RECENT CHANGES OF CH₄ SINCE 2005 from FTIR observations and GEOS-CHEM simulation

Methane changes

- Second anthropogenic greenhouse gas GWP₁₀₀ = 28 (IPCC-AR5)
- 1824 ppb : new high of +260% wrt pre-industrial levels (1750)
- ~1/5 of the increase in radiative forcing by human-linked greenhouse gases since 1750 is due to methane [Nisbet et al., 2014]
- Non monotonic behaviour
- Last 25 years...
 - Increase in the 90s
 - 2000-2005/2006 : stable
 - The need "For a proper closure of the methane budget and the development of realistic future climate scenarios, methane emissions during this stabilization period should be understood and precisely quantified" Pison et al., 2013

From 2005/2006 : new increase \rightarrow Why ?

The need "For a proper closure of the methane budget and the development of realistic future climate scenarios methane emissions during this stabilization period should be understood and precisely quantified" Pison et al., 2013

From 2005/2006 : new increase \rightarrow Why ? \rightarrow Source attribution ?

NDACC Sites

^I Eureka (80 °N, 86 °W)
 ² Jungfraujoch (46 °N, 8 °E)
 ³ Toronto (44 °N, 79 °W)

⁴ Tsukuba (36 °N, 140 °E)
⁵ Lauder (45 °S, 169 °E)
⁶ Arrival Heights (77 °S, 166 °E)

FTIR Observations - Total Columns

Daily Mean Methane Total Columns in molecules/cm²

CH₄ global increase from WMO/GAW global greenhouse gas monitoring network : 0.33% **Source attribution ?**

GEOS-CHEM tagged simulation

- ✓ GEOS-CHEM MODEL ∨9-02
- Chemical Transport Model
- 2X2.5 & 47 vertical levels
- ✓ Time step : 3 hours
- ✓ GEOS5 (2005-2013/05)
- ✓ GFED3
- ✓ OH_v5-07-08
- EDGAR v4.2 (2004-2008)
- ✓ K.Wecht et al., 2014

 Each tracer represents the contribution of each source to the simulated total column of methane

Tracers I - Total 2- Gas and oil 3- Coal 4- Livestock 5-Waste management 6- Biofuels 7- Rice cultures 8- Biomass burning 9-Wetlands 10- Other natural II- Other anthropogenic 12-Soil absorption

GEOS-CHEM Data Processing

- Nearest-neighbour interpolation to match ground-based instrument coordinates
- Conservative regridding scheme to the grid used in the FTIR retrieval
 Specific to each station
 - Smoothing of GEOS-CHEM data by the respective averaging kernels
- Changes calculation with a bootstrap resampling method
 - Linear fit + Fourier series (Gardiner et al., 2008)
 - Mean annual change (in %/year)

Comparison only for days when observation is available

FTIR Observations vs GEOS-CHEM Total Column

FTIR Observations vs. GEOS-CHEM Simulation Total Columns

Daily Mean Methane Total Columns in molecules/cm² Mean CH4 changes in %/year 4.4e+19 2.6e+19 Jungfraujoch (+ 0.18 ± 0.04) & GC (+ 0.27 ± 0.03 Eureka (+0.32 ± 0.10) & GC (+0.36 ± 0.06) 4.0e+19 2.5e+19 3.6e+19 2.4e+19 3.2e+19 2.3e+19 2.8e+19 2.2e+19 2005 2006 2007 2008 2009 2010 2011 2012 2013 2005 2006 2010 2011 2012 2013 2007 2008 2009 4.8e+19 Tsukuba $(+0.36 \pm 0.04)$ & GC $(+0.36 \pm 0.03)$ 4.2e+19 Toronto (+0.34 ± 0.09) & GC (+0.34 ± 0.03) 4.4e+19 4.0e+19 4.0e+19 3.8e+19 3.6e+19 3.6e+19 3.2e+19 3.4e+19 2005 2006 2007 2009 2010 2011 2012 2013 2005 2007 2008 2010 2011 2012 2013 2008 2006 2009

GEOS-CHEM known issues

EDGAR emission inventory

Spatial patterns

Increase in Chinese CH₄ emissions from coal after 2002 not supported by surface aircraft or satellite observations

Best inventory available

Simplistic stratosphere (first order-loss)

Best version available so far

How good is the GEOS-CHEM simulation vertically ?

FTIR Observations Information Content

DOFS = \sim 2.2 - Information content allows us to retrieve two partial columns

FTIR Observations vs GEOS-CHEM Stratospheric Column

Eureka

Toronto

Jungfraujoch

FTIR vs GEOS-CHEM Stratospheric Methane Mean Annual Changes in %

FTIR Observations, ACE-FTS occultations and the GEOS-CHEM simulation are statistically in agreement

Tsukuba

Lauder

Arrival Heights

FTIR vs GEOS-CHEM Stratospheric Methane Mean Annual Changes in % TSU - GC and FTS are not in agreement LAU - GC overestimates measurements AHTS - ACE 10° band + polar vortex

FTIR Observations vs GEOS-CHEM Tropospheric Column

FTIR Observations vs GEOS-CHEM Simulation Tropospheric methane

GEOS-CHEM tends to overestimate the tropospheric change but agrees within error bars for Eureka, Toronto and Lauder

Jungfraujoch : high altitude site (3.58 km) problem with vertial gradient of GC CH_4 Arrival heights : Polar Vortex issue ?

CH₄ changes - summary

 CH_4 total column changes are in the same order of magnitude than the tropospheric one as observed by FTS and simulated by GEOS-CHEM whereas stratospheric CH_4 show different type of regime from one station to another.

What does the taggued simulation tell us about the methane changes ?

W. Bader - Recent changes of CH₄ after 2005 from FTIR observations and GEOS-CHEM simulation

W. Bader - Recent changes of CH₄ after 2005 from FTIR observations and GEOS-CHEM simulation

GEOS-CHEM - Tracer Analysis Tropospheric CH₄ - Tsukuba

GEOS-CHEM - Tracer Analysis Tropospheric CH₄ - Lauder

Ranking of CH₄ tracers contribution to the increase (from largest to smallest contribution)

	Eureka	Jungfraujoch	Toronto	Tsukuba	Lauder	Arrival Heights
Ι	Coal Mining	Coal Mining	Coal Mining	Coal Mining	Wetlands	Wetlands
2	Wetlands	Gas and oil	Wetlands	Gas and oil	Coal Mining	Livestock
3	Gas and oil	Rice	Gas and oil	Rice	Livestock	Coal Mining
4	Livestock	Wetlands	Livestock	Livestock	Gas and oil	Gas and oil
5	Rice	Livestock	Rice	Waste	Waste	Waste
6	Waste	Waste	Waste	Other Anthr.	Rice	Rice
7	Biofuels	Other Anthr.	Biofuels	Wetlands	Biofuels	Biofuels
8	Other Anthr.	Biofuels	Other Anthr.	Biofuels	Other Anthr.	Other Anthr.
9	Other Nat.					
10	Biomass Burning					

Conclusions & next steps...

- Comparisons between FTIR observations and GEOS-CHEM simulation shows a good agreement in terms of changes in CH₄ total column
- Vertical differences of CH₄ changes between FTIR observations and GEOS-CHEM simulation have been characterised
 - Stratospheric comparisons supported by ACE-FTS occultations
 - Tropospheric changes \approx Total columns changes
- Preliminary tracer analysis shows a major contribution to the increase from coal mining and gas and oil exploitations
- Build CH₄ a priori profiles for each tracer in order to smooth the tagged simulation
- Site by site analysis of each tracer behaviour since 2005 and their contribution to the changes of methane

Acknowledgments

Thank you to all collaborators involved for their contribution !

PRODEX & SSD (Belspo) GAW-CH program FRS-FNRS & Fédération Wallonie Bruxelles International foundation high altitude research stations Jungfraujoch and Gornergrat (HFSJG, bern)

