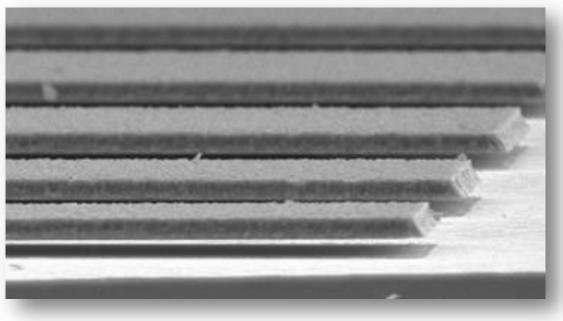
Computational & Multiscale Mechanics of Materials

CM3 www.ltas-cm3.ulg.ac.be

A probabilistic multi-scale model for polycrystalline MEMS resonators



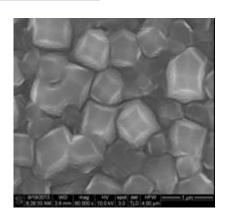
Lucas Vincent Wu Ling Paquay Stéphane Golinval Jean-Claude Noels Ludovic

3SMVIB: The research has been funded by the Walloon Region under the agreement no 1117477 (CT-INT 2011-11-14) in the context of the ERA-NET MNT framework.

The problem

MEMS structures

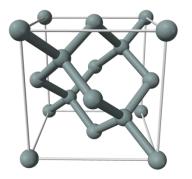
- Are not several orders larger than their micro-structure size
- As a result, their macroscopic properties can exhibit a **scatter** _
 - Due to the fabrication process •
 - Due to uncertainties of the material
 - - The objective of this work is to estimate this scatter



- Up to now, the only sources of uncertainty is due to the material
 - Silicon crystals are anisotropic
 - Polysilicon is polycrystalline

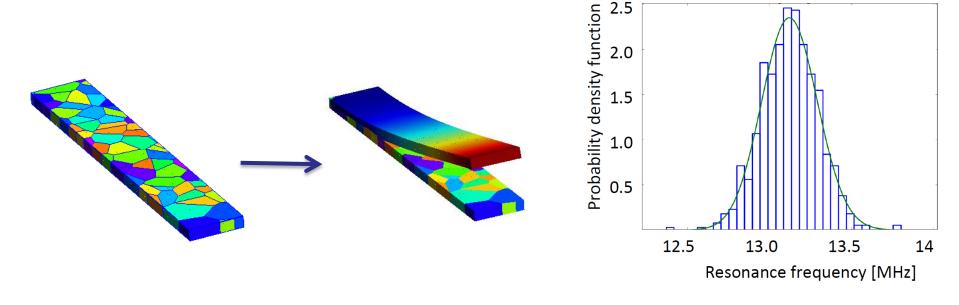
Each grain has a random orientation

- Characteristics of our model:
 - Clamped microbeam
 - Macroscopic property of interest: first mode eigenfrequency
 - For a MEMS gyroscope for example



• The first mode frequency distribution can be obtained with

- A 3D beam with each grain modelled
- and a Monte-Carlo simulation of this model

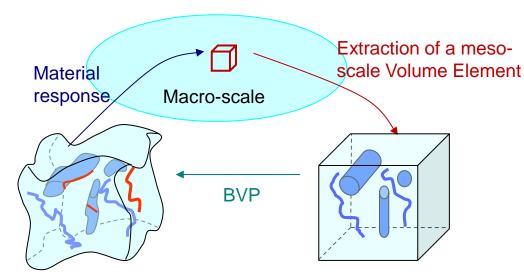


Considering each grain is expensive and time consuming

Motivation for stochastic multi-scale methods

Motivations

- Multi-scale modelling
 - 2 problems are solved concurrently
 - The macro-scale problem
 - The meso-scale problem (on a meso-scale Volume Element)



 $L_{\text{macro}} >> L_{\text{VE}} >> L_{\text{micro}}$

For accuracy: Size of the mesoscale volume element smaller than the characteristic length of the macro-scale loading To be statistically representative: Size of the meso-scale volume element larger than the characteristic length of the microstructure

• For structures not several orders larger than the micro-structure size

For accuracy: Size of the mesoscale volume element smaller than the characteristic length of the macro-scale loading Meso-scale volume element no longer statistically representative: Stochastic Volume Elements*

• Possibility to propagate the uncertainties from the micro-scale to the macro-scale

*M Ostoja-Starzewski, X Wang, 1999 P Trovalusci, M Ostoja-Starzewski, M L De Bellis, A Murrali, 2015 X. Yin, W. Chen, A. To, C. McVeigh, 2008 J. Guilleminot, A. Noshadravan, C. Soize, R. Ghanem, 2011

A 3-scale procedure

Grain-scal	e or micro-scale	Meso-scale	Macro-scale
elements)	cture (volume are generated n has a random	 Intermediate scale The distribution of the material property P(C) is defined 	 Uncertainty quantification of the macro-scale quantity E.g. the first mode frequency P(f₁)
	Stochastic Homogenization	Mean value of material property SVE size Variance of material property SVE size	
CM3	July 6-10, 2015	ESCM 2015, Madrid, Spain	6 Universite

CM3

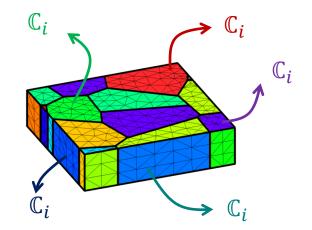
July 6-10, 2015

ESCM 2015, Madrid, Spain

6

• Definition of Stochastic Volume Elements (SVEs)

- Poisson Voronoï tessellation
- Each grain *i* is assigned an elasticity tensor \mathbb{C}_i
- \mathbb{C}_i defined from silicon crystal properties
- Each \mathbb{C}_i is assigned a random rotation
- Mixed BCs

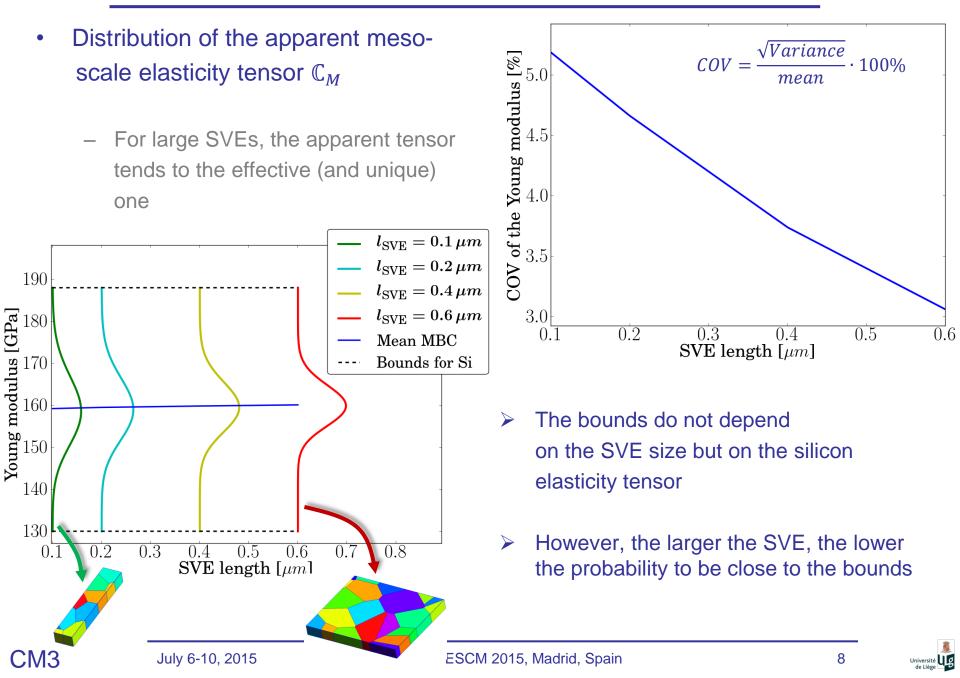


- Stochastic homogenization
 - Several realizations

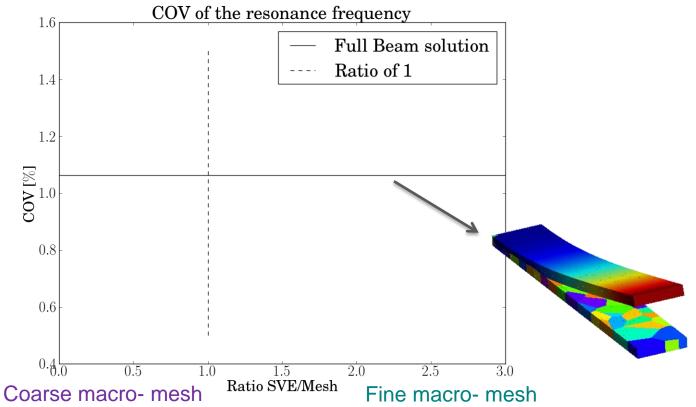
$$\sigma_{m^{i}} = \mathbb{C}_{i}: \epsilon_{m^{i}}$$
, $\forall i$
Computational
homogenization
 $\sigma_{M} = \mathbb{C}_{M}: \epsilon_{M}$
Samples of the meso-
scale homogenized
elasticity tensors

- Homogenized elasticity tensor not unique as statistical representativeness is lost*
 - · It is thus called apparent elasticity tensor

*"C. Huet, 1990

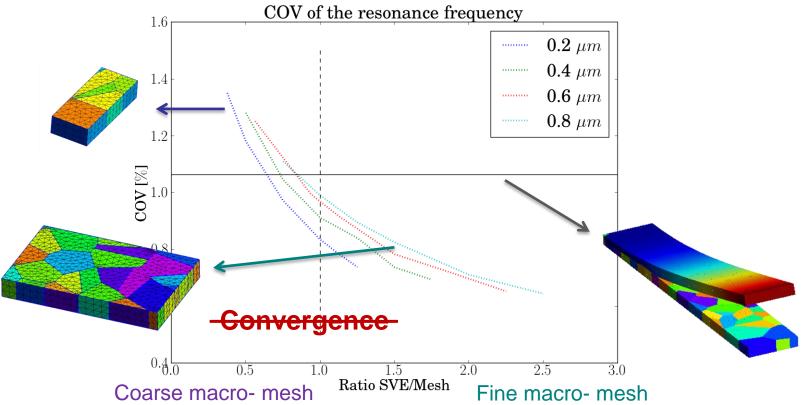


- Use of the meso-scale distribution with macro-scale finite elements
 - Beam macro-scale finite elements
 - Use of the meso-scale distribution as a random variable_
 - Monte-Carlo simulations



 \mathbb{C}_{M^1} \mathbb{C}_{M^2} \mathbb{C}_{M^3}

- Use of the meso-scale distribution with macro-scale finite elements
 - Beam macro-scale finite elements
 - Use of the meso-scale distribution as a random variable_
 - Monte-Carlo simulations

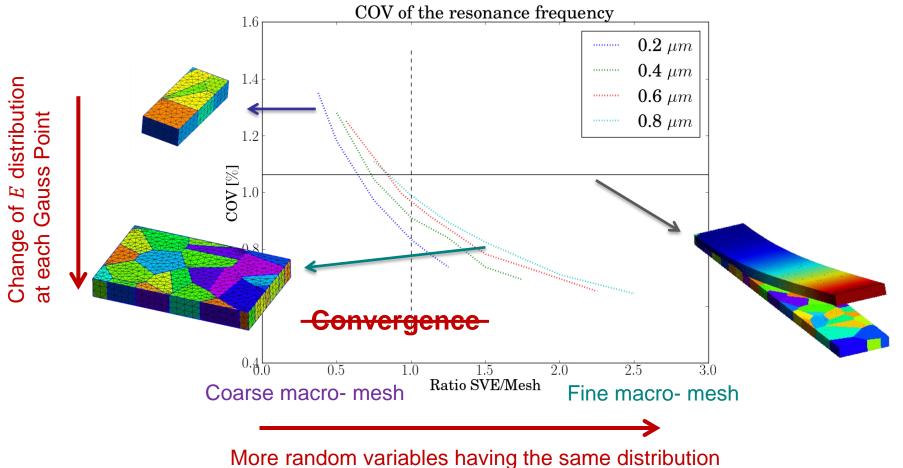


 No convergence: the macro-scale distribution (first resonance frequency) depends on SVE and mesh sizes

 \mathbb{C}_{M^1} \mathbb{C}_{M^2} \mathbb{C}_{M^3}

• Use of the meso-scale distribution with macro-scale finite elements

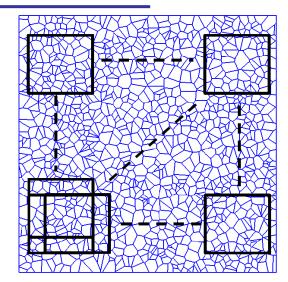
- Use of the meso-scale distribution as a random variable_
- Monte-Carlo simulations



 \mathbb{C}_{M^1} \mathbb{C}_{M^2} \mathbb{C}_{M^3}

- Introduction of the (meso-scale) spatial correlation
 - SVEs extracted at different distances
 - Spatial correlation of the r^{th} and s^{th} components of the apparent (homogeneous) elasticity tensor \mathbb{C}_M

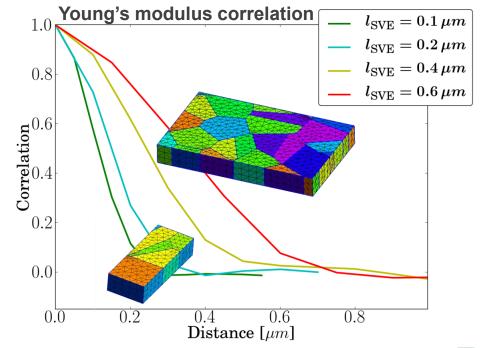
$$R_{\mathbb{C}}^{(rs)}(\boldsymbol{\tau}) = \frac{\mathbb{E}\left[\left(\mathbb{C}^{(r)}(\boldsymbol{x}) - \mathbb{E}\left(\mathbb{C}^{(r)}\right)\right)\left(\mathbb{C}^{(s)}(\boldsymbol{x}+\boldsymbol{\tau}) - \mathbb{E}\left(\mathbb{C}^{(s)}\right)\right)\right]}{\sqrt{\mathbb{E}\left[\left(\mathbb{C}^{(r)} - \mathbb{E}\left(\mathbb{C}^{(r)}\right)\right)^{2}\right]\mathbb{E}\left[\left(\mathbb{C}^{(s)} - \mathbb{E}\left(\mathbb{C}^{(s)}\right)\right)^{2}\right]}}$$



- Represented by the correlation length:

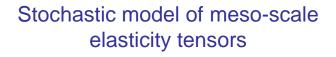
$$L_{\mathbb{C}}^{(rs)} = \frac{\int_{-\infty}^{\infty} R_{\mathbb{C}}^{(rs)}}{R_{\mathbb{C}}^{(rs)}(0)}$$

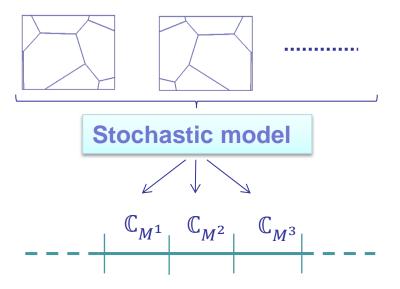
 The correlation length increases with the SVE size



ESCM 2015, Madrid, Spain

- Use of the meso-scale distribution with stochastic (macro-scale) finite elements
 - Use of the meso-scale correlated distribution as a random field _
 - Meso-scale random field from a generator _
 - Monte-Carlo simulations at the macro-scale





Université 🛛 🦉

- Generation of the elasticity tensor $\mathbb{C}_M(x,\theta)$ (matrix C_M) spatially correlated field*
 - Define a lower isotropic lower bound C_L from the silicon crystal tenor C_S

 $\min_{E,\nu} \|\boldsymbol{C}_L(E,\nu) - \boldsymbol{C}_S\| \text{ with } \boldsymbol{C}_L(E,\nu) \leq \boldsymbol{C}_S$

- Define the positive semi-definite tensor $\Delta C(x, \theta)$ such that

 $\boldsymbol{C}_{M}(\boldsymbol{x},\boldsymbol{\theta}) = \boldsymbol{C}_{L} + \Delta \boldsymbol{C}(\boldsymbol{x},\boldsymbol{\theta})$

- This will ensure the existence of the expectation of C_M^{-1}
- We now need to generate the spatially correlated random field $\Delta C(x, \theta)$
- Cholesky decomposition

 $\Delta \boldsymbol{C}(x,\theta) = \boldsymbol{A}(x,\theta)\boldsymbol{A}(x,\theta)^{\mathrm{T}} \text{ with } \boldsymbol{A}(x,\theta) = \overline{\boldsymbol{A}} + \boldsymbol{A}'(x,\theta)$

- $A'(x,\theta)$ is generated using the spatial correlation matrix $R_{A'}(\tau)$
 - Here we use the spectral method*
 - Assumed Gaussian (can be changed)

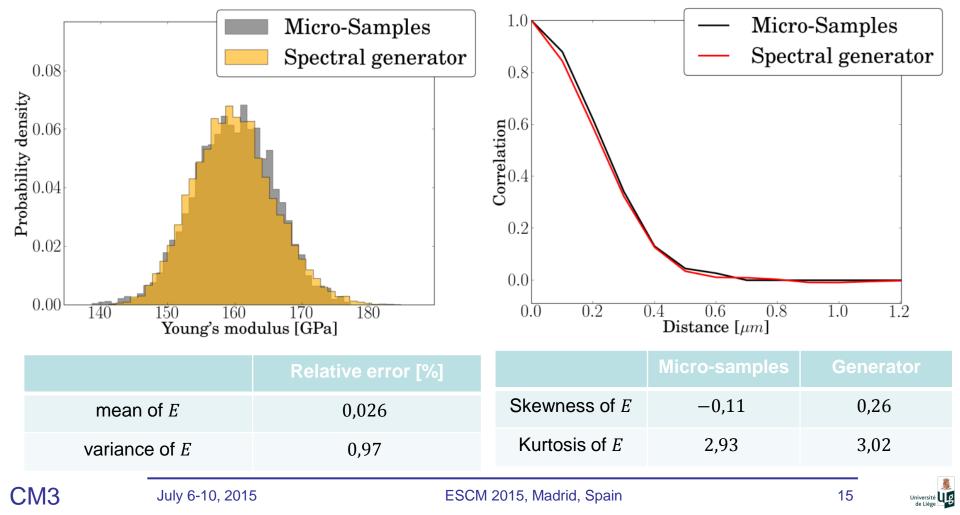
* Lucas, Golinval, Paquay, Nguyen, Noels, Wu, 2016

Homogeneous random field

- Good agreement between:
 - The **samples** of elasticity tensors computed from the homogenization
 - The generated elasticity tensors

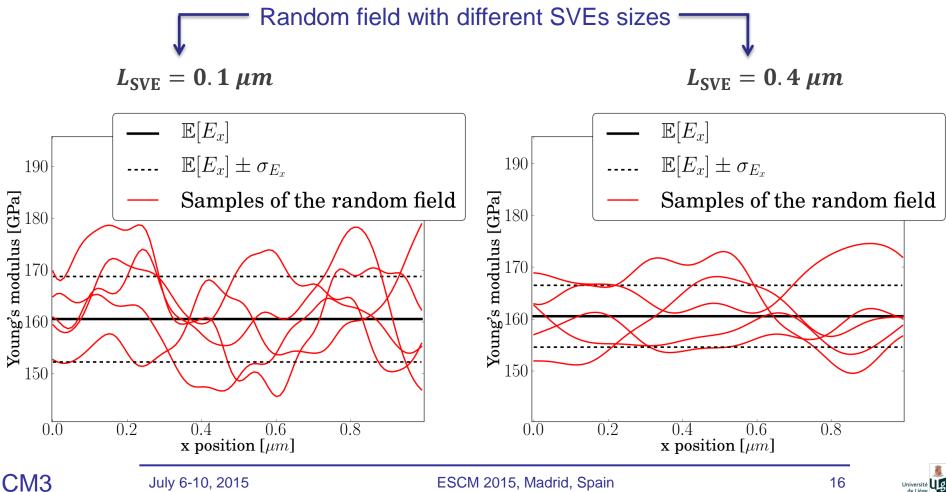
Young's modulus distribution

Young's modulus spatial correlation



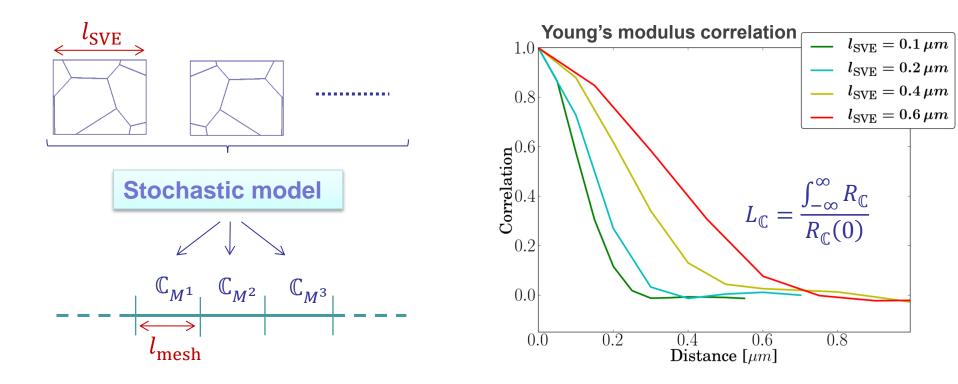
Stochastic finite element method (SFEM)

- Macro-scale beam elements of size l_{mesh}
- Use the meso-scale random field obtained using SVEs of size l_{SVE}
- The meso-scale random field is characterized by the correlation length $L_{\mathbb{C}}$

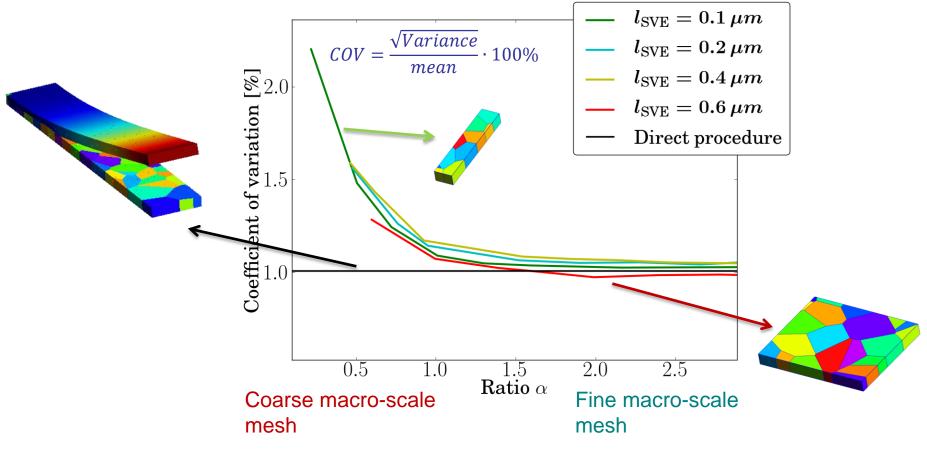


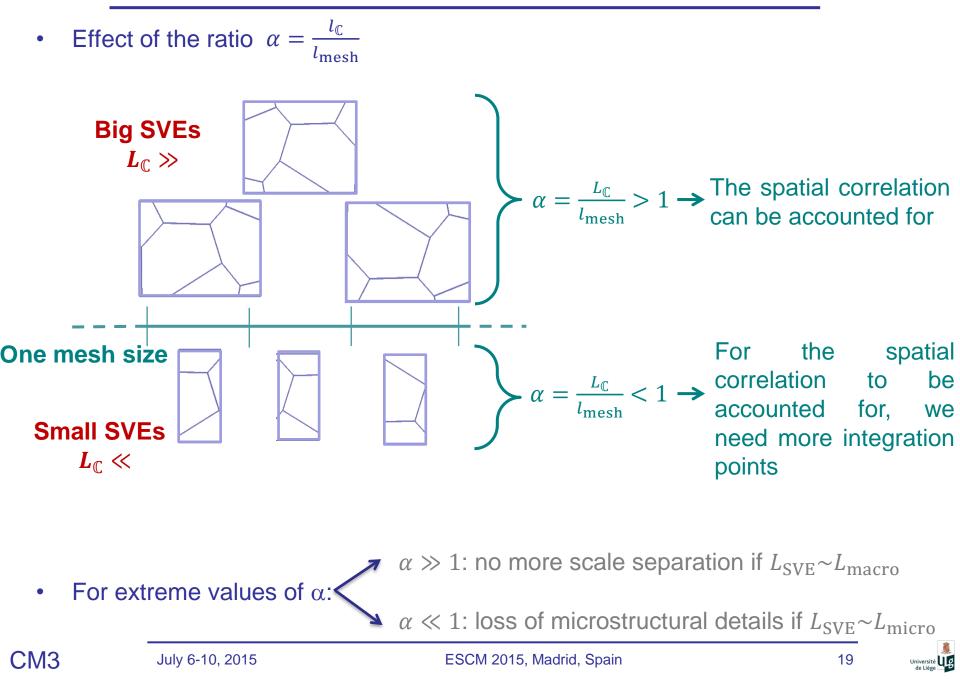
16

- The ratio $\alpha = \frac{L_{\mathbb{C}}}{l_{\text{mesh}}}$
 - Links the (macro-scale) finite element size to the correlation length
 - Is related to the SVE size thought the correlation length

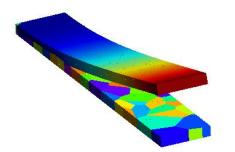


- Convergence of the 3-scale process
 - In terms of $\alpha = \frac{l_{\mathbb{C}}}{l_{\text{mesh}}}$
 - First flexion mode of a 3.2 μ m-long beam _

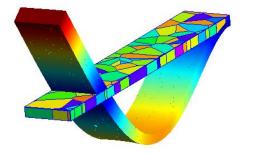




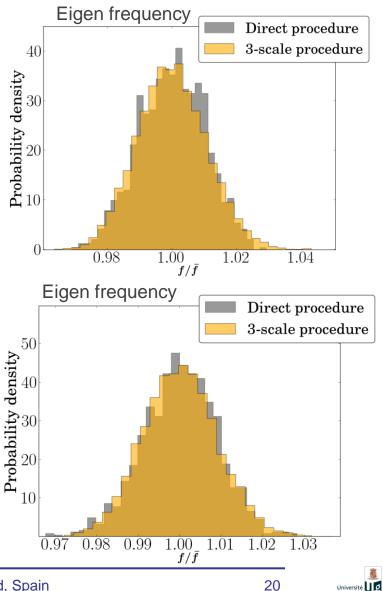
- Verification of the 3-scale process ($\alpha \sim 2$) with direct Monte-Carlo simulations
 - First bending mode of a 3.2 μ m-long beam



Relative difference in the mean: 0.57 %



Relative difference in the mean: 0.44%



Université U g

CM₃

ESCM 2015, Madrid, Spain

Perspectives

- Validate the 1D model on a bigger beam with experimental results
 - Measures for appropriate data as inputs: grain sizes, preferred direction, ...
 - Samples of 1st mode frequency
 - Is the grain orientation the main contribution to the scatter of the first mode?
- Extend the model to 3D
 - Extension to 3D macroscale SFEM (generator already 3D)
 - Extension to thermoelasticity
 - Will permit to study the influence of the **clamp** and **thermoelastic damping**
- Study geometric uncertainties

Thank you for your attention !

