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Introduction

Definitions

Definition: Pseudo-Boolean functions

A pseudo-Boolean function is a mapping 7 : {0,1}" — R.

Multilinear representation

Every pseudo-Boolean function f can be represented uniquely by a
multilinear polynomial (Hammer, Rosenberg, Rudeanu [4]).

Example:

f(X1,X2,X3) = Ox1x0x3 + 8x1X0 — 6x0x3 + X1 — 2X0 + X3
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Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

in f
oy )

e Optimization is A'P-hard, even if f is quadratic (MAX-2-SAT,
MAX-CUT modelled by quadratic f).
@ Approaches:

o Linearization: standard approach to solve non-linear optimization.
o Quadratization: Much progress has been done for the quadratic case
(exact algorithms, heuristics, polyhedral results...).
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Linearizations

Standard linearization (SL)

min as ka,

{o.1yn SeS  kes
S={SC{1,...,n} | as # 0} (non-constant monomials)

1. Substitute monomials 3. Linear relaxation
min Z aszs min Z aszs

Ses Ses
st zg = HX"’ vSesS s.t. zg < xg, Vke S,VSe S
kes zs > Zxk —(|S5|-1), VSeS
keS
zs € {0,1}, VS esS 0<zs<1, vVSesS
xx €{0,1}, Vk=1,....n 0<x <1, Vk=1,...,n



Linearizations

Intermediate substitutions (IS) (one monomial)

SL substitution SL linearization

ZS:HXk zs < Xk, Vk e S
ke 25> > X —(IS| - 1)
keS
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Intermediate substitutions (IS) (one monomial)
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IS substitution
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Linearizations

Intermediate substitutions (IS) (one monomial)

SL substitution SL linearization

zs =[] 25 < Xk, VkeS
kes
252 3 %~ (IS 1)
kes
zs=za [[ z5 < Xk, Vk € S\A
BESVA 25 < zp,
za =[] x s>za+ > x—IS\Al,
keA kES\A
ZA < Xk, Vke A
za> > x—(|Al—1).
kEA



Linearizations

Intermediate Substitutions (IS) (one monomial)

Polytope Ps;; C R™ Polytope Pjs; C R™"2

zs < Xg, Vke S zs < Xk, Vk € S\A
25> x— (S| - 1) zs < za,
kes Zs > za + Z xx — |S\A|,

0<xk <1, Vk=1,...,n kES\A

0<2zs <1, vSeS za < Xk, Vke A
ZaA ZZXk_“A‘ —1).

kEA

0<x <1, Vk=1,....n
0<2zs <1, VS eS



Linearizations

Calculating projections: Fourier-Motzkin Elimination

P s: projection over the space of variables zs and x, k =1,...,n.

We calculate P, s(Pis,1) using the Fourier-Motzkin Elimination:

zs < za za < Xk, Vke A
> xe— (JAl - 1) < z4 2a<zs— > x4 |S\Al
keA kES\A
We also take into account the inequalities of Pjs ;1 that do not involve z4

zs < xx,Vk € S\A
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Linearizations

Single monomials

Pns(Pis1) = Psi
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Linearizations

Single monomials

Theorem

Pns(Pis1) = Psi

Theorem holds for disjoint several monomials:
zs = [[es Xk 21 = [I4c7 Xk, take AC S, BC T,

S T
zszzAka zZr = Zp ka

kES\A keT\B
S T
Zp — Xk g = Xk
keA keB

Linearize, and apply Fourier-Motzkin as before (constraints never contain at the same
time z; and z2).
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What happens with non-disjoint monomials? AC SN T, (|Al > 2).
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Several monomials with common intersection
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keA
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Linearizations

Several monomials with common intersection

What happens with non-disjoint monomials? AC SN T, (|Al > 2).

zs < X, Vk € S\A

zs < za

Zs> za + Z xk — |S\A|
Zs = ZA H Xk LG

kES\A o
zr < Xk, Vk € T\A
ZT = ZA H Xk 7r< 7
KET\A T oA
ZA:HXk zZr > za + Z xk — | T\A|
keA keT\A
za < Xk, vk e A
Zp 2> ZXk = (IA] =1).
keA
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Several monomials with common intersection

What happens with non-disjoint monomials? AC SN T, (|Al > 2).

Zs = ZA H Xk

kES\A
ZT = ZA H Xk
keT\A
2=
keA

zs < Xk, Vk € S\A

zs< za
Zs> Za + Z X,“(*‘S A
kES\A

z1 < Xk, Vk € T\A
ZTS ZA
zZT> ZA + Z Xk — |T\A|
kET\A
za < Xk, Vk e A

Zpa > ZXk = (Al =1).

keA
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Linearizations

Several monomials with common intersection

Theorem

P, s.7(Pis) C Pst

Proof:
@ Fourier-Motzkin gives:
zs<zr— »  x+(T\A|, (1)
kET\A
zr <zs— »  xc+[S\A|, (2)
keS\A

Q Pus.7(Pis) = Ps. N {(xk,zs,z7) | (1), (2) are satisfied}

© Point x, =1for k ¢ A, x =3 for k€ A, zs =0, zr = , is in Ps; but does not
satisfy (2).
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Linearizations

Larger subset substitutions are better

Consider BCACSNT, |B| >2.
@ Take the first cut for both subsets:
25 <21 = Yyema Xk + [ T\AL
zs < z7 — ZkeT\BXk +|T\B.

(2]
zs < z1 — Z xk + | T\A| <
KET\A
Szr— > o+ |T\A = D x+|A\B| =
KET\A kEA\B
= zT — Z Xk+|T\B|.
kET\B
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Linearizations

Larger subset substitutions are better

Theorem

PmiT(Pé)C:PmiT(PE)

(Point xc = 1 for k ¢ A, xk = 5 for k € A\B,k € B, zr =0, zs = 1 satisfies cut for B
but not for A.)
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Linearizations

Larger subset substitutions are better

Corollary

Consider three monomials R, S, T, with intersections RN S = A,
SNT=B,RNT=C, (JA],|B|,|C| > 2). Then it is better to do
intermediate substitutions of the two-by-two intersections, than a single
intermediate substitution of the common intersection AN BN C.

A

oA
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Linearizations

Improving the SL formulation: 2-links

SL relaxation with 2-links

s.t. zs < xg, Vke S,VSeS
zs > Y xe—(IS| - 1), vSes
keS

zs<zr— Y xc+[T\S| vS,T,|SNT|>2
keT\S

zr<zs— Y xc+[S\T| vS,T,ISNT|>2
keS\T

0<2zs <1, vSesS

0<x <1 Vk=1,...,n
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Linearizations

How strong are the 2-links?

Standard linearization polytope:
PE™ = conv{(x,ys) € {0,1}"15! | ys = [] x:,vS € S}
ies

= conv{(x,ys) € {0,1}"H151 | ys < x;,y5 > Zx,- —(|S] —1),VS € S},
i€S

with linear relaxation

Psi = {(x,ys) € [0, 115 | ys < x;,ys > > % — (IS| = 1),VS € S}
i€S
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Linearizations

How strong are the 2-links?

Standard linearization polytope:
PE™ = conv{(x,ys) € {0,1}"15! | ys = [] x:,vS € S}
ies

= conv{(x,ys) € {0, 1} 5! | ys < x,ys > Y x — (IS — 1),VS € S},
i€S

with linear relaxation

Ps. = {(X7}/5) € [0’1]n+\8| ‘ ¥s < Xj, ys > ZXI - (|S| - 1)7V5 € S}
i€S

® Question 1: Are the 2-links facet-defining for PE"™?

@ Question 2: Is there some case for which we obtain the convex hull P&"
when adding the 2-links to Ps;?
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Linearizations

Facet-defining cuts (2 monomials)

Theorem: 2-term objective function

The 2-links are facet-defining for P&y':

zs<zr— Y x+|T\S
keT\S

zr < zs — Z Xk + |S\T|
keS\T

15/22



Linearizations

Facet-defining cuts (2 monomials)

Special forms of the cuts in some cases:
QIfSCT,

zs <z — Z Xk+|T\5’
keT\S

zr < zs
@ If T = (and setting by definition z5 = 1),

zs <1
1§25—Zx,-—|—]5]

ieS
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Linearizations

Conjecture on the convex hull (2 monomials)

Conjecture

Consider a pseudo-Boolean function consisting of two terms, its standard

linearization polytope P¢&")" and its linear relaxation Ps; >. Then,

P& = Psi» N {(x,ys,yr) €[0,1]"*2 | 2-links are satisfied}.
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Linearizations

Facet-defining cuts (nested monomials)

Theorem: Nested sequence of terms

Consider a pseudo-Boolean function f(x) = >,c; aso [[;csm xi, such that
S ¢ 5@ ... c SULD and its standard linearization polytope P& et
The 2-links

Zs(y < Zg+1) — Z Xk 4 |SUFD\ S|
kesUFI\S0)

Zg(+1) < Zg(,

are facet-defining for P&"" . for two consecutive monomials in the nest

(and cuts are redundant for non-consecutive monomials).
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Linearizations

Conjectures for m monomials

Conjecture: facet-defining

The 2-links are facet-defining for the case of m monomials.

Convex-hull for the general case

The 2-links and standard linearization inequalities are not enough to define
the convex hull PE"™ (otherwise we could solve an NP-hard problem
efficiently...).

@ m = 3, set of 3 monomials for which there exists an objective function
which has a fractional optimal solution on Ps; N {2-links}:
{xixoxa, x1x3%4, x1X2%3 }
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A short summary and some ideas

@ We have obtained interesting cuts for Ps; by applying intermediate
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Linearizations

A short summary and some ideas

@ We have obtained interesting cuts for Ps; by applying intermediate
substitutions for subsets of size > 2.

@ We could apply iteratively these intermediate substitutions, the last
substitution step has only quadratic constraints

Zij = XiXj,
Zjj = XiZJ,
Z|) = Z|Zy,

x: original variables, z: variables that are already substitutions of other subsets.

@ Open questions:

e How many intermediate substitutions provide practical improvements?
o Relationship of this quadratically constrained program with
quadratizations.
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Perspectives

o Well-defined conjectures on the strength of 2-links

e 2 monomials: convex hull.
e m monomials: 2-links are facet-defining (but not enough).

@ Measure computational improvements of 2-links.

o lterate intermediate substitutions: relationship to quadratizations?
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