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Abstract we present a study of the terrestrial hydroxyl nightglow emissions observed with the Visible and
Infrared Thermal Imaging Spectrometer on board the Rosetta mission. During these observations, the OH
Av=1 and 2 sequences were measured simultaneously. This allowed investigating the relative population of
the v=1 to 9 vibrational levels by using both sequences. In particular, the relative population of the vibrational
level v=1 is determined for the first time from observations. The vibrational population decreases with
increasing vibrational quantum number. A good agreement is found with a recent model calculation assuming
multiquantum relaxation for OH(v) quenching by O, and single-quantum relaxation for OH(v) by N,.

1. Introduction

The Meinel bands of hydroxyl are a good proxy to investigate atmospheric properties on the terrestrial planets.
These emissions have been extensively used to study the photochemical and dynamical properties of the
Earth’s upper mesosphere. Vibrationally excited OH is produced through the Bates-Nicolet mechanism
following the chemical reaction [Bates and Nicolet, 1950]:

H+ 0;—»O0Hx* (v<9) 4+ 0, M

which is effective in the Earth, Mars, and Venus atmospheres. The reaction involving HO, short-lived molecules
O + HO;—OH* (v<6) + O, 2

was found to be negligible for the excitation of the Earth’s OH Meinel bands with v up to 6 [Meriwether, 1989],
although its role is still debated, as discussed in Xu et al. [2012].

On Earth, the OH airglow layer is located near the mesopause [Lowe et al., 1996; She and Lowe, 1998], with a
maximum at 87 km and a full width at half maximum (FWHM) of about 8 km [Baker and Stair, 1988].

Several studies based on ground- and space-based observations demonstrated that the OH Meinel emission
profile is strongly sensitive to the atmospheric temperature and density profiles. Dynamic structures, like
tides [Xu et al, 2010; Zhang et al,, 1998; Shepherd et al, 1998; Ward, 1999; Zhang and Shepherd, 1999;
Russell et al.,, 2005; Liu et al., 2008] or planetary waves [Snively et al., 2010; Gao et al.,, 2010], are found to
affect the peak altitude by modulating the OH emission profile. Quenching by atomic oxygen also
contributes to the vertical shift observed in the peak altitudes from different Meinel bands [von Savigny
and Lednyts'kyy, 2013]. Temperature inversions and minor species mixing effects are also responsible for
changes in the OH airglow vertical profile [Melo et al., 1999; von Savigny et al., 2012]. Moreover, it has been
observed that the emission originating from higher vibrational levels typically occurs at higher altitudes
[von Savigny et al., 2012]. Spectroscopy of the OH airglow has also been used to infer the mesospheric
temperature at the airglow altitudes [Zhao et al., 2005; She and Lowe, 1998].

Here we present an analysis of the OH(Av=1, 2) sequences in the Earth’s atmosphere, observed with the
Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) on board the Rosetta spacecraft, during the
Earth flyby in November 2009, in order to obtain the population distribution of the vibrational levels.

The observing geometry has limited the lowest accessible altitude to 87 km, with a vertical resolution on the
order of 10 km/pixel at best. Hence, we limit our investigation to the altitude range 87-105 km, without
exploring the vertical dependence of the emission. Moreover, the spectral resolution is not adequate to
resolve single rovibrational transitions, and the vibrational manifolds are only partly resolved. For this
reason, we assume that a Gaussian shape reproduces the emission layer.
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Our analysis will be compared with previous ground-based and space observations and with model
calculations. The method we employ in this analysis offers the advantage of being less sensitive to
spurious signals and instrumental artifacts because it uses the Av=1 and Av=2 spectra which were
simultaneously observed. In addition, spectra observed from space are not affected by telluric absorptions;
hence, the full OH(Av=1, 2) sequences of emissions can be retrieved without correction for
atmospheric extinction.

In section 2 the analysis of the VIRTIS/Rosetta spectral data is described, focusing on the terrestrial OH
nightglow emission in the infrared. An empirical radiative model of the spectral range where OH(Av=1, 2)
emissions occur is described in section 3 with the aim to allow a retrieval of the vibrational populations. In
section 4, we discuss the results and compare them with analyses of experimental ground-based observations
and theoretical works.

2. Data Selection

Rosetta is the first large-class European mission devoted to the close investigation of small bodies in the Solar
System [Schulz, 2009]. It was launched on 2 March 2004 toward the primary target of the mission, comet
67P/Churyumov-Gerasimenko (67P/C-G). The main scientific objectives of the Rosetta mission dealt with
the study of the comet 67P/C-G, with special emphasis on its nucleus and coma. Gravity assist maneuvers
with the Earth and Mars [Coradini et al., 2010; Migliorini et al., 2013] were performed during the 10year
long cruise phase, as well as flybys with the main belt asteroids (2867) Steins [Tosi et al., 2010; Leyrat et al.,
2011] and (21) Lutetia [Coradini et al., 2011]. The investigation of the planetary airglow emissions is one of
the goals foreseen for the mission during the Earth and Mars flybys.

The VIRTIS instrument [Coradini et al, 2007] includes two spectral channels: (1) the VIRTIS-M mapping
spectrometer, with imaging capabilities and a medium spectral resolution and (2) the VIRTIS-H echelle
spectrometer, with a higher spectral resolution compared to VIRTIS-M but without imaging capabilities.
VIRTIS-M covers the 0.3-5.1 um range in 864 spectral bands by means of two coaligned channels: the
visible/near-infrared channel, operating from 0.3 to 1.0 um with a spectral sampling of 2nm; and the IR
channel, from 1.0 to 5.1 um with a spectral sampling of 9.5 nm; the spectral resolution is of the order of
3nm and 20 nm in the visible and infrared, respectively. Each data cube in the visible and/or infrared has a
dimension of 432 x N x N, where 432 is the number of spectral channels, N, (number of lines) depends on
the length of the observation, while Ng (number of samples) is the number of spatial pixels composing a
line, usually equal to 256. The field of view of each square-shaped pixel is 0.25 mrad wide; hence, a 256
pixel X 256 pixel image, obtained by using a scanning mirror, covers a 64 mrad x 64 mrad field (which
corresponds to 220arc min x220arc min). The full field of view (FOV) is acquired in time by repeating
successive acquisitions, while the internal steerable mirror performs a scan or maintaining it at fixed
position while the spacecraft is drifting (pushbroom mode). The Earth data discussed here were acquired
in the scan mode, allowing one to acquire a sequence of limbs consecutively.

The two VIRTIS-M focal planes are equipped with order-sorting filters to reduce contaminations due to higher
spectral orders coming from the diffraction gratings. The two filters placed on the visible channel’s detector
have a junction placed at 0.640-0.651 um; the five on the infrared channel detector have four junctions
corresponding to 1.415-1.576 um, 2.388-2.548 um, 3.671-3.765um, and 4.284-4.397 um wavelength
[Coradini et al., 2007]. In general, the spectral radiance measured through the junctions has been corrected
by the calibration pipeline. However, despite this correction some residual signals remain present on the
first two junctions of the IR channel.

Since VIRTIS-M spectral range extends up to 5.1 um, thermal environment plays a major role in the
instrumental performance. During the flyby, the VIRTIS radiator FOV was partially filled with the Earth,
resulting in an optical bench temperature of about 147K, significantly larger than the typical operative
temperature of 135K. This excess in temperature results in a wavelength shift of ~11 nm in the spectral
calibration [Migliorini et al., 2013], which was corrected in the calibration pipeline [Filacchione et al., 2006].

In this paper we focus our analysis on data acquired in the IR spectral range, during the Earth gravity assist
that occurred in November 2009. Prior to this flyby, two more gravity assists with our planet had been
performed by Rosetta on 4 March 2005 and between 13 and 14 November 2007. They will not be discussed
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Figure 1. VIRTIS mean nightglow spectral radiance, in the altitude range . .
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minimize possible time variability of the emissions.

The VIRTIS airglow data (image name 11_00216713355) consist of a collection of two limb scans in the same
image, acquired a few minutes apart. The total duration of the IR channel scan is 12 min, corresponding to a
sequence of 73 lines with an integration time of 7 s each. The two limbs cover the latitude region from 38° to
47° in the Northern Hemisphere and are centered at 1:30-2:00 A.M. solar local time. A more detailed
description of the Earth’s observations with VIRTIS was given in Migliorini et al. [2013] and Hurley et al. [2014].

In order to remove high-frequency spatial noise, the cube image was cleaned using a median filter combined
with a smoothing procedure, applied in the spatial direction while the temporal and spectral dimensions
were kept unchanged.

Since it was verified that the emission is roughly located at about 90 km, we averaged a total of 300 radiance
spectra collected between 87 and 105 km in order to increase the signal-to-noise ratio. The analysis was
applied to the two VIRTIS observations separately, because the contribution of the background is different
from one scan to the other. The radiance was converted into Rayleigh (R) units, where 1R=10° photons/
cm?s™" in 4x steradians. The resulting spectrum is shown in Figure 1 for one of the two limb scans.

In the mean spectrum, the O, emission centered at 1.27 um is clearly observed, as well as the Av=20OH
Meinel bands in the 1.4-2.4 um region, and Av=1band in the 2.7-3.3 um region, as indicated in Figure 1.
The spectral region beyond 3.5 um is dominated by the thermal emission and will not be discussed here.

Due to the limited spectral and spatial resolution, the variation of the peak emission’s altitude occurring for
the different transitions as studied by several authors [Kaufmann et al., 2008; McDade, 1991; von Savigny et al.,
2012; von Savigny and Lednyts'kyy, 2013] cannot be verified in VIRTIS data set.

3. Spectral Model

We use the PGOPHER code (http://pgopher.chm.bris.ac.uk) to generate the line intensities of the rotational
transitions for each vibrational band. The population distribution of the rotational levels is assumed to be
Maxwellian. A rotational temperature of 200K has been used in order to calculate a synthetic spectrum
of the OH(Av=1 and 2) emissions. This temperature is close to the average value at the mesopause
[Xu et al., 2012]. The variation of the rotational temperature with the vibrational levels has been discussed
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Figure 2. (a) Comparison between the VIRTIS spectrum (in black) and the spectral model (in red) for the first limb scan. The
radiance outside the wavelengths regions covered by the OH emissions is set to 0, to limit the fit to the spectral region
involving OH emissions. The residuals are shown in Figure 2a (bottom). (b) The same for the second limb scan.

in Cosby and Slanger [2007] and Noll et al. [2014]. The difference between the rotational temperature in the v=1
manifold with respect to the v=10 manifold may be as large as 20 K. We simulated the rotational manifold
for three different temperatures (200K, 250 K, and 300 K) and compared the simulations, convolved to the
VIRTIS spectral resolution of 20 nm, with the observed spectra. It appeared that a rotational temperature of
200K produced the best agreement. We note, however, that a rotational temperature difference of the
order of 15-20K only affects the structure inside each band, whose effect is negligible at the VIRTIS
resolution. The emission spectra of the OH Meinel bands can thus be simulated by multiplying the
calculated rotational manifolds for all vibrational quantum numbers (v=1-9) with the (unknown)
populations of the upper levels and the relative Einstein coefficients for each vibrational transition. The
Einstein coefficients were taken from Xu et al. [2012], calculated for a temperature of 200 K. The variation
of the Einstein coefficients with temperature is very small [see, e.g., Xu et al, 2012], and thus, our
simulation is largely independent of the rotational temperature assumed. We then performed a least
squares fit, which yielded the relative populations of the vibrational levels (v=1 to 9), taking into account
both Av=1 and Av=2 bands. Figures 2a and 2b shows the comparison between the VIRTIS spectra and
the corresponding best fit for the available data.

Similarly, a fit is obtained for the second VIRTIS spectrum, acquired within a few minutes from the first one.
Both fits are in good agreement and provide consistent results for the populations of levels from v=1to 9,
except for the region between 1.4 and 1.5 um, where a VIRTIS order-sorting filter junction is located. The
model overestimates the intensity of the (2-0) transition at 1.46 um in both spectra. The same discrepancy
was observed by comparing the Thermosphere, lonosphere, Mesosphere, Energetics, and Dynamics
(TIMED)/Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) observations with
models, as reported by Xu et al. [2012]. The TIMED/SABER observations had been corrected for the
atmospheric attenuation, mostly due by water vapor. The good agreement between the fit and VIRTIS
observations of the (2-1) transition (around 2.82 um) seems to exclude a specific quenching of the v=2
level. A possible explanation for this effect may be an error in the Einstein coefficient.

The average values of each population obtained for the two fits are provided in Table 1. To calculate the error
in the vibrational populations, a set of 40 spectra was statistically generated by adding a random error to the
original spectra. Each spectrum so obtained was fitted in the same way as the VIRTIS spectra, and the
standard deviation of the results was taken as errors in the determination of the vibrational population.
Values of the percentage into each v level for the two spectra, together with the calculated statistical error,
are shown in Table 1.

4, Discussion

The terrestrial nightglow emissions at the midlatitudes of the Northern Hemisphere have been investigated
by using VIRTIS observations during a Rosetta Earth flyby. During the season (November) of these
observations, the OH nightglow is quite intense at the altitudes, local time, and latitudes observed by
VIRTIS, as reported also by the Wind Imaging Interferometer [Liu et al., 2008].
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Table 1. The Fitted OH Vibrational Population From the Two The vibrationally excited hydroxyl radi-
VIRTIS Spectra®

Level Population—First Fit Error Population—Second Fit  Error

cal can decay through spontaneous
emission of a photon, giving rise to the

1 37.8 1.0 37.58 1.03 observed emission, or can be quenched
2 21.02 1.15 2033 1.19 through collisions with other ambient
3 17.95 08 18.36 0.83 molecules (N, and O,) or atoms (O).
4 727 046 740 048 The quenching process can occur step-
5 488 030 492 031 1€ quenching proce =P
6 3.59 0.26 3.66 027 wise involving transitions from a specific
7 291 0.21 2.99 0.22 vibrational level to a lower vibrational
8 277 0.20 2.84 0.20 level, or all at once to the vibrational
9 1.83 0.24 1.91 0.25

ground level. This so-called sudden
¥The population values are given in terms of percentage, together death mechanism, which can occur by
with the associated absolute errors (in percentages). vibrational quenching or by chemical
reaction, results in a smaller population
of the low vibrational levels. While the radiative processes merely depend on the Einstein coefficients, which
are rather independent of temperature, the quenching processes depend on the reaction rates, which may
have a strong temperature dependence and on the availability of quenchers. This implies that the vibrational
population of the OH radical also may depend on the time and latitude of the observation.

We compare our results with ground-based measurements reported in Krassovsky et al. [1962], Ferguson and
Parkinson [1963], Harrison and Kendall [1973], Turnbull and Lowe [1983], and Oliva and Origlia [1992].

The heterogeneity of the previous measurements reported in the literature limits the comparison to a few
vibrational levels, which are present in all the considered data sets. For this reason, the comparison is
made by normalizing all relative populations to that of the v=4 level, which has been reported by all
authors. In the considered previous works [Krassovsky et al., 1962; Ferguson and Parkinson, 1963; Harrison
and Kendall, 1973; Turnbull and Lowe, 1983], authors provided values directly comparable with the
vibrational populations retrieved on VIRTIS data. Oliva and Origlia [1992], on the other hand, provided a list
of resolved rotational lines of hydroxyl, from which we derived the vibrational populations, by summing
the identified lines for each level. As stated also by the authors, the band list is sometimes incomplete or
limited by experimental issues, such as the atmospheric attenuation, so that the calculated populations
have to be considered as lower limits.

VIRTIS data were also compared with model calculations by Llewellyn et al. [1978], von Clarmann et al. [2010],
and Xu et al. [2012]. The model proposed by von Clarmann et al.[2010] produces excited OH in all vibrational
levels (v=1-10), by the hydrogen-ozone reaction. They used the Generic RAdiative traNsfer AnD non-LTE
population Algorithm model [Funke et al., 2012] to calculate the relative OH populations for vibrational
levels 0 to 9, for six different atmospheric conditions, assuming a stepwise quenching by O,, N,, and O.
The model case describing a “midlatitudes night” atmosphere is the only one close to the observing
conditions of the VIRTIS data discussed here. Hence, in Table 2 we report von Clarmann’s results only for
this model conditions. Note that the rate coefficients for OH production and for the quenching processes
were much different from those used by Llewellyn et al. [1978]. Xu et al. [2012] compared the TIMED/SABER
observations at 1.6 and 2.0 um, including four OH transitions of the Av=2 sequence, with a nightglow
emission model. They concluded that reaction (a) is the dominant source for the OH nightglow emission
for the vibrational levels with v>4. The assumption of multiquantum relaxation by O, and single-quantum
relaxation by N, produced the best agreement with the SABER data, while the sudden death model could
not reproduce the observations.

Except for our high v=3 population, all the relative populations from Krassovsky et al. [1962]; Harrison and
Kendall [1973], and Ferguson and Parkinson [1963] are in reasonable agreement with those derived here.
We examined the possibility that the order-sorting filter at 1.415-1.576 um could cause some residual
instrumental effect [see, e.g., Tosi et al.,, 2012], but repeating the fits without this spectral interval did not
produce appreciable changes in the results.

The studies of Krassovsky et al. [1962] and Harrison and Kendall [1973] were based on observations of the
Av=3,4,5,6and the Av=2, 3, 4, 5 sequences, but no information about the v=1 level could be obtained.
Our analysis yields a population for the v=1 level which is about 5 times higher than the v=4 level. None

MIGLIORINI ET AL.

TERRESTRIAL OH MEASUREMENTS WITH ROSETTA 5



@AG U Geophysical Research Letters 10.1002/2015GL064485

Table 2. Comparison of Relative Vibrational Populations With Previous Studies®

Krassovsky Ferguson and Harrison and Turnbull and Oliva and Llewellyn von Clarmann  Xu et al.
Thiswork  etal.[19621°  Parkinson [19631°  Kendall [19731°  Lowe [19831°  Origlia [1992]° et al.[19781°  etal [20101°  [2012]
38-47°N 55-62°N 55-62°N 56°N 43°N 29°S 45°N Midlatitudes 30-50°N
Level Nov 2009 1957-1958 1957-1958 Dec 1971 Apr 1980 Apr 1991
1 5105 4.16 3.27 4.47
2 2.8+0.36 2.83 0.47 224 1.85 241
3 247 +0.29 1.73 1.96 1.27 1.76 144 143 1.31 1.50
4 1.00+0.14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5 0.67 £0.09 0.67 0.80 0.57 0.77 0.78 0.77 0.68
6 0.49 +0.07 0.40 047 0.44 0.25 0.26 0.60 0.59 0.47
7 0.40 = 0.06 0.29 0.38 0.27 0.17 0.01 0.52 0.49 0.35
8 0.38 £ 0.05 0.23 0.24 0.29 0.16 0.26 0.52 0.33 0.30
9 0.25+0.05 0.18 0.22 0.17 0.16 0.22 0.51 0.19 0.22

a . . . .
Values are normalized at v =4, for which all considered works provide values.
Ground-based observations.

C a
Numerical model.

of the previous analyses of experimental observations allowed the determination of the population of the
v=1 level, while only two of them report the population of v=_2. Of these two, the value of Turnbull and
Lowe [1983] is very similar to ours, while those reported by Oliva and Origlia [1992] seem unrealistic. The
population of v=1 level has been calculated by using different model simulations. Llewellyn et al. [1978]
calculated a ratio of 4.16 for the v=1 population relative to the v=4 population, while Xu et al. [2012]
reported a ratio of 4.47, which is in reasonable agreement with the one obtained from the VIRTIS data.
The value by von Clarmann et al. [2010] is significantly lower (3.27). The populations of levels 1 to 3 are
underestimated in von Clarmann et al. [2010], while those with v > 4 are higher than the populations derived
from the VIRTIS/Rosetta data. These discrepancies and the difference with the populations calculated by Xu
et al. [2012] possibly stem from the use of a single-quantum relaxation in collisions with O by von Clarmann
et al., whereas other models assume sudden death chemical loss, where the excited OH molecule is directly
deactivated to the v=0 ground level. Another difference lies in the treatment of collisions with O, as von
Clarmann et al. assume single-quantum relaxation, while Xu et al. adopt a multiquantum scheme.

Bunn and Gush [1972] also measured the Av=1, 2 sequences using balloon-borne instruments. They found
relative populations to be P(v=1)/P(v=2)=2.26 and P(v=2)/P(v=3)=1.76. Our study suggests ratios of 1.82
(16) and 1.13(12), respectively. The populations calculated from the intensities of sky emissions taken from Oliva
and Origlia [1992] do not follow the trend of decreasing populations with increasing levels. It appears that their
v=2 and v=7 populations are largely underestimated. In fact, these authors mention that some of the band
intensities could be underestimated by large factors as they lie in regions of low atmospheric transmission.

Observations with the same VIRTIS instrument on the European Venus Express mission allowed discovering
the OH infrared night airglow on the Venus nightside in 2007 [Piccioni et al., 2008]. The OH airglow spectra on
the two planets show some differences in the intensity distribution of the different bands. For example, the
relative intensities of the Av =1 bands originating from v' > 2 levels are higher in the terrestrial spectrum than
in the Venus case. This difference is presumably linked to the much larger abundance of CO, in the Venus
atmosphere. On Venus (and presumably on Mars), CO, is the dominant quencher, while O, and O play the
major role on Earth to deactivate vibrationally excited OH. Soret et al. [2012] demonstrated that for Venus,
compared with these terrestrial results, the paradigm of single vibrational quantum collision deactivation
by CO, provides a much better agreement with both the spectral structure and the observed total
brightness than the “sudden death” model.

5. Conclusions

For the first time, the data analyzed in this study allow investigating the OH infrared nightglow emission from
space and the vibrational population down to v=1. The Av=1 and Av=2 sequences have been observed
simultaneously. We remind, however, that VIRTIS spatial and spectral resolution does not allow a complete
retrieval of the vertical profile of each single transition and hence our measurements are limited. No
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correction for the telluric absorption is needed, and the populations deduced for the 1 to 9 vibrational levels
might thus be considered as quite reliable.

The results of our analysis have been compared with ground-based observations and theoretical models. A
rather good agreement is found with the model proposed by Xu et al. [2012], which assumed multiquantum
relaxation by O, and single-quantum relaxation by N,. The slightly smaller populations for the levels v=1-3
in Xu et al. [2012] can possibly be explained by the omission of reaction (b) in their calculation.
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