A4A1A5A2 must be �ipped, which consists in replacing, as
depicted in Figure 7.4(b), the pair of triangles {A1A2A4,A1A5A2} by {A1A5A4,A2A4A5}. The
same operation must be performed for the segment [A1A3], as well as for the remaining
outside edges of �ipped quadrilaterals. It is known that this procedure, borrowed from
incremental Delaunay triangulation algorithms, has a low average cost, the number of tri-
angles to be processed being usually small [BCKO08].

Finally, it should be stressed out that the re�nement operation must be able to handle
situations that are more complex than the one illustrated in Figure 7.3. For instance, even
if [A2A3] is unconstrained, the traversal of [A1A2]; [A1A3] might be a�ected by constraints
located beyond this segment. We address the problem of selecting a suitable set of Steiner
points in the next two subsections.

7.3.3 Point/Point and Point/Line Constraints

Recall that the goal is to obtain a roadmap graph in which, for every d > 0, each path that
only traverses edges of length greater than or equal to d represents a channel that can be
passed by a robot of diameter d . In other words, one should be able to check whether a
channel can be passed only by measuring the length of the traversed edges, similarly to
the case of point obstacles discussed in Section 6.3.

A robot of diameter d that moves along a channel has to clear di�erent con�gurations
of obstacles. First, traversing an edge [AmAn] between two vertices Am and An is only
possible if d ≤ |AmAn |. We call this condition a point/point constraint. Second, if the
orthogonal projection H of a vertex Ak on a constrained segment [AiAj ] is located inside
this segment, moving between Ak and this segment (in other words, traversing [AkH ])
imposes d ≤ |AkH |, which forms a point/line constraint.
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Type 1 Type 2

A1
X X

X ′X ′

A3A2 A2A3

Ai AiAj Aj

A1

Figure 7.5 – Channel types.

In order to assess the possibility of passing a channel, it is su�cient to consider point/-
point and point/line constraints. As discussed in [Kal14], other con�gurations such as
moving between two constrained segments are systematically covered by the point/point
and point/line constraints induced by their extremities.

It has been shown in Section 6.3 that point/point constraints are automatically dealt
with by Delaunay triangulations: In the absence of constrained segments, Theorem 6.3.1
holds and the triangulation provides a suitable roadmap graph. The di�culty is thus to
handle correctly point/line constraints.

Consider a triangle A1A2A3 that the robot crosses from the edge [A1A2] to the edge
[A1A3], or the other way around. We assume w.l.o.g. that this triangle satis�es |A1A2 | ≤

|A1A3 |. We check whether there exists a vertex X of the triangulation located on the same
side of A2A3 as A1, involved in a point/line constraint with a constrained segment [AiAj ]
located on the other side of this line (which precisely means that the orthogonal projection
X ′ of X on AiAj belongs to the interior of the segment [AiAj ], and is such that [XX ′]
intersects [A2A3]).

A point/line constraint induced by such a vertex X is relevant only if it is more re-
strictive than the point/point constraints generated by the channel followed by the robot.
We call a vertex X problematic for the traversed edges [A1A2] and [A1A3] if it satis�es the
abovementioned conditions, and is such that |XX ′ | < min( |A1A2 |, |XA2 |, |XA3 |).

Indeed, it is not necessary to consider vertices X for which |XX ′ | ≥ |A1A2 |, since the
point/line constraint betweenX and [AiAj ] is then systematically satis�ed as a consequence
of the fact that the robot is able to traverse [A1A2]. The motivation for the conditions
|XX ′ | < |XA2 | and |XX ′ | < |XA3 | is less obvious. With respect toX , there are actually two
types of channels in which the triangle A1A2A3 is traversed from [A1A2] to [A1A3]: Those
in which the robot needs to cross the segment [XX ′] (type 1), and those in which it does
not (type 2). Note that the segment [XX ′] does not necessarily correspond to an edge of
the triangulation. The two situations are illustrated in Figure 7.5.
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For a channel of type 1, if |XX ′ | > min( |XA2 |, |XA3 |), the point/line constraint between
X and [AiAj ] cannot be more restrictive than the point/point constraints induced by the
channel, since it guarantees that the robot is able to traverse the segment [XX ′]. On the
other hand, in a channel of type 2, the point/line constraint induced by X is irrelevant and
does not need to be taken into account.

When studying the triangle A1A2A3, one does not know whether the channel that will
be followed after traversing [A1A2] and [A1A3] is of type 1 or 2, hence both possibilities
have to be taken into account. This goal is achieved by considering only the point/line
constraints induced by problematic vertices, according to our de�nition. Note that the
notion of problematic vertices is similar to the concept of disturbances introduced in [Kal10],
but our strategy for dealing with them, described in the next subsection, di�ers.

7.3.4 Steiner Points Placement

Our approach to selecting a suitable set of Steiner points is based on the following idea:
For every pair of unconstrained edges ([A1A2],[A1A3]) of every triangle A1A2A3 of the
constrained triangulation, if this pair of edges potentially admits a problematic vertex, then
this triangle has to be re�ned. The re�nement operation consists in inserting a Steiner
point in [A2A3] in such a way that, for the two resulting triangles, problematic vertices
cannot exist anymore.

Checking for problematic vertices is done as follows. Recall that we assume w.l.o.g.
|A1A2 | ≤ |A1A3 |. First, it is easily established that the pair ([A1A2],[A1A3]) can only ad-
mit a problematic vertex if the corresponding triangle is such that Â1A2A3 < π/2. This
property relies on the fact that the constrained triangulation satis�es Delaunay’s criterion,
from which it follows that all the points located outside or on the circumcircle of A1A2A3
necessarily violate at least one of the conditions to be problematic.

If the angle Â1A2A3 is acute, which can be checked by testing whether the orthogonal
projection of A1 onto A2A3 is an interior point of the edge [A2A3], then the next step is to
check whetherA1 itself is problematic. This is equivalent to deciding whether there exists a
constrained segment [AiAj ] that contains as an interior point the orthogonal projection A′1
ofA1 ontoAiAj , such thatA′1 is visible fromA1, [A1A

′
1] crosses [A2A3], and |A1A

′
1 | < |A1A2 |.

We will introduce a procedure for carrying out e�ciently this check in Section 7.4. If
this operation succeeds, then A′1 is inserted as a Steiner point into the constrained segment
[AiAj ], splitting the triangle that is adjacent to this segment, on the same side as A1. The
situation is illustrated in Figure 7.6(a).
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Ai

A2 A3

Aj
A′1

A1

(a)
A′1

P ′Ai
Aj

A2 A3

A1 P

(b)

Figure 7.6 – Checking for problematic vertices.

When, on the other hand,A1 turns out to be unproblematic, it remains to check whether
there may exist other potential problematic vertices. This operation is performed in the
following way. We compute the point P located at the intersection of the circumcircle of
A1A2A3 and the line parallel to A2A3 containing A1. Then, we apply to P the same decision
procedure as to A1 in the previous step: We check whether P projects onto a constrained
segment [AiAj ], its projection P ′ is visible from P , [PP ′] crosses [A2A3], and |PP ′ | < |A1A2 |.
In such a case, the projection A′1 of A1 onto [AiAj ] is necessarily interior to this segment.
We then add A′1 as a Steiner point, in the same way as before.

This case is illustrated in Figure 7.6(b). The motivation for selecting A′1 instead of
P ′ is twofold. First, P is generally not a vertex of the constrained triangulation, hence
it does not always appear in the result of the re�nement. Second, the goal of getting rid
of triangles that may admit problematic vertices is correctly achieved with the choice ofA′1.

Indeed, after having re�ned a constrained triangulation using the procedure described
in this section, every resulting triangle that is part of a channel includes a safe zone that
cannot be crossed by constrained segments. This safe zone is illustrated in Figure 7.7.
Every robot that is able to pass a channel can perform this operation while remaining con-
�ned in the safe zone of the successively visited triangles, which proves the following result.

A2 A3

A1

Figure 7.7 – Safe zone.

Theorem 7.3.1. In a re�ned constrained triangulation, there exists a path inG from a feasible
triangle Ti to another one Tj that traverses only unconstrained edges of length at least equal
to d i� there exists a feasible path leading from a point in Ti to a point in Tj , for a robot of
diameter d .
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Where a feasible triangle is de�ned, as in the previous chapter, as a triangle that con-
tains a least one feasible point (i.e., a location of the center of the robot at which none of
its interior points con�icts with obstacles in Obst ).

Finally, it is worth mentioning that our re�nement procedure always terminates, since
the insertion of a Steiner point creates right triangles that will not be re�ned further.

7.4 Refinement Algorithm

As explained in Section 7.3.4, a constrained triangulation is re�ned by checking, for each
pair ([A1A2],[A1A3]) of unconstrained edges belonging to one of its triangles A1A2A3,
whether a Steiner point has to be created by projecting A1 on some constrained segment.
Assuming w.l.o.g. |A1A2 | ≤ |A1A3 |, this check only has to be performed if Â1A2A3 < π/2,
and amounts to deciding whether there exists a constrained segment [AiAj ] onto which
A1 can be projected, with its projection A′1 satisfying speci�c conditions. If the check does
not succeed, a similar operation has to be carried out for another point P derived from A1.

We now explain how to perform e�ciently this check operation, which can be seen
as a particular instance of the following problem: Given a point X , an edge [AkA`] of
the triangulation that contains the orthogonal projection X ′ of X , and a distance λ such
that |XX ′ | < λ ≤ min( |XAk |, |XA` |), decide whether there exists a point Y belonging to a
constrained segment [AiAj ], such that [XY ] crosses [AkA`] with |XY | < λ. If yes, return
the corresponding segment [AiAj ] that is nearest to X .

In order to solve this problem, the �rst step is to check whether [AkA`] itself is a
constrained segment, in which case the procedure terminates with [AiAj ] = [AkA`]. Oth-
erwise, we explore the triangulation, starting with the triangle AkA`Aq adjacent to [AkA`]
on the opposite side as X . It can be shown that, thanks to Delaunay’s criterion, the edge
[AkAq] can contain a point Y such that |XY | < λ only if |AkAq | > |A`Aq |.

As a consequence, the search can be continued by repeating the same procedure with
the longest edge among [AkAq] and [A`Aq] replacing [AkA`]. The check terminates when
a suitable constrained segment is found, the projection X ′ of X onto [AkA`] does not exist,
or this projection is such that |XX ′ | ≥ λ.

The complete algorithm for re�ning a constrained triangulation is summarized in Al-
gorithm 7.1.
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1 Function Refine(constrained triangulation Tr)
2 for all unconstrained [A1A2], [A1A3] such that A1A2A3 ∈ Tr and |A1A2 | ≤ |A1A3 | do
3 (ok,[AiAj ]) := Check(Tr, A1, [A2A3], |A1A2 |);
4 if not ok then
5 P := circumcircle(A1A2A3) ∩ d , with d ‖ A2A3, A1 ∈ d ;
6 (ok,[AiAj ]) := Check(Tr, P , [A2A3], |A1A2 |);
7 end
8 if ok then
9 A′1 := projection of A1 onto [AiAj ];

10 Ak := vertex of AiAjAk ∈ Tr , on same side of AiAj as A1;
11 Tr := (Tr \ {AiAjAk }) ∪ {AkAiA

′
1,AkA

′
1Aj };

12 FlipIfNeeded(Tr, A′1, [AkAi ]);
13 FlipIfNeeded(Tr, A′1, [AkAj ]);
14 end
15 end
16 return Tr ;

17 Function Check(Tr, X , [AiAj ], λ)
18 X ′ := projection of X onto interior of [AiAj ];
19 if X ′ does not exist or |XX ′ | ≥ λ then return (false,−) ;
20 if [AiAj ] is constrained then return (true,[AiAj ]) ;
21 Ak := vertex of AiAjAk ∈ Tr , on other side of AiAj as X ;
22 if |AkAi | > |AkAj | then
23 return Check(Tr, X , [AkAi ], λ);
24 else
25 return Check(Tr, X , [AkAj ], λ);
26 end

27 Function FlipIfNeeded(Tr, A1, [A2A3])
28 if [A2A3] is unconstrained and adjacent to two triangles of Tr then
29 A4 := vertex of A4A2A3 ∈ Tr such that A4 , A1;
30 if A4 is interior to circumcircle(A1A2A3) then
31 FlipIfNeeded(Tr, A1, [A2A4]);
32 FlipIfNeeded(Tr, A1, [A3A4]);
33 end
34 end

Algorithm 7.1 – Re�nement algorithm.
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7.5 Path Planning
7.5.1 Roadmap

As a consequence of Theorem 7.3.1, from a re�ned constrained Delaunay triangulation of
Obst, one can extract a roadmap representing the possible ways of moving around those
obstacles, by a similar procedure to the one outlined in Section 6.3.3.

This is done by building a graph G whose nodes correspond to the triangles of the
triangulation, and in which two nodes are linked if and only if their underlying triangles
share a common unconstrained edge.

As in the previous chapter, the feasible paths that can be followed around the obsta-
cles are exactly represented by the paths of G, being careful of only traversing edges that
have a length consistent with the size of the robot. Thus, G represents a roadmap that can
be searched for paths leading from a triangle to another, using, for instance, Dijkstra’s or A∗.

It is worth mentioning that a sequence of triangles Ti1 ,Ti2 ,Ti3 , . . . extracted from G for
a robot of diameter d does not anymore directly translate into a feasible path. Indeed, con-
trary to the case of a (classical) Delaunay triangulation, in a re�ned constrained Delaunay
triangulation, the center of the circumcircle of a feasible triangle may be unfeasible, for
instance, if it is too close from a constrained segment.

Hence, the path that visits the center of the circumcircle of each triangle in the sequence
is not necessarily feasible3, but as a consequence from Theorem 7.3.1, at least one feasible
path exists in the corresponding channel. Therefore, we can still apply the generalized
funnel algorithm to this channel to compute the shortest feasible path (in the channel).

7.5.2 Origin and Destination

As previously, both the origin and destination locations must clear the obstacles by a dis-
tance that is a least equal to d/2 (i.e., these two positions must be feasible), otherwise the
path planning problem can not be solved.

An interesting property of Delaunay triangulations, is that a vertex is always connected
by an edge to its nearest neighbor vertex (in other words, the nearest neighbor graph of a set
of points is a subgraph of the Delaunay triangulation of those points [BCKO08]). Moreover,
by de�nition, in a constrained triangulation re�ned according to our procedure, a vertex
cannot be closer to a constrained edge than to all the other vertices. We can therefore use
this property to e�ciently determine whether a location is feasible or not.
3 Even if such a path is not feasible, weighting the edges of the graph with the distance between the centers

of the circumcircles of the underlying triangles still manages to �nd the near-shortest path in the plane.
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Indeed, if we add the point P to a re�ned triangulation using, for instance, the e�cient
insertion4 algorithm presented in [MGD03], and then apply again the re�nement algorithm
to the a�ected triangles, then, in order to determine whether P is feasible, we will only
need to check the distance between P and all the vertices to which it is directly connected.

7.5.3 Departure and Arrival Clearance

From Theorem 7.3.1, we know that if a path that visits a sequence of trianglesTi1 ,Ti2 , . . . ,Tim
is extracted from the roadmapG, for a robot of diameter d , then there exists a feasible path
for this robot that lead from at least one point in Ti1 to at least one point in Tim . But we
have no guarantee that the origin O located in Ti1 or the destination D located in Tim will
correspond to one of those points.

In fact, in a classical Delaunay triangulation, if two points belonging to the same tri-
angle are feasible, then there always exists a feasible path that joins them, but in a re�ned
triangulation this property does not hold anymore, in particular, for obtuse triangles. This
situation is depicted in Figure 7.8, where the distance between the constrained segment
[AiAj ] and the vertex A1 (that belongs to T1) is inferior to d . Hence, a robot of diameter d
cannot pass between them, while there exist feasible positions for this robot in T1 on both
sides of this passage.

d/2
< d

A1

A3

A2

Aj
Ai

T1

Figure 7.8 – Feasible positions in a triangle that cannot be connected by a feasible path.
(As usual, obstacles are depicted in red.)

The pointA1 is then problematic for a path that starts or ends inT1. The idea to solving
this problem is the same as for our re�nement procedure: we add additional Steiner points
to our triangulation in such a way that this situation cannot exist anymore.

This is achieved, by adding the origin or the destination point to the re�ned constrained
triangulation, in the exact same way as for the feasibility check. Then we can remove this
4 Note that, in order to take into account our relaxed triangulation de�nition (i.e., the fact that we allow an

edge of a triangle to be composed of a series of collinear constrained segments instead of a single one),
the local search to determine the triangle in which the point should be inserted must of course be slightly
adapted. In the same way, constrained edges cannot be �ipped by the insertion algorithm.
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point from the triangulation using, for instance, the e�cient deletion5 algorithm also pre-
sented in [MGD03], and, �nally, apply again one more time the re�nement algorithm to
the a�ected triangles.

Figure 7.9 illustrates the result of the insertions and deletions of both the origin O and
destination D locations to the same triangulation as the one depicted in Figure 7.8. This
yields a triangulation for which Theorem 7.3.1 now applies for paths that lead fromO to D.

A1

A3

A2

Aj
Ai

A′1

O D

Figure 7.9 – Insertion and deletion of successively the origin and destination locations.
The orthogonal projection A′1 of A1 onto [AiAj ] has,

for instance, been added as a Steiner point.

In fact, these local operations now ensure that the triangles that contain O and D do
not contain vertices that are problematic for the start or the end of the path.

d/2

A1

A3

A2

O

Figure 7.10 – Extended safe zone.

Indeed, after adding and removing successively O and D to the re�ned constrained
triangulation, the triangles that now contain the feasible positions O and D for a robot of
diameter d include an extended safe zone that cannot be crossed by constrained segments.
This extended safe zone is illustrated in Figure 7.10. Every robot that is able to traverse
respectively the �rst or the last interior edge of a channel, can perform this operation while
remaining con�ned in the increased safe zone of the triangles that respectively contain O

and D.
5 Similar remarks as for the insertion algorithm apply.
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7.5.4 String Pulling

In order for the generalized funnel algorithm to behave correctly, the exact same issue as
the one described in Section 6.3.5.3 has to be taken into account.

After adding and removing both the origin and destination to a re�ned triangulation,
every channel extracted for a robot of diameter d admits a least one feasible path that pass
by this channel. But, since the two triangles at the extremities of a channel (i.e., those that
contain O or D as vertex) are not triangles of the triangulation, they do not satisfy the
Delaunay criterion. Therefore, there may still exist obstacles that could interfere with the
shortest path at the beginning and the end of the channel (i.e., before the �rst and after the
last interior edge).

One could remark that, due to Delaunay’s criterion, the vertices potentially located in
the problematic area described in Section 6.3.5.3, are necessarily closer to O (or D ) than
to any other vertices (located outside this area). Thus, when we check whether O (or D )
is feasible, if the problematic area contains vertices, then at least one of them must be
connected to O (or D ). During this check, one can then store the list of vertices to which
O or D is connected, and use it afterwards in order to e�ciently determine whether the
problematic area is empty6 or not.

7.5.5 Illustration

We illustrate the successive steps of the path planning method introduced in this chapter
in Figure 7.11. Figure 7.11(a) shows an area with polygonal obstacles, origin O and desti-
nation D locations (along with the required safety distance). Figure 7.11(a) also shows the
constrained Delaunay triangulation of these obstacles. The re�ned constrained Delaunay
triangulation is illustrated in Figure 7.11(b). Figure 7.11(c) depicts the triangulation after
insertion and deletion of the origin and destination locations. Figure 7.11(d) illustrates the
roadmap graph that corresponds to the �nal triangulation.

This graph is then searched, for a robot of the given diameter, and the shortest path
from origin to destination is highlighted in green. Figure 7.11(d) also shows the channel
that correspond to the shortest path in the graph. Figure 7.11(e) shows the result of the
generalized funnel algorithm performed on this channel. Finally, Figure 7.11(f) shows the
same result for a larger robot.

6 For the same reason, the other vertices in the problematic area (if any), are necessarily connected together,
and can therefore be discovered e�ciently.
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O

D

(a) Problem statement and constrained Delaunay triangulation.

O

D

(b) Re�ned constrained Delaunay triangulation.
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O

D

(c) Origin and destination inserted and removed from the re�ned triangulation.

O

D

(d) Feasible arcs of the corresponding graph (shortest path highlighted in green) and extracted channel.
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O

D

(e) Shortest path in the channel.

O

D

(f) Shortest path for a larger robot.

Figure 7.11 – Illustration of path planning with a re�ned constrained triangulation.
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7.6 Experimental Results

We have implemented the re�nement algorithm introduced in this chapter, starting from
a constrained Delaunay triangulation, in order to compare it to solutions such as [Ger10,
Kal14]. In addition to being simpler, our technique also has the advantage of o�ering
signi�cantly reduced execution times, even though it produces slightly larger re�ned trian-
gulations than [Kal14]. We provide in Figure 7.12 measurements performed on randomly
generated sets of obstacles of increasing size, using an i5-460M CPU running at 2.53 GHz.

Points Triangles Re�ned points Re�ned triangles Re�nement procedure
1227 2448 1420 2641 0.27 ms
5558 11110 6179 11731 1.23 ms

15042 30078 16644 31680 3.49 ms
30205 60404 33311 63510 9.08 ms
54990 109974 60563 115547 19.78 ms

136168 272330 150022 286184 52.66 ms
325058 650110 358931 683983 128.31 ms
649632 1299258 719149 1368775 260.05 ms

1298879 2597752 1443726 2742599 526.40 ms

Figure 7.12 – Experimental results.

It also worth mentioning that, unlike [Kal14] which requires to store additional in-
formation in triangles, this re�nement algorithm produces re�ned triangulations that are
compatible with the ones produced by a classical Delaunay triangulation. Therefore, we
can directly use (without modi�cations) the graph search methods or the generalized fun-
nel algorithm described in Chapter 6.

In comparison to the method described in Chapter 6, this re�nement algorithm clearly
adds a smaller number of (Steiner) points to the triangulations than the number of points
needed for discretizing the obstacles. This results in much simpler triangulations, and
therefore, in much more e�ective graphs searches.

The constrained Delaunay triangulation of a set of points and line segments can be
computed in O (n logn) time, where n denotes the total number of vertices [Che89, Slo93].
In addition, we have observed experimentally that the re�nement algorithm is averaging
roughly O (n) in time for the case studies that we have considered. This results practically
in a path planning method that is more computationally e�cient than the one described
in Chapter 6. It worth noting that, determining the theoretical worst-case complexity of
the re�nement procedure has proved to be di�cult and it remains an open problem7.

7 Note that, using the simple heuristic that consists of �rst re�ning the triangles that have one and only one
constrained segment, we were unable to construct cases where the computational cost of the re�nement
procedure was worst than linear in the number of triangles in the constrained Delaunay triangulation.
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Our solution thus allows near-optimal path planning in real-time for larger problems
than previously feasible. In the framework of the Eurobot contest, this made it possible
to evaluate several strategies (e.g., in order to check the time needed to perform di�erent
actions) and to choose the most promising one in real-time.

In order to compare the methods described in Chapter 6 and 7, we provide in Figure 7.13
the time needed to perform the various steps of both procedures. The problem8 considered
is the one illustrated in Figure 7.11. For this problem, the re�nement algorithm allows
us to �nd the near-shortest path more than 8 times faster than the discretization-based
approach.

Discretization-based Re�nement-based
Points 2131 159

Triangles 3740 291
Re�ned points / 280

Re�ned triangles / 412
Triangulation 1819.87 µs 168.95 µs

Re�nement procedure / 28.60 µs
Origin & Destination 7.56 µs 7.70 µs

Dijkstra’s 250.64 µs 36.58 µs
Funnel 18.74 µs 5.17 µs

Total time to �nd
the short path 2096.81 µs 247.00 µs

Figure 7.13 – Comparison between discretization-based and re�nement-based path
planning for the problem illustrated in Figure 7.11.

Note that, even if it is di�cult to directly compare our method to other approaches,
since shared datasets and implementations are usually not available, it nevertheless clearly
appears — based on the execution times claimed by the authors for problems with similar
complexity — to be much faster than [BG08, Ger10, JSTL14, Kal14].

Even if popular probabilistic approaches, such as PRM (Probabilistic Roadmaps) [GO04]
or RRT (Rapidly-exploring Random Trees) [LaV98], are usually the most e�cient methods
for path planning in complex high-dimensional con�guration spaces, they do not necessar-
ily provide the best solutions for mobile robot moving in two-dimensional space. Indeed,
in our case (path planning of a cylindrically shaped robot in an Euclidean plane), using
a triangulation-based path planning usually results in lower running times and in better
quality paths than using probabilistic methods.
8 Note that for this problem, both methods produce the exact same shortest path. This does not necessarily

happen in all cases. Indeed, due to the approximated metric used in the graph search, the two methods may
produce two di�erent short paths for a particular problem (but this seldom happens). In such a case, both
paths are very similar or at least have similar lengths.
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It is also worth mentioning that, in order to behave correctly, probabilistic methods
rely on e�cient collision detection algorithms, which requires to preprocess the obstacles
to create data structures (e.g., quadtree, k-d tree or even a triangulation) that are necessary
for their proper operation. Since these data preprocessing operations are more or less
equivalent to computing a Delaunay triangulation of the obstacles, probabilistic methods
cannot, in any way, be much faster than the method presented in this chapter.

Furthermore, even if we ignore this aspect, probabilistic methods also have other draw-
backs. First, due to their probabilistic nature, PRM or RRT methods produce paths that
usually contain lots of unneeded direction changes, clear obstacles at unnecessarily large
distances, and do not exploit narrow passages. This results in much longer paths, with usu-
ally a lower quality9 than the ones produced by methods that rely directly on a Delaunay
triangulation (i.e., after applying the funnel algorithm).

Finally, probabilistic methods do not provide roadmaps suited for path planning of
robots with an arbitrary size. Indeed, RRTs can only do single query planning (i.e., �xed
origin and destination locations, and �xed size), and PRMs provide only roadmaps that are
usually incomplete and only suited for robots of a �xed given size. Therefore, replanning
or evaluating several strategies (i.e., testing di�erent goals or di�erent clearances) becomes
computationally expensive.

9 Methods have been proposed to optimize such paths, but they are quite ine�ective in comparison to the
generalized funnel algorithm.





CHAPTER 8

Experimental Results and Conclusions

“It doesn’t matter how beautiful your theory is,
it doesn’t matter how smart you are.

If it doesn’t agree with experiment, it’s wrong.”

— Richard P. Feynman

8.1 Experiments

This section describes some of the experiments performed in order to evaluate the perfor-
mances of our complete trajectory planning approach; i.e., the combination of the path
planning algorithms of Chapters 6 and 7, the path interpolation method of Chapter 5 and
the speed pro�le computation procedure of Chapter 4.

8.1.1 Experimental Setup

As already mentioned, this work has primarily been motivated by the Eurobot contest, in
which small autonomous mobile robots have to compete against opponents in a 2 × 3 m2

area in the presence of obstacles.

In this framework, it is essential to synthesize fast and accurate trajectories in real-time.
Indeed, obtaining accurate advance information about the locations that will be visited by
the robot and their associated timestamps is crucial to implementing coordinated actions
between the locomotion system and other actuators, or between several robots. In addition,

157
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generating trajectories that can be followed without slowing down in the vicinity of obsta-
cles and that manage to quickly reach their target provides a clear advantage.

In order to participate to this contest, several di�erential drive and tricycle robotic
platforms have been developed since 2008 at the University of Liège. Each platform is com-
posed of a low-cost embedded computer running real-time Linux, together with several
custom-made electronic cards. Our algorithms have been implemented and evaluated in
these various robots, which amounts to hundreds of thousands of trajectories successfully
synthesized.

These robots are cylindrically shaped (or at least can be over-approximated by cylin-
ders) with diameters that vary between 20 and 40 cm. They can achieve speeds of more
than 1.5 m s−1 and accelerations of more than 3 m s−2.

With the exception of the constrained Delaunay triangulation computation for which
we use the e�cient and robust C library Triangle1 developed by J. R. Shewchuk [She96],
all the algorithms and methods described in this thesis have been implemented by us in C
and are not based on external2 libraries. This strategy allows better control of the memory
consumption and of the overall e�ciency, which are of primary interest for an embedded
real-time application. Our C implementation of trajectory planning amounts to more than
17500 non-commented lines of code spread over thirty-two source �les.

In addition to the Eurobot contest, which was a remarkable way to confront the theory
with real world, in order to evaluate the robustness and the performance of our solution
in greater depth, we have also tested our algorithms on much complex problems, like navi-
gating in buildings, mazes, or between randomly generated sets of hundred of thousands
of obstacles. Some of these problems are presented in the next subsection.

8.1.2 Experimental Results

The problem instances considered in these experiments were constructed as follows. Prob-
lem 1, illustrated in Figure 8.6, represents a particular problem instance encountered in the
Eurobot framework. Problem 2, illustrated in Figure 8.7, depicts a building in which the
robot has to move. Problem 3, illustrated in Figure 8.8, represents a maze that comes from
the KrazyDad.com maze collection, in which the robot must �nd its way out. Problem 4,
illustrated in Figure 8.9, represents the labyrinth that was installed, until 1779, on the �oor
of the nave of the Cathedral of Reims, for which the aim is to �nd the way to the center.

1 In order to make fair comparisons, we also use Triangle to benchmark the computations of the classical
Delaunay triangulation. It also worth noting that Triangle e�ciently detects potential intersections between
constrained segments, and splits them if necessary, which can be useful for complex problems.

2 At the exception of the GNU C Library.
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Problems 5 to 9 are randomly generated sets of obstacles of increasing size. Problems
5 to 7 are illustrated in Figures 8.10 to 8.12. Figures for Problems 8 and 9 are not provided
(since they are too complex to �t on a A4 page), but are similar to Figure 8.12 with larger
numbers of obstacles. Generated obstacles are convex polygons of random (bounded) sizes
with a random number of vertices (from 3 to 10). During the construction of these sets,
each new polygon is randomly added to the area while ensuring a roughly uniform density
of obstacles.

All these problems have been evaluated with a tricycle robot, using the physical pa-
rameters summarized in Figure 8.1.

Axle width: 27 cm
Wheel base: 18 cm

Absolute maximal speed of the steering wheel: 1.3 m s−1

Absolute maximal acceleration of the steering wheel: 1.0 m s−2

Absolute maximal tangential acceleration: 1.0 m s−2

Absolute maximal radial acceleration: 1.0 m s−2

Absolute maximal steering speed: 6.0 rad s−1

Figure 8.1 – Parameters of the tricycle robot.

Figure 8.3 reports various parameters and results related to these nine problems. For
each problem, it provides the total number of obstacle vertices and the number of triangles
in the constrained Delaunay triangulation. It also shows the �nal number of points and
triangles in the re�ned triangulation and the number of triangles of the shortest channel,
extracted from the roadmap, with respect to the given obstacle clearance (i.e., the minimal
distance between the center of the robot and the obstacles). Next, it gives the number of
line segments of the broken line that results from the generalized funnel algorithm applied
on this channel.

This �gure also shows the bene�ts on the travel time (for the considered tricycle robot)
provided by the interpolation procedure. The travel time after the �rst step of this proce-
dure (i.e., bounding curvature by using circular arcs) is also reported. One can remark that
the bene�ts of the interpolation procedure are clearly signi�cant, even if they, of course,
depend on the ratio between the length of the path and the number of orientation changes.

Finally the length of the interpolated path and the number of discretized steps are re-
ported. It worth noting that, as discussed in Chapter 3, the path discretization error can
be arbitrarily bounded by choosing su�ciently small sampling steps. In the context of the
Eurobot framework, since precision is of primary interest, we use a relatively large number
of steps to discretize the paths. Each of these steps has roughly a length of 5 mm. For
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bigger robots, or in situations where such a precision is not needed, this step can of course
be increased, which would result in smaller speed pro�le computation and discretization
runtimes.

The timings reported in Figures 8.4 and 8.5 were obtained by running our implementa-
tion on an i5-460M processor at 2.53 GHz (on a single thread).

These results show that the computational cost of planning a smooth, accurate, short
and fast feasible trajectory for a robot in an highly cluttered environment of hundred of
thousands obstacles amounts to less than a second of CPU time. To the best of our knowl-
edge, this makes our complete solution one of the fastest methods suited for trajectory
planning of a mobile robot in the Euclidean plane in the presence of obstacles.

Thanks to these results, one observes on Figure 8.2 that, even though some compu-
tation steps such as the Delaunay triangulation theoretically require O (n logn) time, the
overall experimentally measured time complexity of our path planning approach remains
O (n), where n denotes the number of obstacles vertices. Part of this good result comes
from the fact that the Triangle library that we used to compute the constrained Delaunay
triangulation has a linear cost in most cases.

In particular, one also clearly notices that the discretization and the speed pro�le pro-
cedures have a linear cost in term of the number of discretized steps and that the cost of
the interpolation procedure is linear in the number of segments in the broken line, in our
experimental setting.

obstacles

Runtime (ms)

vertices

Figure 8.2 – Path planning runtimes for the nine problems considered.
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Problem Points Triangles Re�ned Re�ned Obstacles Channel Broken line
points triangles clearance triangles segments

1. Eurobot 84 154 127 197 32 cm 32 10
2. Building 284 562 499 777 100 cm 68 11

3. Maze 524 1042 1254 1772 24 cm 397 81
4. Reims 642 1278 1803 2439 16 cm 1144 317

5. Random 1 622 1238 974 1590 20 cm 94 16
6. Random 2 3047 6088 4620 7661 40 cm 199 29
7. Random 3 26249 52492 39349 65592 40 cm 591 50
8. Random 4 99356 198706 149128 248478 40 cm 1104 103
9. Random 5 263464 526922 385161 648619 40 cm 1611 112

Problem Broken line Circular arcs Interpolated path Interpolated Discretized
travel time path travel time travel time path length steps

1. Eurobot 21.31 s 11.60 s 7.62 s 3.08 m 632
2. Building 72.23 s 60.33 s 47.72 s 57.51 m 11521

3. Maze 220.78 s 148.85 s 96.86 s 38.50 m 8193
4. Reims 985.34 s 748.42 s 675.77 s 246.29 m 53258

5. Random 1 37.86 s 26.11 s 14.72 s 6.88 m 1404
6. Random 2 97.16 s 65.43 s 44.11 s 49.12 m 9860
7. Random 3 306.69 s 251.10 s 205.32 s 259.37 m 51936
8. Random 4 642.14 s 513.61 s 427.90 s 542.14 m 108548
9. Random 5 1175.15 s 1035.44 s 930.61 s 1201.17 m 240357

Figure 8.3 – Experimental results.

Problem Triangulation Re�nement Origin Dijkstra’s Funnel Path planning
Procedure & Destination (Total)

1. Eurobot 77.24 µs 11.96 µs 8.34 µs 14.01 µs 4.81 µs 116.36 µs
2. Building 275.69 µs 80.78 µs 12.37 µs 68.45 µs 8.80 µs 446.09 µs

3. Maze 470.06 µs 123.57 µs 10.34 µs 200.35 µs 50.47 µs 854.79 µs
4. Reims 809.34 µs 175.33 µs 11.28 µs 159.37 µs 147.80 µs 1303.12 µs

5. Random 1 623.43 µs 168.41 µs 11.34 µs 106.52 µs 14.36 µs 924.06 µs
6. Random 2 3257.86 µs 859.30 µs 17.91 µs 818.57 µs 27.64 µs 4981.28 µs
7. Random 3 38.45 ms 10.59 ms 0.06 ms 14.77 ms 0.08 ms 63.95 ms
8. Random 4 190.03 ms 53.57 ms 0.08 ms 60.54 ms 0.14 ms 304.36 ms
9. Random 5 574.54 ms 140.75 ms 0.14 ms 175.56 ms 0.20 ms 891.19 ms

Figure 8.4 – Path planning runtimes.

Problem Path planning Interpolation Discretization Speed Pro�le Total time
1. Eurobot 0.12 ms 0.02 ms 0.06 ms 0.21 ms 0.41 ms
2. Building 0.45 ms 0.02 ms 0.69 ms 2.41 ms 3.57 ms

3. Maze 0.85 ms 0.22 ms 0.72 ms 3.04 ms 4.83 ms
4. Reims 1.30 ms 0.76 ms 5.97 ms 22.06 ms 30.09 ms

5. Random 1 0.90 ms 0.03 ms 0.13 ms 0.45 ms 1.51 ms
6. Random 2 4.98 ms 0.07 ms 0.62 ms 2.06 ms 7.73 ms
7. Random 3 63.95 ms 0.12 ms 5.33 ms 13.21 ms 82.61 ms
8. Random 4 304.36 ms 0.25 ms 11.19 ms 28.73 ms 344.53 ms
9. Random 5 891.19 ms 0.29 ms 23.83 ms 61.70 ms 977.01 ms

Figure 8.5 – Trajectory planning runtimes.
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Figure 8.6 – Problem 1: Eurobot.
(area: 2.1 × 3.0 m2; obstacles clearance: 32 cm; path length: 3.08 m)

Figure 8.7 – Problem 2: Building.
(area: 33.4 × 53.8 m2; obstacles clearance: 100 cm; path length: 57.51 m)
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Figure 8.8 – Problem 3: Maze.
(area: 53.5 × 53.5 m2; obstacles clearance: 24 cm; path length: 38.50 m)

N.B.: This maze is part from the KrazyDad.com collection — http://www.krazydad.com

http://www.krazydad.com


164 Chapter 8. Experimental Results and Conclusions

Figure 8.9 – Problem 4: Reims Cathedral.
(area: 10.7 × 10.7 m2; obstacles clearance: 16 cm; path length: 246.29 m)
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Figure 8.10 – Problem 5: Random 1.
(area: 5 × 5 m2; obstacles clearance: 20 cm; path length: 6.88 m)
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Figure 8.11 – Problem 6: Random 2.
(area: 40 × 40 m2; obstacles clearance: 40 cm; path length: 49.12 m)
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Figure 8.12 – Problem 7: Random 3.
(area: 200 × 200 m2; obstacles clearance: 40 cm; path length: 259.37 m)
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8.2 Comparison with Other Work

Since this work has been primarily motivated by a contest, some of its aspects are atypical.
Unlike some other approaches, our strategy was always to keep a pragmatic viewpoint in
order to develop a complete solution that can be used on a real mobile robot with a low
computational cost. The idea was not to generate optimal trajectories, but still do our best
to generate trajectories that manage to reach their target in acceptable time.

This pragmatic viewpoint led us to a solution in which the motion planning problem
has been broken into several (simpler) subproblems. For each of them, we used existing
e�cient solutions when possible, and concentrated our e�orts in improving or developing
new ones when necessary. The result takes the form of a complete work�ow that has been
successfully implemented and tested in a real application. This work�ow produces, in real-
time, smooth, accurate, and fast trajectories that are consistent with the various physical
constraints of the robot, which provides, in our case studies, a signi�cant advantage over
other approaches.

The key to e�ciency is that each subproblem is, as much as possible, decoupled from
the other ones, the tradeo� being that the generated trajectories are not guaranteed to be
optimal (neither the shortest or the fastest). Thus, in comparison to global approaches
such as [RW98, BK08], our method generates slower trajectories but with a smaller com-
putational cost. Note that, since we have environmental uncertainties (drift, sensor errors,
modeling inaccuracies, . . . ) anyway, obtaining global optimality at all cost is not practically
relevant. Moreover, we have seen in Chapter 6 that the solutions generated by Delaunay-
based methods, like ours, are usually close to the shortest ones (using a suitable metric
during the search).

We have divided the motion planning problem into three main subproblems. The �rst
one is aimed at �nding a path that avoids obstacles and manages to reach the destination,
without taking into account nonholonomic constraints. Such a path takes the form of a
sequence of straight line segments that clears the obstacles at a speci�ed safety distance.
The second step is to smooth this path, in order to reduce the minimal time needed by a
real robot to follow it. The third step is to convert the path into a fast trajectory by com-
puting a time-optimal speed pro�le that can be followed by the robot, taking into account
its physical constraints.

We have already compared our solutions to these subproblems to other relevant work
in their corresponding chapter; a brief summary of these comparisons follows.

First, the path planning method that we have developed in Chapters 6 and 7 is based on
the re�nement of a constrained Delaunay triangulation of the obstacles. From this re�ned
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triangulation we obtain a roadmap suited for path planning of robots with an arbitrary size.
This roadmap is then searched and the extracted path is optimized by the generalized funnel
algorithm. The main advantage of this approach is its e�ciency, with the drawback that,
unlike techniques that rely on visibility graphs or visibility-Voronoi complexes [WBH05],
it does not generate the shortest feasible path in the plane. Nevertheless using a suitable
metric during the graph search, we know that generated paths are usually short in com-
parison to the global shortest ones [Kal10].

Our technique is also faster than other existing roadmap approaches such as [BG08,
Ger10, JSTL14]. Compared with the method developed in [Kal14] that relies on a similar
re�nement of a constrained Delaunay triangulation, our technique has the advantage of
being simpler, easier to implement, and o�ers signi�cantly reduced execution times, even
though it produces slightly larger re�ned triangulations.

Finally, our path planning technique is also faster and produces shorter paths than prob-
abilistic path planning methods such as probabilistic roadmaps (PRM) [GO04] or rapidly
exploring random trees (RRT) [LaV98], the drawback being that it can only handle cylindri-
cally shaped robots (for which the orientation is irrelevant). This is usually not problematic,
since lots of actual mobile robots satisfy this property, or can be approximated in this way.

Next, since we do not consider nonholonomic constraints during the path planning
phase, the path is interpolated in order to obtain a smooth path that can be precisely fol-
lowed by the robot without slowing down excessively. This interpolation, developed in
Chapter 5, is performed in two steps, the �rst one being aimed at producing a path in
which the absolute curvature is bounded at all points, and the second one modifying this
path, using pairs of clothoids, in order to now bound the rate of variation of curvature. In
both steps, the interpolation is computed in such a way that the resulting path still clears
obstacles.

Compared with other interpolation methods such as [SS90, KH97, FS04, BP11a, ESJ15],
our approach of joining only two arcs of clothoids for moving from one curvature to an-
other has the advantage of being simpler and computationally cheaper, the tradeo� being
that the generated curves are not guaranteed to be optimal (i.e., with respect to the travel
time). But, none of the other approaches guarantee optimality either. Compared with
other simple approaches that only use circular arcs to interpolate paths, such as [KS12],
our method clearly generates smoother paths (i.e., without curvature discontinuities) that
can be travelled faster.

Note also that, unlike some path planning methods that directly take into account
kinematic constraints of robots, such as [SF96, FS04] (that also rely on clothoids), [LKJ00,
KKT+09] (that rely on RRT), or [TMD+06, CE07, UAB+08] (that are used in autonomous
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cars), our method is not able to deal with complex maneuvers that require to change the
direction of motion (i.e., such as parallel parking), but, since cylindrically shaped robots
usually do not impose bounds on the curvature of the paths (i.e., they are able to make
rotations around their center), such maneuvers are, in any case, unnecessary to reach the
destination locations.

After the interpolation procedure, the last subproblem consists in computing a time-
optimal speed pro�le that corresponds to the interpolated path, i.e., the speed pro�le which
minimizes the total time needed by a robot for following the path while being consistent
with the various physical constraints of the robot.

Our solution to this problem �rst consists of an original discretization procedure (intro-
duced in Chapter 3), which can e�ciently and precisely represent arbitrary paths. In com-
parison with other techniques that use analytical closed-form formulation such as [LJTM94,
CC00, FS04, BP11b, ZT13], this discretized representation eases the di�erent manipulations
that can be done on trajectories and, in particular, allows e�cient and accurate trajectory
interpolation and resampling.

In addition, this representation also allows to develop a time-optimal speed pro�le
computation procedure (in Chapter 4), which has not only proved to be several orders
of magnitude faster than techniques such as [CC00, BP11b, KS12], but is also easier to
implement, and supports a much broader range of physical constraints, such as individual
constraints on the various wheels, constraints on the steering mechanism or even context-
sensitive constraints (like imposing tighter speed bounds in the vicinity of some obstacles,
or expressing the maximal acceleration of a wheel as a function of its speed).

Finally, the synthesized trajectory (i.e., the combination of the discretized representa-
tion of the path and of its associated speed-pro�le) provides accurate advance information
about the locations that will be visited by the robot and their associated timestamps, which
is necessary to implementing coordinated actions between the locomotion system and other
actuators, or between several robots. Compared with e�cient online trajectory planning
methods such as [Kha86, FBT97, TMD+06, KKT+09], which, due to their reactive nature,
cannot provide such information, this clearly constitutes an important advantage. Note
also that, for the same limited horizon reasons, online methods usually produce longer and
slower trajectories than our method.

8.3 Conclusions
Autonomous mobile robots are used increasingly in various �elds, such as transporting
materials (like the thousand of robots in the Amazon warehouses), making domestic tasks
(such as mowers or vacuum cleaners) or transporting passengers (like driverless taxis). In
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order to execute their actions correctly, one of the key problem for those robots is to auto-
matically decide which move to make in order to reach a goal while taking into account
environmental constraints, which amounts to trajectory planning.

The research described in thesis addresses this problem, and although it was �rst moti-
vated by the participation to a robotic contest, it provides algorithms that may certainly be
useful in other contexts, in particular, when the available amount of embedded computing
power is limited.

Indeed, the combination of our path planning, interpolation and speed-pro�le tech-
niques provides a complete trajectory planning approach that is, to the best of our knowl-
edge, one of the most computationally e�ective method suited for the motion of cylindri-
cally shaped mobile robots in two-dimensional space.

In addition to this complete trajectory planning solution, we can highlight some other
important contributions of this work.

First, in Chapter 3 we have developed an original data structure that is able to e�ciently
represent the spatial properties of arbitrary paths that can be followed by nonholonomic
mobile robots. This structure eases the di�erent manipulations that need to be performed
on such paths, and allows e�cient and accurate interpolation and resampling.

Second, built on top of this data structure, we have presented, in Chapter 4, an algo-
rithm for computing time-optimal speed pro�les for arbitrary paths. Such a speed pro�le
associates each point of the path with a timestamp that provides the instant at which it
will be visited by the robot, in such a way that it minimizes the total time needed by the
robot to travel the whole path, while satisfying at all times the kinematic constraints of
the robot. This speed pro�le is important not only to allow the robot to quickly reach its
destination location, but also to provide the advance information necessary to implement-
ing coordinated actions (e.g., between the locomotion system and other actuators).

This algorithm has not only proved to be faster, but is also simpler and easier to imple-
ment than other existing methods. Moreover, it supports a much broader range of physical
constraints, such as context-sensitive constraints or individual constraints on the various
wheels. Note also that, this speed pro�le computation procedure can be used in combina-
tion with other path planning techniques, since it does not make any assumptions on the
path geometry.

Third, in Chapter 5, we have developed a new algorithm for e�ciently interpolating a
broken line, i.e., a sequence of connected straight line segments, into a smooth curve, while
remaining at a safe distance from obstacles, which produces, for physically realistic robots,
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a faster speed pro�le than for broken lines. Similarly to other work, the interpolated curve
is not guaranteed to be optimal (i.e., with respect to the travel time), but our method is
simpler and faster than other existing techniques.

Finally, after the description in Chapter 6 of an e�cient path planning method for
cylindrically shaped robots based on a Delaunay triangulation of points obstacles, we have
presented in Chapter 7 a generalization of the method in the case where obstacles can be
represented by polygons. This generalization relies on an original re�nement procedure
of a constrained Delaunay triangulation of the obstacles. It has proved to be one of the
fastest approach for path planning of cylindrical robots among polygonal obstacles.

It also worth mentioning that, in order to use our complete trajectory method in actual
applications, additional problems need to be solved, that are not addressed in this thesis.
For instance, robots have to follow the computed trajectories. For Eurobot, we have devel-
oped control algorithms that are derived from [MS93]. In a few words, we use multiple
PID control loops to not only accurately following spatially the trajectory (i.e., the path
really followed by the robot should stay close to the computed one), but also accurately
following it temporally (i.e., the time at which locations are reached should correspond to
the computed ones).

In some applications, robots also have to deal with dynamic obstacles, such as, in the
context of Eurobot, opponent robots. Since movements of these robots are somehow un-
predictable, we solve this problem by using a strategy module that is capable of estimating
the probability that a trajectory will con�ict with one of these dynamical obstacles in the
near future, and we compute braking trajectories and perform replanning when potential
short term collisions are detected. The discussion of these mechanisms is out of scope of
this thesis.

To conclude, as already mentioned several times, the results presented in this thesis
have been successfully implemented in the robots built for Eurobot at the University of
Liège. In this framework, the very low computational cost of our complete approach and
the accuracy of the synthesized trajectories made it possible to perform near-optimal trajec-
tory planning in real-time and plan coordinated actions, which provided a clear competitive
advantage over the designs of other teams.

8.4 Future Work and Perspectives

To conclude this thesis, we discuss a non-exhaustive list of improvements or perspectives
that it has opened.
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First, with the advent of unmanned aircraft such as quadcopters, trajectory planning for
free-�ying robots clearly becomes an important topic. Thus, an interesting problem would
be to extend this work to three-dimensional space. In particular, it would be challenging
to translate to 3D our re�nement procedure for constrained Delaunay triangulations.

Next, it has been shown that 3D Delaunay triangulations can take advantage of par-
allelization [CMPS93]. A natural question would be to study whether our re�nement
procedure can also take advantage of such parallelization.

Moreover, in the case where only small incremental changes are made to the environ-
ment, it is clearly ine�ective to recompute the complete re�ned triangulation. One could
detect such situations and develop algorithms to e�ciently update the re�ned triangulation.

It should also be possible to e�ciently avoid the insertion of some Steiner points during
the re�nement procedure, for instance, in the case where some bounds on the size of the
robots are known. For example, one could avoid re�ning triangles that are clearly too
narrow to be traversed by the robot.

In some applications, it is less crucial to quickly reach destination locations, therefore,
the speed-pro�le computation procedure could be extended to take into account other
optimization criteria, such as maximizing the energy e�ciency, or ensuring that the robot
reaches a given position at a certain �xed time, in order to make, for instance, rendezvous
points.

As already discussed, trajectories that are synthesized by our method are not optimal
(in the sense that they are not the fastest feasible ones). By using richer information than
the clearance parameters, it could be possible to allow slightly larger path deformations in
the interpolation procedure. This could result in paths that can be followed even faster.

Finally, one of our future project is to make available the implementation of the algo-
rithms presented in this dissertation for anyone who would want to use or evaluate them.

“Roads ?
Where we’re going, we don’t need roads.”

— Back to the Future (1985)





APPENDIX A

Constraints Developments Related to the Speed
Profile Computation

This appendix presents the mathematical developments related to the 16 distinct physi-
cal constraints that we consider for our main application (the Eurobot contest). Those
developments are used with the method presented in Chapter 4.2 in order to compute a
time-optimal speed pro�le (i.e., the speed pro�le that reaches as quickly as possible the
destination) for a given path segment representation (m,σ ).

A.1 Forward Steps

Let us consider the case of a path segment (m,σ ) entirely composed of forward steps, i.e.,
such that νi = F for all i ∈ [0,m − 1].

From Section 4.2, we have de�ned the velocity zi for all i ∈ [0,m]

zi =

√
v2
Li

+v2
Ri

2 . (A.1)

A.1.1 Local State Constraints

The �rst group of constraints contains those that translate into an upper bound zmaxi on
the velocity at a path index i (i.e., local constraints that are not in�uenced by the velocity
at previous or future states). In this section, we address the computation of zmaxi (for all
i ∈ [0,m]) from the parameters v0, vfm, vLRmin, vLRmax , vSmax , aCmin, aCmax , θ̇Smax , and the
functions vmax and θ̇max (all these parameters and functions are de�ned in Section 4.1.5).

175
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Recall that forward path segments are such that

κ̃0 = κ̃m = 0.

We therefore have

zmax0 = zinit = v0

zmaxm = min(vfm,vLRmax ,vSmax ,vmax (m)).

Let us express the values ofvLi andvRi in terms of zi . From Equations (3.16, 3.17), for each
i ∈ [0,m], we have

vLi

(
1 + eκ̃i

2

)
= vRi

(
1 − eκ̃i

2

)
.

where e denotes the axle width of the robot (i.e., the distance between the two wheel con-
tact patches).

By de�ning

ωi = arctan
(
1 + eκ̃i

2 , 1 −
eκ̃i
2

)
,

we get

vLi = zi
√

2 cosωi , (A.2)

vRi = zi
√

2 sinωi . (A.3)

Note that, from Equation 2.5 we have

vi =
vLi +vRi

2 ≥ 0

and thus
sinωi + cosωi > 0, (A.4)

since the path segment is composed of forward steps.

As a consequence, we have

−
π

4 < ωi <
3π
4

for every i ∈ [0,m].
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�vLRmax constraint

The constraints

vLi ≤ vLRmax ,

vRi ≤ vLRmax ,

become

zmaxi

√
2 cosωi ≤ vLRmax ,

zmaxi

√
2 sinωi ≤ vLRmax .

This gives the upper bound

zmaxi ≤
vLRmax
√

2 cosωi
if − π

4 < ωi ≤
π

4 ,

zmaxi ≤
vLRmax
√

2 sinωi
if π

4 < ωi <
3π
4 .

�vLRmin constraint

The constraints
vLi ≥ vLRmin,

vRi ≥ vLRmin,

must also be considered if one of the two wheels has a negative speed (i.e., if sinωi < 0 or
cosωi < 0, or in other words if − π4 < ωi < 0 or π

2 < ωi <
3π
4 ).

We get the upper bound

zmaxi ≤
vLRmin
√

2 sinωi
if − π

4 < ωi < 0,

zmaxi ≤
vLRmin
√

2 cosωi
if π

2 < ωi <
3π
4 .

�vSmax constraint

From Equation 3.24, we have for the steering wheel

vSi = vi
√

1 + (e ′κ̃i )2
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vSi =
vLi +vRi

2
√

1 + (e ′κ̃i )2

= zi
sinωi + cosωi

√
2

√
1 + (e ′κ̃i )2.

where e ′ denotes the wheelbase of the robot (i.e., the distance between the contact patch
of the steering wheel and the rear axle).

The constraint

vSi ≤ vSmax

then yields

zmaxi ≤

√
2

(sinωi + cosωi )
√

1 + (e ′κ̃i )2
vSmax ,

since sinωi + cosωi > 0 (cf. Equation A.4).

Note that, the constraint vSi ≥ vSmin naturally always holds, since the path segment is
composed of forward steps (vSi ≥ 0).

�vmax (i) constraint

Next, we have for the speed vi of the reference point of the robot

vi =
vLi +vRi

2

= zi
sinωi + cosωi

√
2

.

The constraint

vi ≤ vmax (i )

then gives

zmaxi ≤

√
2

sinωi + cosωi
vmax (i ).

Note that, the constraint vi ≥ vmin (i ) naturally always holds, since the path segment
is composed of forward steps (vi ≥ 0).
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� θ̇max (i) constraint

The angular speed θ̇i of the robot is given, from Equation 3.7, by

θ̇i = κ̃i vi

= zi
(sinωi + cosωi ) κ̃i

√
2

.

If κ̃i , 0, the constraint

|θ̇i | ≤ θ̇max

then becomes

zmaxi ≤

√
2

(sinωi + cosωi ) |κ̃i |
θ̇max (i ).

If κ̃i = 0, the constraint becomes

0 ≤ θ̇max ,

which naturally always holds.

� aCmin and aCmax constraints

Let us now address the constraints on the radial acceleration of the reference point of the
robot.

We have, from Equation 3.13, for every i ∈ [1,m − 1]

aCi = −κ̃i v
2
i

= −
κ̃i

(
vLi +vRi

)2

4

= −
κ̃i (sinωi + cosωi )

2

2 z2
i .

From the constraints

aCmin ≤ aCi ≤ aCmax ,
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we get

zmaxi ≤

√
−2aCmax

κ̃i
sinωi + cosωi

if κ̃i < 0,

zmaxi ≤

√
−2aCmin

κ̃i
sinωi + cosωi

if κ̃i > 0.

Note that, if κ̃i = 0, the constraints become

aCmin ≤ 0 ≤ aCmax ,

which naturally always holds.

� θ̇Smax constraint

Finally, the constraint on the rate of variation of the steering angle also leads to an upper
bound on the value of zmaxi . Indeed, for every i ∈ [1,m − 1], we can estimate the instanta-
neous rate of variation of the steering angle in function of the travelled distance.

First the derivative of the instantaneous curvature can be estimated in the same way
that we have estimated the instantaneous curvature (see Equation 4.1.1), assuming that
the curvature change linearly with the travelled distance between two steps.

Thus, we can estimate the derivative of the instantaneous curvature dκ̃i
ds

by

dκ̃i
ds
=



0 if κi−1 = 0 and κi = 0
2κi
|si |

if κi−1 = 0 and κi , 0

−2κi−1
|si−1 |

if κi−1 , 0 and κi = 0

2(κi − κi−1)

|si | + |si−1 |
otherwise

for every i ∈ [1,m − 1].
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Note that, since κ0 = κm−1 = κm = 0, by hypothesis, we also have

dκ̃0
ds
=
dκ̃m
ds
= 0.

Recall that, in the case of a tricycle platform, the orientation θSi of the steering wheel is
given (from Equation 3.5) by

θSi = arctan(e ′κ̃i )

where e ′ denotes the wheelbase of the robot.

The derivative of the instantaneous rate of variation of the steering angle
dθSi
ds

is then

dθSi
ds
=
d (arctan(e ′κ̃i ))

ds
=

e ′dκ̃ids

e ′2 κ̃2
i + 1

. (A.5)

The constraint

���θ̇Si ��� = �����
dθSi
ds

����� · vi ≤ θ̇Smax

then yields

zmaxi ≤

√
2

(sinωi + cosωi )
�����
dθSi
ds

�����
θ̇Smax

if
dθSi
ds

, 0 (i.e., if κi−1 , κi ), for every i ∈ [1,m − 1].

Note that, if
dθSi
ds
= 0, the constraint becomes

0 ≤ θ̇Smax ,

which naturally always holds.

Summary

In summary, we obtain

zmax0 = zinit = v0

zmaxm = min(vfm,vLRmax ,vSmax ,vmax (m)),
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and for each i ∈ [1,m − 1]

zmaxi = min

 vLRmax
√

2 max(sinωi , cosωi )
,

vLRmin
√

2 min(sinωi , cosωi )
,

√
2

(sinωi + cosωi )
√

1 + (e ′κ̃i )2
vSmax ,

√
2

sinωi + cosωi
vmax (i ),

√
2

(sinωi + cosωi ) |κ̃i |
θ̇max (i ),

√
−2aCm
κ̃i

sinωi + cosωi
,

√
2

(sinωi + cosωi )
�����
dθSi
ds

�����
θ̇Smax


 ,

where

• the second term is only considered if sinωi < 0 or cosωi < 0;

• the �fth and sixth terms (involving θ̇max (i ) and aCm ) are only considered if κ̃i , 0;

• the seventh term (involving θ̇Smax ) is only considered if κi−1 , κi ;

• the constant aCm is de�ned as follows:

aCm =


aCmax if κ̃i < 0,
aCmin if κ̃i > 0.

A.1.2 Transition Constraints

This second group of constraints contains those that jointly involve the velocity at succes-
sive path indices (e.g., constraints that involve the velocities zi and zi+1 at two successive
indices i and i + 1 of the path). This group mainly includes constraints expressed in terms
of acceleration.

A.1.2.1 Forward Stage

Due to the transition constraints, the value of zi at the beginning of the (i + 1)-th step
determines an upper bound on the value of zi+1 after the step:

zi+1 ≤ zmaxFi (zi ),

where zmaxFi : [0, zmaxi ]→ �≥0, for all i ∈ [0,m − 1].



A.1. Forward Steps 183

In this section, we address the computation, for each i ∈ [0,m − 1], of the function
zmaxFi (z) in terms of the parameters aTmin, aTmax , and the functions aLRmin, aLRmax aSmin

and aSmax (all these parameters and functions are de�ned in Section 4.1.5).

During the (i + 1)-th step, the reference point of the robot travels the distance si > 0.
The speed of this reference point at σ (i ) and σ (i + 1) is respectively given by

vi =
vLi +vRi

2 =
sinωi + cosωi

√
2

zi

and

vi+1 =
sinωi+1 + cosωi+1

√
2

zi+1.

The amount of time ∆ti needed for performing this step is given by

∆ti =
2si

vi +vi+1
=

2
√

2 si
(sinωi + cosωi ) zi + (sinωi+1 + cosωi+1) zi+1

. (A.6)

� aT min and aT max constraints

The tangential acceleration aTi of the reference point during the (i + 1)-th step can thus be
estimated, from Equation 3.12, as

aTi =
vi+1 − vi

∆ti
=
v2
i+1 − v

2
i

2si

=
(sinωi+1 + cosωi+1)

2 z2
i+1 − (sinωi + cosωi )

2 z2
i

4si
.

assuming constant-acceleration motion during the step.

The constraints

aTmin ≤ aTi ≤ aTmax

then become

4aTmin si ≤ (sinωi+1 + cosωi+1)
2 z2

i+1 − (sinωi + cosωi )
2 z2

i ≤ 4aTmax si .
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Since we have sinωi + cosωi > 0 and sinωi+1 + cosωi+1 > 0, by hypothesis (since the path
segment is composed of forward steps), we can write

(sinωi + cosωi )
2 z2

i + 4aTmin si

(sinωi+1 + cosωi+1)
2 ≤ z2

i+1 ≤
(sinωi + cosωi )

2 z2
i + 4aTmax si

(sinωi+1 + cosωi+1)
2 ,

which yields



zmaxFi (z) ≥



√
(sinωi + cosωi )

2 z2 + 4aTmin si
sinωi+1 + cosωi+1

if (sinωi + cosωi )
2 z2 + 4aTmin si ≥ 0

0 otherwise

zmaxFi (z) ≤

√
(sinωi + cosωi )

2 z2 + 4aTmax si
sinωi+1 + cosωi+1

for every i ∈ [0,m − 1] and z ∈ [0,zmaxi ].

� aLRmin(vLi ), aLRmax (vLi ), aLRmin(vRi ) and aLRmax (vRi ) constraints

We proceed in a similar way for the acceleration constraints on the left and right wheels.

The speed of those wheels at σi and σi+1 are respectively given by

vLi = zi
√

2 cosωi ,

vRi = zi
√

2 sinωi ,

and
vLi+1 = zi+1

√
2 cosωi+1,

vRi+1 = zi+1
√

2 sinωi+1.

The tangential accelerations aLi and aRi during the (i + 1)-th step can be estimated as

aLi =
vLi+1 − vLi

∆ti

=
(cosωi+1 zi+1 − cosωi zi )

(
(sinωi + cosωi ) zi + (sinωi+1 + cosωi+1) zi+1

)
2si
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aRi =
vRi+1 − vRi

∆ti

=
(sinωi+1 zi+1 − sinωi zi )

(
(sinωi + cosωi ) zi + (sinωi+1 + cosωi+1) zi+1

)
2si

assuming constant-acceleration motion during the step.

For the left wheel, the constraints

aLRmin (vLi ) ≤ aLi ≤ aLRmax (vLi )

become

2aLRmin (zi
√

2 cosωi ) si ≤ cosωi+1 (sinωi+1 + cosωi+1) z
2
i+1+

(sinωi cosωi+1 − sinωi+1 cosωi ) zi zi+1−

cosωi (sinωi + cosωi ) z
2
i ≤ 2aLRmax (zi

√
2 cosωi ) si ,

and simplify into

2aLRmin (zi
√

2 cosωi ) si ≤ cosωi+1 (sinωi+1 + cosωi+1) z
2
i+1+

sin(ωi − ωi+1) zi zi+1 − cosωi (sinωi + cosωi ) z
2
i ≤ 2aLRmax (zi

√
2 cosωi ) si ,

which is equivalent to



− cosωi+1 (sinωi+1 + cosωi+1) z
2
i+1 − sin(ωi − ωi+1) zi zi+1+

cosωi (sinωi + cosωi ) z
2
i + 2aLRmin (zi

√
2 cosωi ) si ≤ 0

cosωi+1 (sinωi+1 + cosωi+1) z
2
i+1 + sin(ωi − ωi+1) zi zi+1−

cosωi (sinωi + cosωi ) z
2
i − 2aLRmax (zi

√
2 cosωi ) si ≤ 0.

Each of these two inequations determines a set of possible values for zi+1. Let SLmin (zi )

and SLmax (zi ) denote these two sets (respectively resulting from the �rst and the second
inequation), we then have

zi+1 ∈ SLmin (zi ) ∩ SLmax (zi ),

which yields
zmaxFi (z) ∈ SLmin (z) ∩ SLmax (z)

for every i ∈ [0,m − 1] and z ∈ [0,zmaxi ].
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Each of these two inequations is of the form a z2
i+1 +b zi+1 +c ≤ 0, the two sets SLmin (zi )

and SLmax (zi ) can then be determined in the following way:

• If a = 0:

We thus have cosωi+1 = 0, i.e., ωi+1 =
π
2 and vLi+1 = 0.

– If b = 0:

We thus have ωi = ωi+1 =
π
2 or zi = 0. In both cases this implies

c = 2aLRmin (zi
√

2 cosωi ) si ≤ 0

for the �rst inequation, and

c = −2aLRmax (zi
√

2 cosωi ) si ≤ 0

for the second. We obtain
zi+1 ∈ [0, +∞] .

– If b > 0:

Then the constraint becomes

zi+1 ≤ −
c

b
.

We obtain

zi+1 ∈


[
0, − c

b

]
if − c

b
≥ 0

∅ otherwise.

– If b < 0:

Then the constraint becomes

zi+1 ≥ −
c

b
.

We obtain

zi+1 ∈


[
−
c

b
, +∞

]
if − c

b
≥ 0

[0, +∞] otherwise.
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• If a > 0: Let ∆ = b2 − 4ac .
– If ∆ < 0: Then

zi+1 ∈ ∅,

since a z2
i+1 + b zi+1 + c is always positive.

– If ∆ ≥ 0: Then

zi+1 ∈



∅ if −b +
√
∆

2a < 0


−b −

√
∆

2a ,
−b +

√
∆

2a

 if −b −
√
∆

2a ≥ 0

0,
−b +

√
∆

2a

 otherwise.

• If a < 0: Let ∆ = b2 − 4ac .
– If ∆ < 0: Then

zi+1 ∈ [0, +∞] ,

since a z2
i+1 + b zi+1 + c is always negative.

– If ∆ ≥ 0: Then

zi+1 ∈



[0, +∞] if −b −
√
∆

2a < 0

0,
−b +

√
∆

2a

 ∪

−b −

√
∆

2a , +∞
 if −b +

√
∆

2a ≥ 0


−b −

√
∆

2a , +∞
 otherwise.

Similarly, for the right wheel, the constraints

aLRmin (vRi ) ≤ aRi ≤ aLRmax (vRi )

become

2aLRmin (zi
√

2 sinωi ) si ≤ sinωi+1 (sinωi+1 + cosωi+1) z
2
i+1+

sin(ωi+1 − ωi ) zi zi+1 − sinωi (sinωi + cosωi ) z
2
i ≤ 2aLRmax (zi

√
2 sinωi ) si ,
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which is equivalent to



− sinωi+1 (sinωi+1 + cosωi+1) z
2
i+1 − sin(ωi+1 − ωi ) zi zi+1+

sinωi (sinωi + cosωi ) z
2
i + 2aLRmin (zi

√
2 sinωi ) si ≤ 0

sinωi+1 (sinωi+1 + cosωi+1) z
2
i+1 + sin(ωi+1 − ωi ) zi zi+1−

sinωi (sinωi + cosωi ) z
2
i − 2aLRmax (zi

√
2 sinωi ) si ≤ 0.

Each of these two inequations determines a set of possible values for zi+1. Let SRmin (zi )

and SRmax (zi ) denote these two sets (respectively resulting from the �rst and the second
inequation), we then have

zi+1 ∈ SRmin (zi ) ∩ SRmax (zi ),

which yields
zmaxFi (z) ∈ SRmin (z) ∩ SRmax (z)

for every i ∈ [0,m − 1] and z ∈ [0,zmaxi ].

Each of these two inequations is also of the form a z2
i+1 + b zi+1 + c ≤ 0, and thus can

be solved as for the left wheel case.

Note that, if ωi = ωi+1 =
π
4 (i.e., if κ̃i = κ̃i+1 = 0), the robot follows a straight line

during the (i + 1)-th step, and, in order to speed up the computation time, we can only
address the constraints for the left wheel, as the set of solutions for the right wheel will be
identical to the one provided by the left wheel.

� aSmin(vSi ) and aSmax (vSi ) constraints

Finally, we address the constraints on the tangential acceleration of the steering wheel.

The speed of this wheel at σi and σi+1 is respectively given, from Equation 3.24, by

vSi =
vi

cosθSi

=
sinωi + cosωi
√

2 cosθSi
zi

vSi+1 =
sinωi+1 + cosωi+1
√

2 cosθSi+1

zi+1.
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The tangential acceleration aSi during the (i + 1)-th step can be estimated as

aSi =
vSi+1 − vSi

∆ti

=


 sci+1
√

2 cosθSi+1

zi+1 −
sci

√
2 cosθSi

zi


 (

sci zi + sci+1 zi+1
)

2
√

2 si

=

(
sci+1 zi+1
cosθSi+1

−
sci zi

cosθSi

)
(sci zi + sci+1 zi+1)

4si
,

where

sci = sinωi + cosωi ,

sci+1 = sinωi+1 + cosωi+1,

assuming constant-acceleration motion during the step.

The constraints

aSmin (vSi ) ≤ aSi ≤ aSmax (vSi )

become

4aSmin (vSi ) si ≤
sc2
i+1

cosθSi+1
z2
i+1+(

1
cosθSi+1

−
1

cosθSi

)
sci sci+1 zi zi+1 −

sc2
i

cosθSi
z2
i ≤ 4aSmax (vSi ) si

which is equivalent to



−
sc2
i+1

cosθSi+1
z2
i+1 −

(
1

cosθSi+1
−

1
cosθSi

)
sci sci+1 zi zi+1 +

sc2
i

cosθSi
z2
i + 4aSmin (vSi ) si ≤ 0

sc2
i+1

cosθSi+1
z2
i+1 +

(
1

cosθSi+1
−

1
cosθSi

)
sci sci+1 zi zi+1 −

sc2
i

cosθSi
z2
i − 4aSmax (vSi ) si ≤ 0.

Each of these two inequations determines a set of possible values for zi+1. Let SSmin (zi )

and SSmax (zi ) denote these two sets (respectively from the �rst and the second inequation),
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we then have

zi+1 ∈ SSmin (zi ) ∩ SSmax (zi ),

which yields

zmaxFi (z) ∈ SSmin (z) ∩ SSmax (z)

for every i ∈ [0,m − 1] and z ∈ [0,zmaxi ].

Each of these two inequations is also of the form a z2
i+1 + b zi+1 + c ≤ 0, and thus can

be solved as for the left wheel case.

Summary

In summary, we obtain for the function zmaxFi :

zmaxFi (z) = max
(

[zTmin (z), zTmax (z)] ∩

SLmin (z) ∩ SLmax (z) ∩

SRmin (z) ∩ SRmax (z) ∩

SSmin (z) ∩ SSmax (z)
)
,

for all i ∈ [0,m − 1] and z ∈ [0,zmaxi ], where

• sci and sci+1 are de�ned as follows:

sci = sinωi + cosωi ,

sci+1 = sinωi+1 + cosωi+1;

• zTmin (z) and zTmax (z) are de�ned as follows:

zTmin (z) =



√
sc2
i z

2 + 4aTmin si
sci+1 if sc2

i z
2 + 4aTmin si ≥ 0

0 otherwise

zTmax (z) =

√
sc2
i z

2 + 4aTmax si
sci+1 ;
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• SLmin (z), SLmax (z), SRmin (z), SRmax (z), SSmin (z) and SSmax (z) are respectively the sets
of solutions for zi+1 of the following six quadratic inequations:

− cosωi+1 sci+1 z
2
i+1 − sin(ωi − ωi+1) z zi+1 + cosωi sci z2 + 2aLRmin (vLi ) si ≤ 0

cosωi+1 sci+1 z
2
i+1 + sin(ωi − ωi+1) z zi+1 − cosωi sci z2 − 2aLRmax (vLi ) si ≤ 0

− sinωi+1 sci+1 z
2
i+1 − sin(ωi+1 − ωi ) z zi+1 + sinωi sci z2 + 2aLRmin (vRi ) si ≤ 0

sinωi+1 sci+1 z
2
i+1 + sin(ωi+1 − ωi ) z zi+1 − sinωi sci z2 − 2aLRmax (vRi ) si ≤ 0

−
sc2
i+1

cosθSi+1
z2
i+1 −

(
1

cosθSi+1
−

1
cosθSi

)
sci sci+1 zi zi+1 +

sc2
i

cosθSi
z2 + 4aSmin (vSi ) si ≤ 0

sc2
i+1

cosθSi+1
z2
i+1 +

(
1

cosθSi+1
−

1
cosθSi

)
sci sci+1 zi zi+1 −

sc2
i

cosθSi
z2 − 4aSmax (vSi ) si ≤ 0,

where
vLi = zi

√
2 cosωi ,

vRi = zi
√

2 sinωi ,

vSi =
sinωi + cosωi
√

2 cosθSi
zi ,

and where the third and fourth inequations are only considered if κ̃i , 0 or κ̃i+1 , 0.

Note that, if the transition constraints are not satis�able (i.e., if the intersection of all
the sets is empty), z has to be lowered into the largest value that makes the constraints
satis�able (cf. Algorithm 4.2 in Chapter 4.2).

A.1.2.2 Backward Stage

Similarly, due to the same transition constraints as in the forward stage, the value of zi at
the beginning of the (i + 1)-th step determines an upper bound on the value of zi−1 at the
beginning of the previous step:

zi−1 ≤ zmaxPi (zi ),

where zmaxPi : [0, zmaxi ]→ �≥0, for all i ∈ [1,m].
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In this section, we address the computation, for each i ∈ [1,m], of the function zmaxPi (z)

in terms of the parameters aTmin, aTmax , and the functions aLRmin, aLRmax aSmin and aSmax

(all these parameters and functions are de�ned in Section 4.1.5).

As explained in Section 4.2.5, constraints expressed as functions may depend on zi−1, and
in order to ensure the satis�ability of the constraints during the backward stage, we will
use the following approximation of the velocity:

z̃i−1 = min(ži−1,zi ),

where ži−1 is the tentative value for the velocity at the beginning of the i-th step obtained
after the forward stage.

During the i-th step, the reference point of the robot travels the distance si−1 > 0. The
amount of time ∆ti−1 needed for performing this step is given by

∆ti−1 =
2si−1

vi−1 +vi
=

2
√

2 si−1
(sinωi−1 + cosωi−1) zi−1 + (sinωi + cosωi ) zi

.

� aT min and aT max constraints

Similarly to the forward stage, the tangential acceleration aTi−1 of the reference point during
the i-th step can be estimated, as

aTi−1 =
vi − vi−1
∆ti−1

=
v2
i − v

2
i−1

2si−1

=
(sinωi + cosωi )

2 z2
i − (sinωi−1 + cosωi−1)

2 z2
i−1

4si−1
.

assuming constant-acceleration motion during the step.

The constraints
aTmin ≤ aTi−1 ≤ aTmax

then become

4aTmin si−1 ≤ (sinωi + cosωi )
2 z2

i − (sinωi−1 + cosωi−1)
2 z2

i−1 ≤ 4aTmax si−1.

Since we also have sinωi + cosωi > 0 and sinωi−1 + cosωi−1 > 0, we can write

(sinωi + cosωi )
2 z2

i − 4aTmax si−1

(sinωi−1 + cosωi−1)
2 ≤ z2

i−1 ≤
(sinωi + cosωi )

2 z2
i − 4aTmin si−1

(sinωi−1 + cosωi−1)
2 ,
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which yields



zmaxPi (z) ≥



√
(sinωi + cosωi )

2 z2 − 4aTmax si−1
sinωi−1 + cosωi−1

if (sinωi + cosωi )
2 z2−

4aTmax si−1 ≥ 0

0 otherwise

zmaxPi (z) ≤

√
(sinωi + cosωi )

2 z2 − 4aTmin si−1
sinωi−1 + cosωi−1

for every i ∈ [1,m] and z ∈ [0,zmaxi ].

� aLRmin(ṽLi−1 ), aLRmax (ṽLi−1 ), aLRmin(ṽRi−1 ) and aLRmax (ṽRi−1 ) constraints

We proceed in a similar way for the acceleration constraints on the left and right wheels.

Recall that the speeds that will be used to evaluate the constraints are given by

ṽLi−1 = z̃i−1
√

2 cosωi−1,

ṽRi−1 = z̃i−1
√

2 sinωi−1.

The tangential accelerations aLi−1 and aRi−1 during the i-th step can be estimated as

aLi−1 =
vLi − vLi−1

∆ti−1

=
(cosωi zi − cosωi−1 zi−1)

(
(sinωi−1 + cosωi−1) zi−1 + (sinωi + cosωi ) zi

)
2si−1

aRi−1 =
vRi − vRi−1

∆ti−1

=
(sinωi zi − sinωi−1 zi−1)

(
(sinωi−1 + cosωi−1) zi−1 + (sinωi + cosωi ) zi

)
2si−1

assuming constant-acceleration motion during the step.

For the left wheel, the constraints

aLRmin (ṽLi−1 ) ≤ aLi−1 ≤ aLRmax (ṽLi−1 )
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become

2aLRmin (ṽLi−1 ) si−1 ≤ − cosωi−1 (sinωi−1 + cosωi−1) z
2
i−1+

sin(ωi−1 − ωi ) zi zi−1 + cosωi (sinωi + cosωi ) z
2
i ≤ 2aLRmax (ṽLi−1 ) si−1,

which is equivalent to



cosωi−1 (sinωi−1 + cosωi−1) z
2
i−1 − sin(ωi−1 − ωi ) zi zi−1−

cosωi (sinωi + cosωi ) z
2
i + 2aLRmin (ṽLi−1 ) si−1 ≤ 0

− cosωi−1 (sinωi−1 + cosωi−1) z
2
i−1 + sin(ωi−1 − ωi ) zi zi−1+

cosωi (sinωi + cosωi ) z
2
i − 2aLRmax (ṽLi−1 ) si−1 ≤ 0.

Each of these two inequations determines a set of possible values forzi−1. Let SPLmin (zi )

and SPLmax (zi ) denote these two sets (respectively from the �rst and the second inequation),
we then have

zi−1 ∈ SPLmin (zi ) ∩ SPLmax (zi ),

which yields
zmaxPi (z) ∈ SPLmin (z) ∩ SPLmax (z)

for every i ∈ [1,m] and z ∈ [0,zmaxi ].

Each of these two inequations is of the form a z2
i+1 + b zi+1 + c ≤ 0, and thus can be

solved as for the inequations in the forward stage.

Similarly, for the right wheel, the constraints

aLRmin (ṽRi−1 ) ≤ aRi−1 ≤ aLRmax (ṽRi−1 )

become

2aLRmin (ṽRi−1 ) si−1 ≤ − sinωi−1 (sinωi−1 + cosωi−1) z
2
i−1+

sin(ωi − ωi−1) zi zi−1 + sinωi (sinωi + cosωi ) z
2
i ≤ 2aLRmax (ṽRi−1 ) si−1,

which is equivalent to



sinωi−1 (sinωi−1 + cosωi−1) z
2
i−1 − sin(ωi − ωi−1) zi zi−1−

sinωi (sinωi + cosωi ) z
2
i + 2aLRmin (ṽRi−1 ) si−1 ≤ 0

− sinωi−1 (sinωi−1 + cosωi−1) z
2
i−1 + sin(ωi − ωi−1) zi zi−1+

sinωi (sinωi + cosωi ) z
2
i − 2aLRmax (ṽRi−1 ) si−1 ≤ 0.
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Each of these two inequations determines a set of possible values forzi−1. Let SPRmin (zi )

and SPRmax (zi ) denote these two sets (respectively from the �rst and the second inequation),
we then have

zi−1 ∈ SPRmin (zi ) ∩ SPRmax (zi ),

which yields
zmaxPi (z) ∈ SPRmin (z) ∩ SPRmax (z)

for every i ∈ [1,m] and z ∈ [0,zmaxi ].

Each of these two inequations is also of the form a z2
i+1 + b zi+1 + c ≤ 0, and thus can

be solved as for the left wheel case.

Note that, as in the forward stage, if ωi = ωi−1 =
π
4 (i.e., if κ̃i = κ̃i−1 = 0), the robot

follows a straight line during the i-th step, and, in order to speed up the computation time,
we can only address the constraints for the left wheel, as the set of solutions for the right
wheel will be identical to the one provided by the left wheel.

� aSmin(ṽSi−1 ) and aSmax (ṽSi−1 ) constraints

Finally, we address the constraints on the tangential acceleration of the steering wheel.

Recall that the speed that will be used to evaluate the constraints is given by

ṽSi−1 =
sinωi−1 + cosωi−1
√

2 cosθSi−1

z̃i−1.

The tangential accelerations aSi−1 during the i-th step can be estimated as

aSi−1 =
vSi − vSi−1

∆ti−1

=

(
sci zi

cosθSi
−
sci−1 zi−1
cosθSi−1

)
(sci−1 zi−1 + sci zi )

4si−1
,

where

sci−1 = sinωi−1 + cosωi−1,

sci = sinωi + cosωi ,

assuming constant-acceleration motion during the step.
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The constraints
aSmin (ṽSi−1 ) ≤ aSi−1 ≤ aSmax (ṽSi−1 )

become

4aSmin (ṽSi−1 ) si−1 ≤ −
sc2
i−1

cosθSi−1
z2
i−1+(

1
cosθSi

−
1

cosθSi−1

)
sci−1 sci zi zi−1 +

sc2
i

cosθSi
z2
i ≤ 4aSmax (ṽSi−1 ) si−1

which is equivalent to



sc2
i−1

cosθSi−1
z2
i−1 −

(
1

cosθSi
−

1
cosθSi−1

)
sci−1 sci zi zi−1−

sc2
i

cosθSi
z2
i + 4aSmin (ṽSi−1 ) si−1 ≤ 0

−
sc2
i−1

cosθSi−1
z2
i−1 +

(
1

cosθSi
−

1
cosθSi−1

)
sci−1 sci zi zi−1+

sc2
i

cosθSi
z2
i − 4aSmax (ṽSi−1 ) si−1 ≤ 0.

Each of these two inequations determines a set of possible values forzi−1. Let SPSmin (zi )

and SPSmax (zi ) denote these two sets (respectively from the �rst and the second inequation),
we then have

zi−1 ∈ SPSmin (zi ) ∩ SPSmax (zi ),

which yields
zmaxPi (z) ∈ SPSmin (z) ∩ SPSmax (z)

for every i ∈ [1,m] and z ∈ [0,zmaxi ].

Each of these two inequations is also of the form a z2
i+1 + b zi+1 + c ≤ 0, and thus can

be solved as for the left wheel case.

Summary

In summary, we obtain for the function zmaxPi :

zmaxPi (z) = max
(

[zTmin (z), zTmax (z)] ∩ SPLmin (z) ∩ SPLmax (z) ∩

SPRmin (z) ∩ SPRmax (z) ∩ SPSmin (z) ∩ SPSmax (z)
)
,

for all i ∈ [1,m] and z ∈ [0,zmaxi ],
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where

• sci−1 and sci are de�ned as follows:

sci−1 = sinωi−1 + cosωi−1,

sci = sinωi + cosωi ;

• zTmin (z) and zTmax (z) are de�ned as follows:

zTmin (z) =



√
sc2
i z

2 − 4aTmax si−1
sci−1 if sc2

i z
2 − 4aTmax si−1 ≥ 0

0 otherwise

zTmax (z) =

√
sc2
i z

2 − 4aTmin si−1
sci−1 ;

• SPLmin (z), SPLmax (z), SPRmin (z), SPRmax (z), SPSmin (z) and SPSmax (z) are respectively
the sets of solutions for zi−1 of the following six quadratic inequations:

cosωi−1 sci−1 z
2
i−1 − sin(ωi−1 − ωi ) z zi−1 − cosωi sci z2 + 2aLRmin (ṽLi−1 ) si−1 ≤ 0

− cosωi−1 sci−1 z
2
i−1 + sin(ωi−1 − ωi ) z zi−1 + cosωi sci z2 − 2aLRmax (ṽLi−1 ) si−1 ≤ 0

sinωi−1 sci−1 z
2
i−1 − sin(ωi − ωi−1) z zi−1 − sinωi sci z2 + 2aLRmin (ṽRi−1 ) si−1 ≤ 0

− sinωi−1 sci−1 z
2
i−1 + sin(ωi − ωi−1) z zi−1 + sinωi sci z2 − 2aLRmax (ṽRi−1 ) si−1 ≤ 0

sc2
i−1

cosθSi−1
z2
i−1 −

(
1

cosθSi
−

1
cosθSi−1

)
sci−1 sci zi zi−1−

sc2
i

cosθSi
z2
i + 4aSmin (ṽSi−1 ) si−1 ≤ 0

−
sc2
i−1

cosθSi−1
z2
i−1 +

(
1

cosθSi
−

1
cosθSi−1

)
sci−1 sci zi zi−1+

sc2
i

cosθSi
z2
i − 4aSmax (ṽSi−1 ) si−1 ≤ 0,
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where

ṽLi−1 = z̃i−1
√

2 cosωi−1,

ṽRi−1 = z̃i−1
√

2 sinωi−1,

ṽSi−1 =
sinωi−1 + cosωi−1
√

2 cosθSi−1

z̃i−1,

with
z̃i−1 = min(ži−1,zi ),

where ži−1 is the tentative value for the velocity at the beginning of the i-th step
obtained after the forward stage.

As in the forward stage, the third and fourth inequations can only be considered if
κ̃i , 0 or κ̃i+1 , 0.

Note that, as shown in Section 4.2.5, the transition constraints during the backward
stage are always satis�able (i.e., the intersection of all the sets is not empty).

A.1.3 Wheel Speeds

We �nally recall the formulas that express the speeds of the left, right and steering wheels
in terms of the values of the variables zi .

We have for all i ∈ [0,m] :

vLi = zi
√

2 cosωi ,

vRi = zi
√

2 sinωi ,

vSi = zi
sinωi + cosωi
√

2 cosθSi

where

ωi = arctan
(
1 + eκ̃i

2 , 1 −
eκ̃i
2

)
.
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A.2 Backward Steps

The case of a path segment (m,σ ) entirely composed of backward steps, i.e., such that
νi = B for all i ∈ [0,m − 1], is handled in a similar way as in Section A.1.

Like in the case of forward path segments, the velocity zi is de�ned for all i ∈ [0,m] as

zi =

√
v2
Li

+v2
Ri

2 .

A.2.1 Local State Constraints

In this section, we address the computation of zmaxi (for all i ∈ [0,m]) from the parameters
v0,vfm,vLRmin,vLRmax ,vSmin, aCmin, aCmax , θ̇Smax , and the functionsvmin and θ̇max (all these
parameters and functions are de�ned in Section 4.1.5).

Recall that backward path segments are also such that

κ̃0 = κ̃m = 0.

For the boundary conditions, we obtain

zmax0 = zinit = −v0

zmaxm = min(−vfm,−vLRmin,−vSmin,−vmin (m)).

The speeds of the left and right wheels can be expressed as

vLi = −zi
√

2 cosωi ,

vRi = −zi
√

2 sinωi ,

where ωi is still de�ned as

ωi = arctan
(
1 + eκ̃i

2 , 1 −
eκ̃i
2

)
.

Note that we still have

sinωi + cosωi > 0

and

−
π

4 < ωi <
3π
4

for every i ∈ [0,m],
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since backward path segments are such that

vi =
vLi +vRi

2 ≤ 0

for every i ∈ [0,m].

�vLRmin constraint

The constraints
vLi ≥ vLRmin,

vRi ≥ vLRmin,

give the upper bound

zmaxi ≤ −
vLRmin
√

2 cosωi
if − π

4 < ωi ≤
π

4 ,

zmaxi ≤ −
vLRmin
√

2 sinωi
if π

4 < ωi <
3π
4 .

�vLRmax constraint

The constraints
vLi ≤ vLRmax ,

vRi ≤ vLRmax ,

must also be considered if one of the two wheels has a positive speed (i.e., if − π4 < ωi < 0
or π

2 < ωi <
3π
4 ).

We get the upper bound

zmaxi ≤ −
vLRmax
√

2 sinωi
if − π

4 < ωi < 0,

zmaxi ≤ −
vLRmax
√

2 cosωi
if π

2 < ωi <
3π
4 .

�vSmin constraint

The constraint
vSi ≥ vSmin

yields

zmaxi ≤ −

√
2

(sinωi + cosωi )
√

1 + (e ′κ̃i )2
vSmin.
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Note that, the constraint vSi ≤ vSmax naturally always holds, since the path segment is
composed of backward steps (vSi ≤ 0).

�vmin(i) constraint

The constraint
vi ≥ vmin (i )

gives

zmaxi ≤ −

√
2

sinωi + cosωi
vmin (i ).

Note that, the constraint vi ≤ vmax (i ) naturally always holds, since the path segment
is composed of forward steps (vi ≥ 0).

� θ̇max (i) constraint

If κ̃i , 0, the constraint

|θ̇i | ≤ θ̇max

becomes, just like in the forward case,

zmaxi ≤

√
2

(sinωi + cosωi ) |κ̃i |
θ̇max (i ).

� aCmin and aCmax constraints

For the constraints

aCmin ≤ aCi ≤ aCmax ,

on the radial acceleration of the reference point of the robot, the situation is identical to
the case of forward segments and yields

zmaxi ≤

√
−2aCmax

κ̃i
sinωi + cosωi

if κ̃i < 0,

zmaxi ≤

√
−2aCmin

κ̃i
sinωi + cosωi

if κ̃i > 0.
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� θ̇Smax constraint

Finally, by using the same Equation A.5 for
dθSi
ds

, the constraint

���θ̇Si ��� = �����
dθSi
ds

����� · vi ≤ θ̇Smax

on the rate of variation of the steering angle, like in the forward case, leads to

zmaxi ≤

√
2

(sinωi + cosωi )
�����
dθSi
ds

�����
θ̇Smax

if
dθSi
ds

, 0 (i.e., if κi−1 , κi ).

Summary

In summary, we obtain

zmax0 = zinit = −v0

zmaxm = min(−vfm,−vLRmin,−vSmin,−vmin (m)),

and for each i ∈ [1,m − 1]

zmaxi = min

 − vLRmin
√

2 max(sinωi , cosωi )
, −

vLRmax
√

2 min(sinωi , cosωi )
,

−

√
2

(sinωi + cosωi )
√

1 + (e ′κ̃i )2
vSmin,

−

√
2

sinωi + cosωi
vmin (i ),

√
2

(sinωi + cosωi ) |κ̃i |
θ̇max (i ),

√
−2aCm
κ̃i

sinωi + cosωi
,

√
2

(sinωi + cosωi )
�����
dθSi
ds

�����
θ̇Smax


 ,

where

• the second term is only considered if sinωi < 0 or cosωi < 0;

• the �fth and sixth terms (involving θ̇max (i ) and aCm ) are only considered if κ̃i , 0;
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• the seventh term (involving θ̇Smax ) is only considered if κi−1 , κi ;

• the constant aCm is de�ned as follows:

aCm =


aCmax if κ̃i < 0,
aCmin if κ̃i > 0.

A.2.2 Transition Constraints

A.2.2.1 Forward Stage

In this section, we address the computation, for each i ∈ [0,m−1], of the function zmaxFi (z)

in terms of the parameters aTmin, aTmax , and the functions aLRmin, aLRmax aSmin and aSmax

(all these parameters and functions are de�ned in Section 4.1.5).

Recall that, by our convention, the distance si travelled by the reference point of the
robot is negative for all i ∈ [0,m − 1] in the case of a backward path segment.

The amount of time ∆ti needed for performing this step is given by

∆ti =
2si

vi +vi+1
=

−2
√

2 si
(sinωi + cosωi ) zi + (sinωi+1 + cosωi+1) zi+1

.

� aT min and aT max constraints

The constraints

aTmin ≤ aTi ≤ aTmax

yields



zmaxFi (z) ≥



√
(sinωi + cosωi )

2 z2 + 4aTmax si
sinωi+1 + cosωi+1

if (sinωi + cosωi )
2 z2 + 4aTmax si ≥ 0

0 otherwise

zmaxFi (z) ≤

√
(sinωi + cosωi )

2 z2 + 4aTmin si
sinωi+1 + cosωi+1

for every i ∈ [0,m − 1] and z ∈ [0,zmaxi ].
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� aLRmin(vLi ), aLRmax (vLi ), aLRmin(vRi ) and aLRmax (vRi ) constraints

For the left wheel, the constraints

aLRmin (vLi ) ≤ aLi ≤ aLRmax (vLi )

become



cosωi+1 (sinωi+1 + cosωi+1) z
2
i+1 + sin(ωi − ωi+1) zi zi+1−

cosωi (sinωi + cosωi ) z
2
i − 2aLRmin (vLi ) si ≤ 0

− cosωi+1 (sinωi+1 + cosωi+1) z
2
i+1 − sin(ωi − ωi+1) zi zi+1+
cosωi (sinωi + cosωi ) z

2
i + 2aLRmax (vLi ) si ≤ 0.

Each of these two inequations is of the form a z2
i+1 + b zi+1 + c ≤ 0, and thus can be

solved as for the forward segment case. Those inequations determine a set of possible
values for zi+1. Let SLmin (zi ) and SLmax (zi ) denote these two sets (respectively resulting
from the �rst and the second inequation), we then have

zmaxFi (z) ∈ SLmin (z) ∩ SLmax (z)

for every i ∈ [0,m − 1] and z ∈ [0,zmaxi ].

Similarly, for the right wheel, the constraints

aLRmin (vRi ) ≤ aRi ≤ aLRmax (vRi )

become



sinωi+1 (sinωi+1 + cosωi+1) z
2
i+1 + sin(ωi+1 − ωi ) zi zi+1−

sinωi (sinωi + cosωi ) z
2
i − 2aLRmin (vRi ) si ≤ 0

− sinωi+1 (sinωi+1 + cosωi+1) z
2
i+1 − sin(ωi+1 − ωi ) zi zi+1+
sinωi (sinωi + cosωi ) z

2
i + 2aLRmax (vRi ) si ≤ 0.

Each of these two inequations is also of the form a z2
i+1 +b zi+1 +c ≤ 0, and can be solved

as for the forward segment case. Those inequations determine a set of possible values for
zi+1. Let SRmin (zi ) and SRmax (zi ) denote these two sets (respectively resulting from the �rst
and the second inequation), we then have

zmaxFi (z) ∈ SRmin (z) ∩ SRmax (z)

for every i ∈ [0,m − 1] and z ∈ [0,zmaxi ].
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Note that, if ωi = ωi+1 =
π
4 (i.e., if κ̃i = κ̃i+1 = 0), the robot follows a straight line

during the (i + 1)-th step, and, in order to speed up the computation time, we can also only
address the constraints for the left wheel, as the set of solutions for the right wheel will be
identical to the one provided by the left wheel.

� aSmin(vSi ) and aSmax (vSi ) constraints

Finally, the constraints

aSmin (vSi ) ≤ aSi ≤ aSmax (vSi )

become



sc2
i+1

cosθSi+1
z2
i+1 +

(
1

cosθSi+1
−

1
cosθSi

)
sci sci+1 zi zi+1 −

sc2
i

cosθSi
z2
i − 4aSmin (vSi ) si ≤ 0

−
sc2
i+1

cosθSi+1
z2
i+1 −

(
1

cosθSi+1
−

1
cosθSi

)
sci sci+1 zi zi+1 +

sc2
i

cosθSi
z2
i + 4aSmax (vSi ) si ≤ 0.

where

sci = sinωi + cosωi ,

sci+1 = sinωi+1 + cosωi+1,

Once again, each of these two inequations is also of the form a z2
i+1 + b zi+1 + c ≤ 0,

and can be solved as for the forward segment case. Those inequations determine a set of
possible values for zi+1. Let SSmin (zi ) and SSmax (zi ) denote these two sets (respectively
resulting from the �rst and the second inequation), we then have

zmaxFi (z) ∈ SSmin (z) ∩ SSmax (z)

for every i ∈ [0,m − 1] and z ∈ [0,zmaxi ].

Summary

In summary, we obtain for the function zmaxFi :

zmaxFi (z) = max
(

[zTmin (z), zTmax (z)] ∩

SLmin (z) ∩ SLmax (z) ∩

SRmin (z) ∩ SRmax (z) ∩

SSmin (z) ∩ SSmax (z)
)
,

for all i ∈ [0,m − 1] and z ∈ [0,zmaxi ], where
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• sci and sci+1 are de�ned as follows:

sci = sinωi + cosωi ,

sci+1 = sinωi+1 + cosωi+1;

• zTmin (z) and zTmax (z) are de�ned as follows:

zTmin (z) =



√
sc2
i z

2 + 4aTmax si
sci+1 if sc2

i z
2 + 4aTmax si ≥ 0

0 otherwise

zTmax (z) =

√
sc2
i z

2 + 4aTmin si
sci+1 ;

• SLmin (z), SLmax (z), SRmin (z), SRmax (z), SSmin (z) and SSmax (z) are respectively the sets
of solutions for zi+1 of the following six quadratic inequations:

cosωi+1 sci+1 z
2
i+1 + sin(ωi − ωi+1) z zi+1 − cosωi sci z2 − 2aLRmin (vLi ) si ≤ 0

− cosωi+1 sci+1 z
2
i+1 − sin(ωi − ωi+1) z zi+1 + cosωi sci z2 + 2aLRmax (vLi ) si ≤ 0

sinωi+1 sci+1 z
2
i+1 + sin(ωi+1 − ωi ) z zi+1 − sinωi sci z2 − 2aLRmin (vRi ) si ≤ 0

− sinωi+1 sci+1 z
2
i+1 − sin(ωi+1 − ωi ) z zi+1 + sinωi sci z2 + 2aLRmax (vRi ) si ≤ 0

sc2
i+1

cosθSi+1
z2
i+1 +

(
1

cosθSi+1
−

1
cosθSi

)
sci sci+1 zi zi+1 −

sc2
i

cosθSi
z2 − 4aSmin (vSi ) si ≤ 0

−
sc2
i+1

cosθSi+1
z2
i+1 −

(
1

cosθSi+1
−

1
cosθSi

)
sci sci+1 zi zi+1 +

sc2
i

cosθSi
z2 + 4aSmax (vSi ) si ≤ 0,

where
vLi = −zi

√
2 cosωi ,

vRi = −zi
√

2 sinωi ,

vSi = −
sinωi + cosωi
√

2 cosθSi
zi ,

and where the third and fourth inequations can only be considered if κ̃i , 0 or
κ̃i+1 , 0.
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A.2.2.2 Backward Stage

In this section, we address the computation, for each i ∈ [1,m], of the function zmaxPi (z)

in terms of the parameters aTmin, aTmax , and the functions aLRmin, aLRmax aSmin and aSmax

(all these parameters and functions are de�ned in Section 4.1.5).
The reasoning is once again similar to the case of forward segments, and we obtain for

the function zmaxPi :

zmaxPi (z) = max
(

[zTmin (z), zTmax (z)] ∩ SPLmin (z) ∩ SPLmax (z) ∩

SPRmin (z) ∩ SPRmax (z) ∩ SPSmin (z) ∩ SPSmax (z)
)
,

for all i ∈ [1,m] and z ∈ [0,zmaxi ],
where

• sci−1 and sci are de�ned as follows:

sci−1 = sinωi−1 + cosωi−1,

sci = sinωi + cosωi ;

• zTmin (z) and zTmax (z) are de�ned as follows:

zTmin (z) =



√
sc2
i z

2 − 4aTmin si−1
sci−1 if sc2

i z
2 − 4aTmin si−1 ≥ 0

0 otherwise

zTmax (z) =

√
sc2
i z

2 − 4aTmax si−1
sci−1 ;

• SPLmin (z), SPLmax (z), SPRmin (z), SPRmax (z), SPSmin (z) and SPSmax (z) are respectively
the sets of solutions for zi−1 of the following six quadratic inequations:

− cosωi−1 sci−1 z
2
i−1 + sin(ωi−1 − ωi ) z zi−1 + cosωi sci z2 − 2aLRmin (ṽLi−1 ) si−1 ≤ 0

cosωi−1 sci−1 z
2
i−1 − sin(ωi−1 − ωi ) z zi−1 − cosωi sci z2 + 2aLRmax (ṽLi−1 ) si−1 ≤ 0

− sinωi−1 sci−1 z
2
i−1 + sin(ωi − ωi−1) z zi−1 + sinωi sci z2 − 2aLRmin (ṽRi−1 ) si−1 ≤ 0

sinωi−1 sci−1 z
2
i−1 − sin(ωi − ωi−1) z zi−1 − sinωi sci z2 + 2aLRmax (ṽRi−1 ) si−1 ≤ 0
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−
sc2
i−1

cosθSi−1
z2
i−1 +

(
1

cosθSi
−

1
cosθSi−1

)
sci−1 sci zi zi−1+

sc2
i

cosθSi
z2
i − 4aSmin (ṽSi−1 ) si−1 ≤ 0

sc2
i−1

cosθSi−1
z2
i−1 −

(
1

cosθSi
−

1
cosθSi−1

)
sci−1 sci zi zi−1−

sc2
i

cosθSi
z2
i + 4aSmax (ṽSi−1 ) si−1 ≤ 0,

where

ṽLi−1 = −z̃i−1
√

2 cosωi−1,

ṽRi−1 = −z̃i−1
√

2 sinωi−1,

ṽSi−1 = −
sinωi−1 + cosωi−1
√

2 cosθSi−1

z̃i−1,

with
z̃i−1 = min(ži−1,zi ),

where ži−1 is the tentative value for the velocity at the beginning of the i-th step
obtained after the forward stage.

As in the forward stage, the third and fourth inequations can only be considered if
κ̃i , 0 or κ̃i+1 , 0.

A.2.3 Wheel Speeds

We �nally recall the formulas that express the speeds of the left, right and steering wheels
in terms of the values of the variables zi .

We have for all i ∈ [0,m] :

vLi = −zi
√

2 cosωi ,

vRi = −zi
√

2 sinωi ,

vSi = −zi
sinωi + cosωi
√

2 cosθSi

where

ωi = arctan
(
1 + eκ̃i

2 , 1 −
eκ̃i
2

)
.
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A.3 Local Turns

The case of local turn segments, is simpler than forward or backward segments. Recall,
from Section 3.1.2, that local turns are such that

vi =
vLi +vRi

2 = 0

for every i ∈ [0,m].

We therefore have
aTi = aCi = 0

for every i ∈ [0,m], and the constraints

vmin (i ) ≤ vi ≤ vmax (i ),

aTmin ≤ aTi ≤ aTmax ,

aCmin ≤ aCi ≤ aCmax ,

naturally always holds.

A.3.1 Right Local Turns

Let us now develop the constraints for the case of a path segment (m,σ ) performing a right
local turn, i.e., such that νi = R for all i ∈ [0,m − 1]. From Equation 4.1 and De�nition 4.1.4,
we have for all i ∈ [0,m]

zi =

√
v2
Li

+v2
Ri

2 = vLi ,

in other words, the variables zi undergoing the optimization process correspond to the
speed of the left wheel.

A.3.1.1 Local State Constraints

We �rst address the computation of the bounds zmaxi from the parameters vLRmin, vLRmax ,
vSmax and the function θ̇max .

At the extremities of the segment, we have

zmax0 = zinit = 0
zmaxm = 0.
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For each i ∈ [1,m − 1], the speeds of the left and right wheels are given by

vLi = zi ,

vRi = −zi .

The speed of the steering wheel and the angular speed of the robot are given, respec-
tively from Equation 3.22 and Equation 2.5, by

vSi =
2e ′zi
e
,

���θ̇i ��� = ����vRi +vLi
2

���� = 2zi
e
,

where e denotes the axle width and e ′ denotes the wheelbase of the robot.

For each i ∈ [1,m − 1], the bounds on the speeds of the three wheels and on the angular
speed of the robot

vLi ≤ vLRmax

vRi ≥ −vLRmin

vSi ≤ vSmax���θ̇i ��� ≤ dotθmax (i ),

yield

zmaxi ≤ vLRmax

zmaxi ≤ −vLRmin

zmaxi ≤
e

2e ′ vSmax

zmaxi ≤
e

2 θ̇max (i ),

from which we obtain

zmaxi = min
(
vLRmax , −vLRmin,

e

2e ′ vSmax ,
e

2 θ̇max (i )
)
.

Note that, the constraint vSi ≥ vSmin naturally always holds, since local turns are
de�ned such that vSi ≥ 0.
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A.3.1.2 Transition Constraints

Forward Stage

Next, for each i ∈ [0,m − 1], we de�ne the function zmaxFi in terms of the functions aLRmin,
aLRmax and aSmax .

We know that the distance driven by the left wheel (i.e., the length of the circular arc)
during the (i + 1)-th step is given by

sLi =



e

2 [θi − θi+1] if [θi − θi+1] > 0,

e

2 ([θi − θi+1] + 2π ) if [θi − θi+1] < 0.

If we assume constant-acceleration motion during the step, let aLi and ∆ti denote
respectively the linear acceleration of the left wheel during that step, and the duration of
the step, then we have

vLi+1 = vLi + aLi∆ti

and

sLi =
vLi+1 +vLi

2 ∆ti ,

from which we extract

aLi =
v2
Li+1
− v2

Li

2sLi
.

The constraint

aLi ≤ aLRmax (vLi )

can be rewritten as

vLi+1 ≤

√
v2
Li

+ 2sLi aLRmax (vLi ),

which yields

zmaxFi (z) ≤
√
z2 + 2sLi aLRmax (z)

for every i ∈ [0,m − 1] and z ∈ [0,zmaxi ].

Note that the speed of the right wheel is negative, and that we have to take into account
the deceleration constraint for this wheel.
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Recall that we have

vRi = −vLi ,

sri = −sLi ,

therefore, the constraint

aRi ≥ aLRmin (vRi )

can be rewritten as

��vRi+1
�� ≤ √

v2
Ri

+ 2sRi aLRmin (vRi ),

which is equivalent to

vLi+1 ≤

√
v2
Li
− 2sLi aLRmin (−vLi ),

and yields

zmaxFi (z) ≤
√
z2 − 2sLi aLRmin (−z).

The upper bound on the tangential acceleration aSi of the steering wheel during the
(i + 1)-th step is handled in a similar way. Recall that we have in the case of a right local
turn

vSi =
2e ′
e
vLi

and

aSi =
2e ′
e

aLi ,

where vSi denotes the linear speed of the steering wheel.

We thus obtain for every i ∈ [0,m − 1]

aSi =
e ′

e
·
v2
Li+1
− v2

Li

sLi
.

The constraint

aSi ≤ aSmax (vSi )

then becomes

vLi+1 ≤

√
v2
Li

+ e

e ′
sLiaSmax

(2e ′
e
vLi

)
,

which leads to

zmaxFi (z) ≤

√
z2 + e

e ′
sLi aSmax

(2e ′z
e

)
.
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In summary, we obtain for the function zmaxFi :

zmaxFi (z) =

√
z2 + sLi min

(
2aLRmax (z), −2aLRmin (−z),

e

e ′
aSmax

(2e ′z
e

))
,

for every i ∈ [0,m − 1] and z ∈ [0,zmaxi ].

Backward stage

We now express the function zmaxPi in terms of the functions aLRmin, aLRmax and aSmin.

Once again, as explained in Section 4.2.5, constraints expressed as functions may depend
on zi−1, and in order to ensure the satis�ability of the constraints during the backward
stage, we will use the following approximation of the velocity:

z̃i−1 = min(ži−1,zi ),

where ži−1 is the tentative value for the velocity at the beginning of the i-th step obtained
after the forward stage.

We have, for every i ∈ [1,m],

aLi−1 =
v2
Li
− v2

Li−1

2sLi−1
.

The constraint

aLi−1 ≥ aLRmin (ṽLi−1 )

thus becomes

vLi−1 ≤

√
v2
Li
− 2sLi−1 aLRmin (ṽLi−1 ),

which gives

zmaxPi (z) ≤
√
z2 − 2sLi−1 aLRmin (z̃i−1).

Similarly to the forward stage, the constraint on the right wheel

aRi−1 ≤ aLRmax (ṽRi−1 )

yields

zmaxPi (z) ≤
√
z2 + 2sLi−1 aLRmax (−z̃i−1).
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By a similar reasoning applied to the constraint

aSi ≥ aSmin (vSi ),

we obtain

zmaxPi (z) ≤

√
z2 −

e

e ′
sLi−1 aSmin

(
2e ′z̃i−1

e

)
.

In summary, we obtain for the function zmaxPi :

zmaxPi (z) =

√
z2 − sLi−1 max

(
2aLRmin (z̃i−1), −2aLRmax (−z̃i−1),

e

e ′
aSmin

(
2e ′z̃i−1

e

))
,

for every i ∈ [1,m] and z ∈ [0,zmaxi ].

A.3.1.3 Wheel Speeds

Finally, we recall the formulas that express the speeds of the left, right, and steering wheels
of the robot in terms of the variables zi .

We have for all i ∈ [0,m] :

vLi = zi ,

vRi = −zi ,

vSi =
2e ′
e

zi .

A.3.2 Le� Local Turns

The case of a path segment (m,σ ) performing a left local turn, i.e., such that νi = L for all
i ∈ [0,m − 1], is handled in essentially the same way as in Section A.3.1.

We now have

zi = vRi

for all i ∈ [0,m], and

sRi =



e

2 [θi+1 − θi ] if [θi+1 − θi ] > 0,

e

2 ([θi+1 − θi ] + 2π ) if [θi+1 − θi ] < 0.

for all i ∈ [0,m − 1].
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We �nally obtain

zmax0 = zinit = 0
zmaxm = 0,

zmaxi = min
(
vLRmax , −vLRmin,

e

2e ′ vSmax ,
e

2 θ̇max (i )
)

for all i ∈ [1,m − 1],

zmaxFi (z) =

√
z2 + sRi min

(
2aLRmax (z), −2aLRmin (−z),

e

e ′
aSmax

(2e ′z
e

))
,

for every i ∈ [0,m − 1] and z ∈ [0,zmaxi ], and

zmaxPi (z) =

√
z2 − sRi−1 max

(
2aLRmin (z̃i−1), −2aLRmax (−z̃i−1),

e

e ′
aSmin

(
2e ′z̃i−1

e

))
,

for every i ∈ [1,m] and z ∈ [0,zmaxi ].

After the optimization procedure has been carried out, the speeds of the wheels are
given by

vLi = −zi ,

vRi = zi ,

vSi =
2e ′
e

zi .

with
z̃i−1 = min(ži−1,zi ),

where ži−1 is the tentative value for the velocity at the beginning of the i-th step obtained
after the forward stage.

A.4 Static Steps

The case of static steps is much easier to handle than forward, backward or local turn path
segments. First, since a sequence of static steps is semantically equivalent to a single one,
we can assume w.l.o.g. that every static segment is composed of a single static step (i.e.,
that the path segment (m,σ ) under analysis is such that m = 1 and ν0 = S ). The problem
then reduces to computing the delay µ (0) associated to this step. There are two situations
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to consider:

• With a di�erential drive locomotion platform. No speci�c constraint has to be satis�ed,
hence one has

µ (0) = 0.

• With a tricycle locomotion platform. In this case, the maximum rate of variation of
the steering angle must not be exceeded. The angle steered during the step is given
by

[θS1 − θS0],

where for each i ∈ {0,1}, we have

θSi =



arctan(e ′κ̃i ) if κ̃i , {−∞,+∞}
π

2 if κ̃i = +∞

−
π

2 if κ̃i = −∞.

The constraint

��[θS1 − θS0]��
∆t0

≤ θ̇Smax

then yields

µ (0) = ∆t0 =
��[θS1 − θS0]��

θ̇Smax
.

A.5 Reciprocal of the ŝi (vw ) Function

We now present the developments related to the calculation of the reciprocal of the ŝi (vw )
function introduced in Section 4.2.4.

Recall that, if the maximal acceleration of a wheel is given as a function of the wheel
speed vw ≥ 0 by

a(vw ) = a0 − bvw ,

then ŝi (vw ) is de�ned as the function that gives out the distance travelled by that wheel
when its speed reaches vw ≥ vwi with maximal acceleration, starting from an initial speed
of vwi ≥ 0.
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We have

ŝi (vw ) =
b

(
vwi − vw

) + a0 log a0−b vwi
a0−b vw

b2 .

with a0 > 0, b > 0 and vwi ≥ 0.

Calculating the reciprocal function, we have

s =
b

(
vwi − vw

) + a0 log a0−b vwi
a0−b vw

b2

⇔ b s = vwi − vw + a0
b

log(a0 − bvwi ) −
a0
b

log(a0 − bvw )

⇔ vw + a0
b

log(a0 − bvw ) = vwi − b s + a0
b

log(a0 − bvwi )

⇔
b

a0
vw + log(a0 − bvw ) =

b

a0

(
vwi − b s

) + log(a0 − bvwi )

⇔ e
b
a0
vw (a0 − bvw ) = e

b
a0 (vwi −b s )

(
a0 − bvwi

)
⇔ e

b
a0
vw

(
1 − b

a0
vw

)
= e

b
a0 (vwi −b s )

(
1 − b

a0
vwi

)
.

One can remark that this equation is of the form

ex (1 − x ) = C, (A.7)

and, in terms of the LambertW -functionW (x ) de�ned as the reciprocal function of f (W ) =

W eW , we obtain
W (x ex ) = x ,

and thus Equation A.7 can be solved for x in the following way:

ex (1 − x ) = C

⇔ ex (x − 1) = −C

⇔ (x − 1) ex −1 = −
C

e

⇔ x − 1 =W
(
−
C

e

)
⇔ x = 1 +W

(
−
C

e

)
.
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Using this result, we have

e
b
a0
vw

(
1 − b

a0
vw

)
= e

b
a0 (vwi −b s )

(
1 − b

a0
vwi

)

⇔
b

a0
vw = 1 +W


−e

b
a0 (vwi −b s )

(
1 − b

a0
vwi

)
e




⇔ vw =
a0
b

(
1 +W

((
b

a0
vwi − 1

)
e
(
b
a0 (vwi −b s )−1

) ))
.

Note that, for this equation to hold, we must have(
b

a0
vwi − 1

)
e
(
b
a0 (vwi −b s )−1

)
≥ −

1
e

⇔ s ≥
bvwi + a0 log a0−b vwi

a0

b2

⇔ s ≥ ŝi (0),

since vwi ≥ 0 and since we are accelerating (i.e., the speed can only increase or stay un-
changed), we have s ≥ 0, which proves that this inequation is always veri�ed.

For the same reason, as the speed stays positive, we have vw ≥ 0 and thus

W

((
b

a0
vwi − 1

)
e
(
b
a0 (vwi −b s )−1

) )
≥ −1.

Note that,W (x ) is double-valued for x ∈ [− 1
e ,0[, the constraintW (x ) ≥ −1 de�nes the

functionW0 (x ) (i.e., the main branch of the LambertW -function), the constraintW (x ) ≤ −1
de�nes the lower branchW−1 (x ).

We �nally have

v̂i (sw ) =
a0
b

(
1 +W0

((
b

a0
vwi − 1

)
e
(
b
a0 (vwi −b sw )−1

) ))
,

where v̂i (sw ) denotes the function that compute the speed reached by the wheel with
maximal acceleration after travelling the distance sw , starting from an initial wheel speed
of vwi ≥ 0.



APPENDIX B

Chaining Pairs of Clothoids

This appendix is related to developments of Chapter 5, and presents the proof of Theo-
rem 5.4.1 that states that there is always an unique pair of clothoids that interpolates the
path within the safe zone.

B.1 Existence and Uniqueness of a Pair of Clothoids

Theorem 5.4.1. For every rotation angle βi ∈ ]0, π2 ] and for every pair of curvatures κ1,κ2
such that 0 ≤ κ1 < κC and 0 ≤ κ2 < κC , there exist two clothoids arcs moving respectively
from the curvatures κ1 to κM and from κM to κ2, with κM > κC , the concatenation of which
interpolates the path from ti1 to ti2 within the safe zone, with initial and �nal tangential
angles of respectively θ1 and θ2 = θ1 + βi and with continuity of the tangent vector at the
junction point between the two curves. The parameters of these two clothoids arcs are uniquely
determined by κ1, κ2, κC , and the rotation angle βi .

In this section, we assume w.l.o.g. that the tangential angle1 θ1 at the origin (i.e., at ti1 )
is equal to − π2 . The problem is illustrated in Figure B.1 (exaggerating the curvatures in
order to make the interpolated path stand out from the circle arc).

Let sM denote the distance travelled along the �rst arc, sF the total distance travelled
over both arcs, and sFM = sF − sM the distance travelled along the second arc. The linear
rate of variation of curvature for these arcs are respectively denoted by c1 and −c2.

1 Note that, as in all chapters, the orientation is chosen such that θ = 0 corresponds to a direction that follows
the y-axis.

219
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κ1

βi

safe zoneκC

ti1

ti2 κ2

Figure B.1 – Path geometry.

From Equation 5.4, one has

κM = κ1 + c1sM = κ2 + c2sFM , (B.1)

and from Equation 5.5, one has

θM = κ1sM + 1
2c1s

2
M = βi − κ2sFM −

1
2c2s

2
FM , (B.2)

where θM is the angular deviation at the intersection between the two clothoids.

Since, as described in Chapter 5, κC denotes the curvature of an equivalent circular arc,
the displacements along the axes for this arc are given by

dx =
sin βi
κC
,

dy =
1 − cos βi

κC
.

From Equations 5.6, one obtains two other equations that need to be satis�ed in order
to determine the two clothoids:

∫ sM

0
cos

(
κ1u + 1

2c1u
2
)
du +

∫ sFM

0
cos

(
βi − κ2u −

1
2c2u

2
)
du =

sin βi
κC

(B.3)

∫ sM

0
sin

(
κ1u + 1

2c1u
2
)
du +

∫ sFM

0
sin

(
βi − κ2u −

1
2c2u

2
)
du =

1 − cos βi
κC

. (B.4)



B.1. Existence and Uniqueness of a Pair of Clothoids 221

Considering that 0 ≤ κ1 < κC and 0 ≤ κ2 < κC , in order to e�ciently interpolate
the path within the safe zone, the curvature of the two clothoids obviously need to stay
positive (i.e., to always turn in the same direction) and exceed (at some point) the curvature
κC of the equivalent circular arc (i.e., in order to compensate the lower curvature at the
beginning and the end of the interpolated path). Since κM is the maximum curvature of
the two clothoids, we then have κM > κC .

This also directly implies the following constraints:

c1 > 0, c2 > 0,
and

sM > 0, sFM > 0.

B.1.1 Existence and Uniqueness of the Solution

Since sM > 0 and sFM > 0, from Equations B.1 and B.2, one can express c1 and c2 in terms
of the other variables:

c1 =
2βi − (κ1 + κ2) sFM − 2κ1sM

sM (sM + sFM )
(B.5)

c2 =
2βi − (κ1 + κ2) sM − 2κ2sFM

sFM (sM + sFM )
(B.6)

It thus remains to compute sM and sFM given κ1, κ2, κC and βi . This can be done by solving
the nonlinear system of Equations B.3 and B.4.

Let us �rst observe this problem graphically. If Ex (sM ,sFM ) and Ey (sM ,sFM ) are de�ned
as the functions:

Ex (sM ,sFM ) =

∫ sM

0
cos

(
κ1u + 1

2c1u
2
)
du +

∫ sFM

0
cos

(
βi − κ2u −

1
2c2u

2
)
du −

sin βi
κC
,

Ey (sM ,sFM ) =

∫ sM

0
sin

(
κ1u + 1

2c1u
2
)
du +

∫ sFM

0
sin

(
βi − κ2u −

1
2c2u

2
)
du −

1 − cos βi
κC

,

and if we plot on the same graph (as depicted in Figure B.2) the surfaces that represent
these two functions, as well as the plane that represents the function Z (sM ,sFM ) = 0, the
solutions of the nonlinear system will then be located at the concurrent intersections of
the 3 surfaces.
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00

50
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100

150

200

100
150

200
−50

0

50

sM

sFM

Figure B.2 – (βi = 1.3, κ1 = 0.34, κ2 = 0.76 and κC = 1.4.)
The surface in blue represents the function Ex (sM ,sFM ), the surface in orange represents
the function Ey (sM ,sFM ) and the plane in green represents the function Z (sM ,sFM ) = 0.

One can see on Figure B.2 that, due to Fresnel integrals, this system is not easy to solve
and yields, in general (i.e., when both κ1 and κ2 are not equal to 0), an in�nity of solutions.
Nevertheless, we can establish that this system has an unique2 solution which satis�es the
constraints c1 > 0 and c2 > 0.

Indeed, recall that we have βi ∈ ]0, π2 ], 0 ≤ κ1 < κC , 0 ≤ κ2 < κC and, in order to ensure
that we always turn in the same direction, also c1 > 0 and c2 > 0. This gives constraints
on sM and sFM :

• If κ1 = κ2 = 0: Then,

sM > 0,
sFM > 0.

2 All the other solutions (i.e., with c1 < 0 and/or c2 < 0) are composed of a non-zero number of coils turning
in one direction and then in the other direction (which is undesirable, ine�cient and is not guaranteed to
stay in the safe zone).
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• If 0 ≤ κ1 ≤ κ2 and κ2 , 0: Then,

0 < sM <
2βi

κ1 + κ2
,

0 < sFM <
2βi − (κ1 + κ2) sM

2κ2
.

• If 0 ≤ κ2 < κ1: Then,

0 < sM <
βi
κ1
,

0 < sFM <
2βi − 2κ1sM
κ1 + κ2

.

2

1

0 0.0
0.5

1.0
1.5

2.0

0

1

sM

sFM

Figure B.3 – (βi = 1.3, κ1 = 0.34, κ2 = 0.76 and κC = 1.4.)
Same surfaces as Figure B.2, but focused on the region of interest

where the constraints on sM and sFM are satis�ed.

One can see on Figure B.3 that, when we only plot the region in which constraints
on sM and sFM are satis�ed, it admits exactly one point at the intersection between the 3
surfaces and therefore an unique solution to the nonlinear system. We can also see that,
in this region, the two surfaces that represents the functions Ex (sM ,sFM ) and Ey (sM ,sFM )

are manifolds with small local curvatures. On this basis, we can expect rapid convergence
with numerical methods (e.g. Newton-Raphson).



224 Appendix B. Chaining Pairs of Clothoids

In fact, providing that the constraints on sM and sFM are satis�ed, we can prove that

dc1
dsM

< 0, dc1
dsFM

< 0,

dc2
dsM

< 0, dc2
dsFM

< 0,

dκM
dsM

< 0, dκM
dsFM

< 0,

dθM
dsM

> 0, dθM
dsFM

< 0,

which implies

d

sM

(∫ sM

0
cos

(
κ1u + 1

2c1u
2
)
du +

∫ sFM

0
cos

(
βi − κ2u −

1
2c2u

2
)
du

)
> 0, (B.7)

d

sM

(∫ sM

0
sin

(
κ1u + 1

2c1u
2
)
du +

∫ sFM

0
sin

(
βi − κ2u −

1
2c2u

2
)
du

)
> 0, (B.8)

d

sFM

(∫ sM

0
cos

(
κ1u + 1

2c1u
2
)
du +

∫ sFM

0
cos

(
βi − κ2u −

1
2c2u

2
)
du

)
> 0, (B.9)

d

sFM

(∫ sM

0
sin

(
κ1u + 1

2c1u
2
)
du +

∫ sFM

0
sin

(
βi − κ2u −

1
2c2u

2
)
du

)
> 0. (B.10)

These results show that for one value of sM (resp. sFM ) that satis�es the constraints,
there is at most one value of sFM (resp. sM ) that also satis�es them and that is a solution
of Equation B.3. Similarly, for one value of sM (resp. sFM ) that satis�es the constraints,
there is at most one value of sFM (resp. sM ) that also satis�es them and that is a solution of
Equation B.4.

Furthermore, since

lim
sM→0, sFM→0

(∫ sM

0
cos

(
κ1u + 1

2c1u
2
)
du +

∫ sFM

0
cos

(
βi − κ2u −

1
2c2u

2
)
du

)
= 0,

lim
sM→0, sFM→0

(∫ sM

0
sin

(
κ1u + 1

2c1u
2
)
du +

∫ sFM

0
sin

(
βi − κ2u −

1
2c2u

2
)
du

)
= 0,
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y

x

βi

(a) sM → 0.

y

x

βi

(b) sFM → 0.

Figure B.4 – (βi = 1.3, κ1 = 0.34, κ2 = 0.76 and κC = 1.4.)
In red the clothoid arc that is solution of Equation B.3, and

in blue the clothoid arc that is solution of Equation B.4.

and since, whenever sM (resp. sFM ) tends to 0 while sFM (resp. sM ) satis�es the constraints,
the x and y projections for the �rst clothoid arc (resp. the second) are necessarily greater
or equal to the ones of the equivalent circular arc, we necessarily have one solution for
Equation B.3 and one solution for Equation B.4 when sM (resp. sFM ) tends to 0.

Let sFMx and sFMy denote respectively the solution of Equation B.3 and the solution of
Equation B.4 when sM tends to 0. We have

sFMx > sFMy .

Let us show graphically on Figure B.4(a) that this property holds. Indeed, the constraints
on the derivatives of κM , c1 and c2 imply that the two clothoids arcs that solve these two
equations stay necessarily inside (i.e., on the left) of the circular arc. These constraints also
imply that the red clothoid arc that solves Equation B.3 stays necessarily between the blue
clothoid arc that solves Equation B.4 and the circular arc. Therefore, since βi ≤ π

2 , the red
clothoid arc can only be longer than the one in blue, and we have sFMx > sFMy .

Symmetrically, let sMx and sMy denote respectively the solution of Equation B.3 and
the solution of Equation B.4 when sFM tends to 0. As we can check on Figure B.4(b), we
have

sMx < sMy .
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In addition, from Derivatives B.7, B.8, B.9 and B.10, we show that, for sM ∈ ]0,sMx ], the
solution sFM for Equation B.3 (i.e., in order to reach the x-coordinate) strictly decreases
when sM increases, and we have exactly one value of sFM that is a solution of Equation B.3.
Similarly, for sFM ∈ ]0,sFMx ], the solution sM for Equation B.4 (i.e., in order to reach the
y-coordinate) strictly decreases when sM increases, and we have exactly one value of sM
that is a solution of Equation B.4.

Finally, since (as it can be observed3 in Figure B.5) the di�erence between the two
curves of solutions strictly decreases when sM increases from 0 to sMx , there is an unique
solution for the tuple {sM ,sFM } that both solves Equations B.3 and B.4 and satis�es the
constraints c1 > 0, c2 > 0, sM > 0 and sFM > 0, which proves the theorem.

sM

sFM
sFMx

sFMy

unique solution

sMx sMx

Figure B.5 – (βi = 1.3, κ1 = 0.34, κ2 = 0.76 and κC = 1.4.)
Solutions curves for Equations B.3 and B.4.

It is worth noting that we can observe that, the closer κ1 is to κC , the closer sFMx is to
sFMy , and symmetrically, the closer κ2 is to κC , the closer sMx is to sMy . Therefore when
both κ1 and κ2 are close to κC , the two solutions curves are mostly parallel and it is why, as
seen in Chapter 5, it is more di�cult to converge rapidly to the solution in this situation.

3 We can also prove graphically that the solution sFM for Equation B.3 (i.e., in order to reach the x-coordinate)
necessarily decrease faster when sM increase than for Equation B.4 (i.e., in order to reach the y-coordinate).
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βi

y

x

Figure B.6 – (βi = 1.3, κ1 = 0.34, κ2 = 0.76 and κC = 1.4.)
The unique solution for the pair of clothoids that satis�es the constraints.

(sM = 0.35633376 and sFM = 0.59389425.)
The �rst clothoid arc is in blue and the second in red.

x

y

Figure B.7 – (βi = 1.3, κ1 = 0.34, κ2 = 0.76 and κC = 1.4.)
One of the undesirable solutions that do not satisfy the constraints (i.e., c1 < 0 and c2 < 0).

(sM = 42.699676 and sFM = 74.196288.)
The �rst clothoid arc is in blue and the second in red.
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B.1.2 The Solution Stays in the Safe Zone

Since, the unique solution that we compute is such that c1 > 0 and c2 > 0, the two clothoids
arcs stay within the safe zone:

• Since c1 > 0 and c2 > 0, the curvatures of the two clothoids arcs stay positive. There-
fore, they do not intersect the two segments. Otherwise, the sign of the curvature
would need to change (at some point) in order to reach the destination.

• Since βi ≤
π
2 , the clothoid arcs do not intersect the circular arc. Otherwise, the

sign of the angular variation, and therefore the sign of the curvature, would need to
change (at some point) in order to reach the destination.
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