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De�nitions

De�nition: Pseudo-Boolean functions

A pseudo-Boolean function is a mapping f : {0, 1}n → R.

Multilinear representation

Every pseudo-Boolean function f can be represented uniquely by a
multilinear polynomial (Hammer, Rosenberg, Rudeanu [4]).

Example:

f (x1, x2, x3) = 9x1x2x3 + 8x1x2 − 6x2x3 + x1 − 2x2 + x3
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Pseudo-Boolean Optimization

Many problems formulated as optimization of a pseudo-Boolean function

Pseudo-Boolean Optimization

min
x∈{0,1}n

f (x)

Optimization is NP-hard, even if f is quadratic (MAX-2-SAT,
MAX-CUT modelled by quadratic f ).

Approaches:

Linearization: standard approach to solve non-linear optimization.
Quadratization: Much progress has been done for the quadratic case
(exact algorithms, heuristics, polyhedral results...).
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Standard linearization (SL)

min
{0,1}n

∑
S∈S

aS
∏
k∈S

xk ,

S = {S ⊆ {1, . . . , n} | aS 6= 0} (non-constant monomials)

1. Substitute monomials

min
∑
S∈S

aSzS

s.t. zS =
∏
k∈S

xk , ∀S ∈ S

zS ∈ {0, 1}, ∀S ∈ S
xk ∈ {0, 1}, ∀k = 1, . . . , n

2. Linearize constraints

min
∑
S∈S

aSzS

s.t. zS ≤ xk , ∀k ∈ S ,∀S ∈ S

zS ≥
∑
k∈S

xk − (|S | − 1), ∀S ∈ S

zS ∈ {0, 1}, ∀S ∈ S
xk ∈ {0, 1}, ∀k = 1, . . . , n
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Intermediate substitutions (IS) (one monomial)

SL substitution

zS =
∏
k∈S

xk

SL linearization

zS ≤ xk , ∀k ∈ S

zS ≥
∑
k∈S

xk − (|S | − 1)

IS substitution

zS = zA
∏

k∈S\A
xk

zA =
∏
k∈A

xk

IS linearization

zS ≤ xk , ∀k ∈ S\A
zS ≤ zA,

zS ≥ zA +
∑

k∈S\A
xk − |S\A|,

zA ≤ xk , ∀k ∈ A

zA ≥
∑
k∈A

xk − (|A| − 1).
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Intermediate Substitutions (IS) (one monomial)

Polytope PSL,1 ⊆ Rn+1

zS ≤ xk , ∀k ∈ S

zS ≥
∑
k∈S

xk − (|S | − 1)

0 ≤ xk ≤ 1, ∀k = 1, . . . , n

0 ≤ zS ≤ 1, ∀S ∈ S

Polytope PIS,1 ⊆ Rn+2

zS ≤ xk , ∀k ∈ S\A
zS ≤ zA,

zS ≥ zA +
∑

k∈S\A

xk − |S\A|,

zA ≤ xk , ∀k ∈ A

zA ≥
∑
k∈A

xk − (|A| − 1).

0 ≤ xk ≤ 1, ∀k = 1, . . . , n

0 ≤ zS ≤ 1, ∀S ∈ S
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Calculating projections: Fourier-Motzkin Elimination

Notation

Pn,S : projection over the space of variables zS and xk , k = 1, . . . , n.

We calculate Pn,S(PIS,1) using the Fourier-Motzkin Elimination:

zS ≤ zA∑
k∈A

xk − (|A| − 1) ≤ zA

zA ≤ xk , ∀k ∈ A

zA ≤ zS −
∑

k∈S\A

xk + |S\A|.

We also take into account the inequalities of PIS,1 that do not involve zA

zS ≤ xk ,∀k ∈ S\A

6 / 22
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Single monomials

Theorem

Pn,S(PIS ,1) = PSL,1

Theorem holds for disjoint several monomials:
zS =

∏
k∈S xk , zT =

∏
k∈T xk , take A ⊆ S , B ⊆ T .

zS = zSA
∏

k∈S\A

xk

zSA =
∏
k∈A

xk

zT = zTB
∏

k∈T\B

xk

zTB =
∏
k∈B

xk

Linearize, and apply Fourier-Motzkin as before (constraints never contain at the same
time zSA and zTB ).
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Several monomials with common intersection

What happens with non-disjoint monomials? A ⊆ S ∩ T , (|A| ≥ 2).

zS = zA
∏

k∈S\A

xk

zT = zA
∏

k∈T\A

xk

zA =
∏
k∈A

xk ,

zS ≤ xk , ∀k ∈ S\A
zS ≤ zA

zS ≥ zA +
∑

k∈S\A

xk − |S\A|

zT ≤ xk , ∀k ∈ T\A
zT ≤ zA

zT ≥ zA +
∑

k∈T\A

xk − |T\A|

zA ≤ xk , ∀k ∈ A

zA ≥
∑
k∈A

xk − (|A| − 1).
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Several monomials with common intersection

Theorem

Pn,S ,T (PIS) ⊂ PSL

Proof:

1 Fourier-Motzkin gives:

zS ≤ zT −
∑
k∈T\A

xk + |T\A|, (1)

zT ≤ zS −
∑
k∈S\A

xk + |S\A|, (2)

2 Pn,S,T (PIS) = PSL ∩ {(xk , zS , zT ) | (1), (2) are satis�ed}
3 Point xk = 1 for k /∈ A, xk = 1

2
for k ∈ A, zS = 0, zT = 1

2
, is in PSL but does not

satisfy (2).
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Larger subset substitutions are better

Consider B ⊂ A ⊆ S ∩ T , |B| ≥ 2.

1 Take the �rst cut for both subsets:
zS ≤ zT −

∑
k∈T\A xk + |T\A|,

zS ≤ zT −
∑

k∈T\B xk + |T\B|,
2

zS ≤ zT −
∑

k∈T\A

xk + |T\A| ≤

≤ zT −
∑

k∈T\A

xk + |T\A| −
∑

k∈A\B

xk + |A\B| =

= zT −
∑

k∈T\B

xk + |T\B|.

10 / 22
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Larger subset substitutions are better

Theorem

Pn,S ,T (P
A
IS) ⊂ Pn,S ,T (P

B
IS).

(Point xk = 1 for k /∈ A, xk = 1
2
for k ∈ A\B, k ∈ B, zT = 0, zS = 1

2
satis�es cut for B

but not for A.)

De�nition: 2-link inequalities

zS ≤ zT −
∑

k∈T\S

xk + |T\S |

zT ≤ zS −
∑

k∈S\T

xk + |S\T |

11 / 22



Introduction
Linearizations
Perspectives

Larger subset substitutions are better

Theorem

Pn,S ,T (P
A
IS) ⊂ Pn,S ,T (P

B
IS).

(Point xk = 1 for k /∈ A, xk = 1
2
for k ∈ A\B, k ∈ B, zT = 0, zS = 1

2
satis�es cut for B

but not for A.)

De�nition: 2-link inequalities

zS ≤ zT −
∑

k∈T\S

xk + |T\S |

zT ≤ zS −
∑

k∈S\T

xk + |S\T |

11 / 22



Introduction
Linearizations
Perspectives

Larger subset substitutions are better

Theorem

Pn,S ,T (P
A
IS) ⊂ Pn,S ,T (P

B
IS).

(Point xk = 1 for k /∈ A, xk = 1
2
for k ∈ A\B, k ∈ B, zT = 0, zS = 1

2
satis�es cut for B

but not for A.)

De�nition: 2-link inequalities

zS ≤ zT −
∑

k∈T\S

xk + |T\S |

zT ≤ zS −
∑

k∈S\T

xk + |S\T |

11 / 22



Introduction
Linearizations
Perspectives

Larger subset substitutions are better

Corollary

Consider three monomials R , S , T , with intersections R ∩ S = A,
S ∩ T = B , R ∩ T = C , (|A|, |B|, |C | ≥ 2). Then it is better to do
intermediate substitutions of the two-by-two intersections, than a single
intermediate substitution of the common intersection A ∩ B ∩ C .
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Improving the SL formulation: 2-links

SL relaxation with 2-links

min
∑
S∈S

aSzS

s.t. zS ≤ xk , ∀k ∈ S ,∀S ∈ S

zS ≥
∑
k∈S

xk − (|S | − 1), ∀S ∈ S

zS ≤ zT −
∑
k∈T\S

xk + |T\S| ∀S,T, |S ∩ T| ≥ 2

zT ≤ zS −
∑
k∈S\T

xk + |S\T| ∀S,T, |S ∩ T| ≥ 2

0 ≤ zS ≤ 1, ∀S ∈ S
0 ≤ xk ≤ 1 ∀k = 1, . . . , n
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How strong are the 2-links?

Standard linearization polytope:

Pconv
SL = conv{(x , yS) ∈ {0, 1}n+|S| | yS =

∏
i∈S

xi ,∀S ∈ S}

= conv{(x , yS) ∈ {0, 1}n+|S| | yS ≤ xi , yS ≥
∑
i∈S

xi − (|S | − 1),∀S ∈ S},

with linear relaxation

PSL = {(x , yS) ∈ [0, 1]n+|S| | yS ≤ xi , yS ≥
∑
i∈S

xi − (|S | − 1),∀S ∈ S}

Question 1: Are the 2-links facet-de�ning for Pconv
SL ?

Question 2: Is there some case for which we obtain the convex hull Pconv
SL

when adding the 2-links to PSL?

14 / 22
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Facet-de�ning cuts (2 monomials)

Theorem: 2-term objective function

The 2-links are facet-de�ning for Pconv
SL,2 :

zS ≤ zT −
∑

k∈T\S

xk + |T\S |

zT ≤ zS −
∑

k∈S\T

xk + |S\T |

15 / 22



Introduction
Linearizations
Perspectives

Facet-de�ning cuts (2 monomials)

Special forms of the cuts in some cases:

1 If S ⊆ T ,

zS ≤ zT −
∑

k∈T\S

xk + |T\S |

zT ≤ zS

2 If T = ∅ (and setting by de�nition z∅ = 1),

zS ≤ 1

1 ≤ zS −
∑
i∈S

xi + |S |

16 / 22
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Conjecture on the convex hull (2 monomials)

Conjecture

Consider a pseudo-Boolean function consisting of two terms, its standard
linearization polytope Pconv

SL,2 and its linear relaxation PSL,2. Then,

Pconv
SL,2 = PSL,2 ∩ {(x , yS , yT ) ∈ [0, 1]n+2 | 2-links are satis�ed}.

17 / 22
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Facet-de�ning cuts (nested monomials)

Theorem: Nested sequence of terms

Consider a pseudo-Boolean function f (x) =
∑

l∈L aS(l)

∏
i∈S(l) xi , such that

S (1) ⊆ S (2) ⊆ · · · ⊆ S (|L|), and its standard linearization polytope Pconv
SL,nest .

The 2-links

zS(l) ≤ zS(l+1) −
∑

k∈S(l+1)\S(l)

xk + |S (l+1)\S (l)|

zS(l+1) ≤ zS(l) ,

are facet-de�ning for Pconv
SL,nest for two consecutive monomials in the nest

(and cuts are redundant for non-consecutive monomials).

18 / 22
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Conjectures for m monomials

Conjecture: facet-de�ning

The 2-links are facet-de�ning for the case of m monomials.

Convex-hull for the general case

The 2-links and standard linearization inequalities are not enough to de�ne
the convex hull Pconv

SL (otherwise we could solve an NP-hard problem
e�ciently...).

m = 3, set of 3 monomials for which there exists an objective function
which has a fractional optimal solution on PSL ∩ {2-links}:
{x1x2x4, x1x3x4, x1x2x3}

19 / 22
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The di�culty of describing the general convex hull
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A short summary and some ideas

We have obtained interesting cuts for PSL by applying intermediate
substitutions for subsets of size ≥ 2.

We could apply iteratively these intermediate substitutions, the last
substitution step has only quadratic constraints

zij = xixj ,

ziJ = xizJ ,

zIJ = zI zJ ,

x : original variables, z : variables that are already substitutions of other subsets.

Open questions:

How many intermediate substitutions provide practical improvements?
Relationship of this quadratically constrained program with
quadratizations.
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