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ABSTRACT: A simpli�ed analytical solution suitable for simple stacking sequences was

developed using the Euler buckling theory, the structure's equations of equilibrium and laminate

panel mathematical formulation. Comparing these results with numerical results reveals the ac-

curacy of the method and even more, allows us to validate the numerical analysis. Therefore, two

important results are obtained : a simpli�ed analytical solution for the buckling problem and vali-

dation of the numerical results. Another important and novel �nding is related to the in�uence of

the angle ply orientation and of the cutouts, on the buckling load. Under symmetrical boundary

conditions and loading case, rectangular panels with elliptical cutouts, give better results for 90◦

oriented plies than for 0◦ oriented ones. With a compression load applied in the X direction, and

with material properties 10 times better in X direction than in Y direction, the best results are

obtained when the load is aligned with the Y direction associated to the material reference frame.

Moreover, panels with cutouts seem to behave better than panels without cutouts under certain

ply orientation angles.

Keywords: Linear buckling, analytical solution, mechanical loading, angle ply orientation,
cutouts

1 Introduction

In all the studied papers buckling analysis is performed using prede�ned stacking sequences ([1]-
[5]). The in�uence of the angle of orientation of a single ply isn't studied independently. Using
this aspect as a start point, in this paper certain important behavior trends that can be detected
using a single layer composite panel, are discussed.

In the literature, there is a range of published studies on the buckling of composite plates
([7]-[13]). M. Aydin Komur, Faruk Sen, Ak�n Atac and Nurettin Arslan carried in [15] a buck-
ling analysis of laminated composite plates with an elliptical/circular cutout using FEM. They
conclude that the magnitudes of buckling loads are decreased by increasing thickness to length
ratio, whereas it is increased by increasing width to length ratio. This means that big elliptical
holes cause the weakest plates under the pressure. Secondly, the increasing of hole positioned
angle causes the decrease of buckling loads. Lastly, the cross-ply [(0◦, 90◦)2]s composite plates
is stronger than other analyzed angle-ply [(15◦/75◦)2]s, [(30

◦/60◦)2]s, [(45
◦/− 45◦)2]s laminated

plates.
Ghannadpour S.A.M., Naja� A. and Mohammadi B. discuss in [8] the buckling behavior of
cross-ply laminated composite plates due to circular/elliptical cutouts. They concluded that the
buckling load of the square plates containing a circular cutout reduces by the increment of cutout
diameter. Moreover, small cutouts can be neglected from modeling and can reduce the meshing
e�orts.
In this paper a simpli�ed analytical solution for solving buckling problems for particular laminate
con�guration and boundary conditions is proposed. By combining Euler's buckling theory with
structural equilibrium equations and mathematical formulation of the laminates, an interesting
novel solution is developed and compared with numerical results.

1



2 Simpli�ed analytical model for mechanical buckling of compos-

ite panels without cutouts

Let us begin the analysis with the �rst test case. A simple rectangular plate without cutouts,
under compression loading is considered at this �rst step of the analysis. A single layer graphite-
epoxy plate with the material properties given in �gure. 1 will be considered. The thickness of
the plate is taken to be equal to 1 mm. A simple mesh con�guration is chosen: 50 elements on
each dimension, therefore 2500 mesh elements.
As discussed previously, the eigenvalue buckling analysis using ANSYS allows us to get the
load factor, which multiplied with the applied load gives the critical buckling load factor. For
simplicity reason the applied compression force equals 1N/ mm2, therefore the load factor gives
the critical compression force.
The �rst purpose is to get the evolution of the buckling load for di�erent a

b ratios.

Properties Temperature (◦C)
20 200 260 600 3316

E1 (GPa) 141 141 141 141 141

E2 (GPa) 13.1 10.3 0.138 0.0069 0.0059

G12 (GPa) 9.31 7.45 0.069 0.0034 0.0034

µ12 0.28 0.28 0.28 0.28 0.28

α1(10
−6/◦C) 0.018 0.054 0.054 0.054 0.054

α2(10
−6/◦C) 21.8 37.8 37.8 37.8 37.8

Table 1: Lamina material mechanical properties (G12 = G13 = G23)

2.1 Euler Buckling theory

The formula given by Euler for columns with no consideration for lateral forces is given by:

F =
π2EI

(KL)2
(1)

where

• F = maximum or critical force (vertical load on column);

• E = Young's modulus;

• I = area moment of inertia;

• L = unsupported length of column;

• K = column e�ective length factor, whose value depends on the conditions of end support
of the column:
-For both ends pinned, K = 1;
-For both ends �xed , K = 0.5;
-For one end �xed and the other pinned, K = 0.7;
-For one end �xed and the other end free to move laterally, k = 2;
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2.2 Flexural rigidity

For laminate composite materials the reduced sti�ness matrix is expressed as a function of the
engineering constants by the relations:

Q =

 mEl mvyxEl 0
mvxyEt mEy 0

0 0 Es

 (2)

where:

m =
1

1− vxyvyx
vyx =

vxyEy

Ex
(3)

With respect to the kinematics of a Kirchho� plate, at laminate level one can write:

[
N
M

]
=

[
A B
B D

] [
ε0

κ

]
(4)

which gives the behavior of the laminate in the structural axes. Let us give a detailed form of
the previous matrix: N- inplane loading, M moment loading, A, B, D sti�ness matrix, ε0 in
plane strain and κ curvatures.

N1

N2

N6

M1

M2

M6

 =



A11 A12 A13 B11 B12 B13

A21 A22 A23 B21 B22 B23

A31 A32 A33 B31 B32 B33

B11 B12 B13 D11 D12 D13

B21 B22 B23 D21 D22 D23

B31 B32 B33 D31 D32 D33





ε01
ε02
ε03
κ1
κ2
κ3

 (5)

where all the plies have the same thickness h, and t gives the position of the ply:

Aij = h

n/2∑
t=1−n/2

[Qt
ij ](t− (t− 1)) (6)

Bij =
h2

2

n/2∑
t=1−n/2

[Qt
ij ](t

2 − (t− 1)2) (7)

Dij =
h3

3

n/2∑
t=1−n/2

[Qt
ij ](t

3 − (t− 1)3) (8)

For a symmetric stacking sequence Bij = 0. Therefore we get uncoupling between in and
out of plane e�ects, �exion and extension. For a balanced stacking sequence, meaning the same
proportion of −45◦ and +45◦ plies , we get in plane orthotropy, uncoupling between extension
and shear.
For a homogenized material, D16 and D26 we get uncoupling between shear and torsion.

For an isotropic and homogeneous beam, the �exural rigidity is merely EI, however, for a
beam made of composite material, the computation for the �exural rigidity is not so straightfor-
ward due to the various coupling terms.

The assumptions used in our approach consist of [7]:
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• The amount of de�ection of a point on the composite beam is only dependent on the
position of this point on the composite laminate in the x direction.

• In equation. 5, onlyN1 exists while N2 and N6 are taken to be zero.

• M2 and M6 in equation. 5 are negligible and therefore neglected.

With the above assumptions, from equation. 5, four expressions can be written:

N1 = A11ε
0
1 +A12ε

0
2 +A13ε

0
3 −B11

∂2w

∂2x
(9)

0 = A12ε
0
1 +A22ε

0
2 +A23ε

0
3 −B12

∂2w

∂2x
(10)

0 = A13ε
0
1 +A23ε

0
2 +A33ε

0
3 −B13

∂2w

∂2x
(11)

M1 = B11ε
0
1 +B12ε

0
2 +B13ε

0
3 −D11

∂2w

∂2x
(12)

(13)

Two of the equations are used to �nd ε02 and ε03 in terms of ε01 and ∂2w
∂2x

. The resultant
expressions turn out to be:

ε02 =
(A13A23 −A12A33)

(A22A33 −A2
23)

ε01 +
(A33B12 −A23B13)

(A22A33 −A2
23)

∂2w

∂2x
(14)

ε03 =
(A12A23 −A13A22)

(A22A33 −A2
23)

ε01 +
(A22B13 −A23B12)

(A22A33 −A2
23)

∂2w

∂2x
(15)

The stability equation of the beam is given by:

−d
2M

dx2
+N1

d2w

dx2
= 0 (16)

The remaining equations plus the above two are the utilized together with expression 16 to form
the resulting stability governing equation:

R
d4w

dx4
+N1

d2w

dx2
= 0 (17)

so the expression for the �exural sti�ness derived using this method turns out to be:

Fstiffness = R = D11 − βB12 − δB13 −
(B11 + αB12 + γB13)(B11 + βA12 + δA13)

(A11 + αA12 + γA13)
(18)

where, α,β, γ, δ are given by:

α =
(A13A23 −A12A33)

(A22A33 −A2
23)

(19)

β =
(A33B12 −A23B13)

(A22A33 −A2
23)

(20)

γ =
(A12A23 −A22A13)

(A22A33 −A2
23)

(21)

δ =
(A22B13 −A26B12)

(A22A33 −A2
23)

(22)

4



Going back to Euler buckling theory the only adjustment that has to be made is with respect
to the �exural sti�ness.
Therefore the formula becomes:

F =
π2Fstiffness

(KL)2
(23)
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Figure 1: Evolution of the critical buck-
ling load for di�erent a/b ratio, for a sin-
gle layer graphite-epoxy panel, 50 x 50 mesh,
1N/ mm2 load, h = 1 mm
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Figure 2: Analytical and eigenvalue compari-
son of the evolution of the critical buckling load
for di�erent stacking sequences, graphite-epoxy
panel, 50 x 50 mesh, 1N/ mm2 load, h = 1 mm

2.3 Comparison to numerical solution (ANSYS)

Going back to our test case, we can see in �gure. 1 the evolution of the buckling critical load
for di�erent a

b . As we could very well expect, given the formula used to calculate the critical
compression force, as the length of the plate increases the critical force decreases. However,
what stands out in this particular analysis is the very close results obtained for both types of
the analysis. The analytical method although much more simple than the eigenvalue analysis
performed using ANSYS gives perfectly matching results.

No. α1 α2 α3 α4

1 45 -45 45 -45

2 60 -60 60 -60

3 45 -60 45 -60

4 90 -60 90 -60

5 0 90 0 90

6 80 90 80 90

7 15 45 45 15

Table 2: Stacking sequences

Still, it's a very simple case of one single layer panel. In order to validate the simpli�ed
analytical approach we will make a comparison for an 8 plies, symmetrical staking sequence.
The following notation: [α1, α2, α3, α4]s is used, where α1 is the orientation angle of the top
layer. The total thickness of the laminate stays equal to 1 mm, so the ply thickness is equal to
0.125 mm. In table. 2 the di�erent stacking sequences that have been tested are presented. In
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�gure. 2 the values of the critical load found using the simpli�ed analytical approach and the
eigenvalue approach is noted.

The biggest di�erence between the two approaches is obtained for case no. 5, corresponding
the stacking sequence that exhibits the greatest di�erence between two consecutive angles, in this
particular case 90◦. Moreover, as the di�erence between the orientation of consecutive sequences
decreases so does the di�erence between the analytical and numerical obtained results.
This di�erences �nd their explanation in the assumptions accepted in order to obtain the simpli-
�ed analytical solution. Most of the coupling a�ects are not considered, and the sti�ness matrix
is highly simpli�ed. Some stacking sequence rules, like the maximum di�erence in orientation
between to plies, or the positively orientated plies and negatively orientated plies, in�uence the
values of the sti�ness coe�cients, and therefore the value of the analytical results.

Consequently, the best values, meaning the same results for both approaches, are obtained
when the coupling e�ects are small enough to be neglected.

3 Single layer with elliptical cutout panel. Angle ply orientation

optimization

Using the linear buckling frame the �rst goal is to �nd the optimal angle ply orientation of a
single layer panel with elliptical cutout.
The initial ellipse has a major diameter of 30 mm and a minor diameter of 15 mm . The para-
metric analysis reveals a rather interesting result. The critical buckling load is maximal when
the angle ply orientation equals 90◦. This is contrary to what we would have expected. As the
plate is loaded in compression and as the best properties are in the X direction, it is intuitively
to set a 0◦ angle ply orientation for best results.
In order to understand this result let us check a few more detailed aspects of the analysis.
A static prestress analysis allows us to get the stress intensity for the two cases, for a 0◦, respec-
tively 90◦ angle ply orientation. In �gure. 5 and �gure. 6 the results can be compared. Not only
that the stress intensity is lower for the 90◦ oriented ply, but the elliptical hole no longer acts as
a strain and stress concentrator.

Figure 3: Stress intensity, static prestress
analysis,single layer graphite-epoxy panel,
M1 mesh, 1N/ mm2 load, h = 1 mm, r1 =
30, r2 = 15, ellipse angle 0◦, angle ply0◦

Figure 4: Stress intensity, static prestress
analysis,single layer graphite-epoxy panel,
M1 mesh, 1N/ mm2 load, h = 1 mm, r1 =
30, r2 = 15, ellipse angle 0◦, angle ply90◦
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Note that M1 mesh means 50 elements for the length of the rectangular plate, 40 elements
for the width and 80 elements for the elliptical cutout.

Figure 5: Vectorial representation of principal
stresses, static prestress analysis,single layer
graphite-epoxy panel, M1 mesh, 1N/ mm2

load, h = 1 mm, r1 = 30, r2 = 15, ellipse
angle 0◦, angle ply0◦

Figure 6: Vectorial representation of principal
stresses, static prestress analysis,single layer
graphite-epoxy panel, M1 mesh, 1N/ mm2

load, h = 1 mm, r1 = 30, r2 = 15, ellipse
angle 0◦, angle ply90◦

The vector representation of the principal stresses emphasis the upper statement. The panel
is more stressed when the 0◦ orientation of the �ber is used. Moreover, it can be seen that for
the 90◦ oriented panel the stress has a continuous distribution, while for the 0◦ orientation the
hole acts as a stress concentrator. The distribution of the stress is di�erent for the two cases and
generates di�erent behaviors of the plate. We could say that for the 90◦ orientation the useful
section of the plate is much higher than for the 0◦ one. Moreover the �bers act as sti�eners in
this case. If for the 0◦ ply the �bers are subject to buckling, for the 90◦ the �bers become subject
to bending, but it still can get the bene�ts of the matrix properties.

Figure 7: Stress intensity, eigenvalue analy-
sis,mode1, single layer graphite-epoxy panel,
M1 mesh, 1N/ mm2 load, h = 1 mm, r1 =
30 mm, r2 = 15 mm, ellipse angle 0◦, angle
ply 0◦

Figure 8: Elastic strain intensity, eigenvalue
analysis,mode 1, single layer graphite-epoxy
panel, M1 mesh, 1N/ mm2 load, h = 1 mm,
r1 = 30 mm, r2 = 15 mm, ellipse angle 0◦,
angle ply 0◦

In �gures. 7,8,9, 10, we can see the stress intensity for the �rst buckling modes for 0◦, respec-
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Figure 9: Stress intensity, eigenvalue analysis,
single layer graphite-epoxy panel, M1 mesh,
1N/ mm2 load, h = 1 mm, r1 = 30 mm,
r2 = 15 mm, ellipse angle 0◦, angle ply90◦

Figure 10: Elastic strain intensity, eigenvalue
analysis,mode 1, single layer graphite-epoxy
panel, M1 mesh, 1N/ mm2 load, h = 1 mm,
r1 = 30 mm, r2 = 15 mm, ellipse angle 0◦,
angle ply90◦

tively 90◦ orientation of the �bers. The same boundary conditions and numerical parameters
were used for the eigenvalue buckling analysis. As we can see that the buckling shape changes
between the 2 cases. For the 0◦ angle ply orientation the buckling load is equal to 2.39N/ mm2,
while for the 90◦ the critical load is 3.39N/ mm2. This means that an improvement of 1N/ mm2

is achieved just by changing the orientation of the �bers.
Because this novel result is against any intuition, a nonlinear analysis was performed. The

result can be seen in �gure. 11.
The nonlinear analysis proves the validity of the results given by the linear analysis. It is also
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Figure 11: Nonlinear analysis,single layer
graphite-epoxy panel, 40, 20, 10 mesh,
1N/ mm2 load, h = 1 mm, 0◦ ellipse angle

Figure 12: Critical buckling load for panels at
0◦ and 90◦ orientation of �ber, with and with-
out a hole

very interesting to compare the critical buckling load for a panel with and without the elliptical
hole. We can see in �gure. 12 the values obtained for the two cases of interests, the panel with 0◦

orientation of the �bers, 90◦ orientation of the �bers respectively. While for 0◦ the introduction
of the ellipse makes the critical load to drop from11.68N/ mm2 to 2.39N/ mm2, for the 90◦ the
buckling load increases from 1.08N/ mm2 to 3.39N/ mm2. If in the �rst case the change seems
intuitive, the structure becoming less sti� if a cutout is introduced, quite the opposite happens
for the second case.
A possible explication could be related to the radius of gyration of the plate. As the elliptical
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hole is introduced the 0◦ panel acts as if the e�ective length of the panel increases. On the other
hand for the 90◦ the panel gives the same buckling load as a panel with a considerably reduced
length. The e�ective length for a panel subject to buckling is given by his geometrical length
divided by the radius of gyration:

Leff =
L

λ
(24)

λ =

√
Ix
A

(25)

where Ix is the plane moment of inertia and A is the area of the plate.
Although this formula seems quite simple, it appears that for a composite panel with an

elliptical hole things are more complicated. We therefore think that the e�ective length is a
function of angle ply orientation, dimensions and orientation of the ellipse, length and width of
the plate.

Leff = f(r1, r2, a, b, angleply, angleellipse) (26)
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Figure 13: Parametrization study of ,sin-
gle layer graphite-epoxy panel, M1 mesh,
1N/ mm2 load, h = 1 mm, 0◦ ellipse angle,
eigenvalue analysis
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Figure 14: Parametrization study of ,sin-
gle layer graphite-epoxy panel, M1 mesh,
1N/ mm2 load, h = 1 mm, 0◦ ellipse angle,
eigenvalue analysis, radius- angle view

The next interest is to see how the critical buckling load evolves when the shape dimensions
change. The minor diameters is a function of the major diameter,r1 = 0.5r2. A 2 variable
parametrization was performed using BOSS-Quattro. The �rst variable is the �ber orientation
and the second variable is the the major diameter of the ellipse, r2. The results can be seen in
�gure. 13 and �gure. 14. It is obvious that the best results are obtained for 5 mm diameter and
40◦ angle. Very close results are obtained for 40 mm diameter and 90◦ angle. It clear that as
the ellipse's dimension decrease the value of the �ber orientation tends to 0◦ which is actually
the optimal �ber orientation for a panel without cutout. This trend can be seen in �gure. 15.
On the other hand as the ellipse's dimensions decrease, the hole becomes over meshed, meaning
that the mesh becomes problematic, leading to an inaccurate approximation of the stress state
(over-approximation), and therefore to an under approximation of the buckling load. When the
hole becomes very small, smaller then the average value of a mesh element, a singularity has
to be considered, but due to over-meshing the analysis exhibits an orientation angle of the ply
di�erent from 0 as it can be seen in �gure. 15 for r1 = 0.5mm. In this particular case we could
assume that the the elliptical hole is small enough to be neglected, or considered to be just as
an imperfection. It could slightly in�uence the value of the buckling load, but no remarkable
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in�uence would appear with respect to the angle of orientation of the �bers.

Consequently there are cases when the introduction of a hole improves the performances of
a composite panel.
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Figure 15: Evolution of the optimal angle with respect to the ellipses major diameter

4 Conclusions

Several important results were obtained in this work.
A simpli�ed analytical solution suitable for simple stacking sequences was developed using the
Euler buckling theory, structure's equations of equilibrium and laminate panel mathematical
formulation. Comparing these results with results obtained performing a numerical analysis
reveals the accuracy of the method and even more, allows us to validate the numerical analysis.
Therefore, this part of the work exhibits two important results: a simpli�ed analytical solution
for the buckling problem and validation of the numerical results.

Another important �nding is related to the in�uence of the angle ply orientation and of
cutouts, on the buckling load. Under symmetrical boundary conditions and loading case, rectan-
gular panels with elliptical cutouts, give better results for 90◦ oriented plies than for 0◦ oriented
ones. This is a very important results because it means that the use of the composite laminate
could be reconsidered. With a compression load applied in the X direction, and with material
properties 10 times better in X direction than in Y direction, the best results are obtained when
the load is aligned with the Y direction associated to the material reference frame. Moreover,
panels with cutouts seem to behave better than panels without cutouts under certain ply orien-
tation angles.
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