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Abstract. We briefly present a new coordinate-invariant statistical test dedicated to the study
of the orientations of transverse quantities of non-uniformly distributed sources on the celestial
sphere. These quantities can be projected spin-axes or polarization vectors of astronomical
sources.
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1. Introduction

In past decades, large amounts of data have been recorded in various fields of astron-
omy, propelling poorly known and little understood phenomena into the area of precision
science. The cosmic microwave background is one of the most striking example. Such full-
and or deep-sky surveys are facing on the problem of huge dataset treatment. However,
aside from these huge observational campaigns, some catalogues contain relevant infor-
mation for only sparse and non-uniformly scattered sources on the sky. Appropriate and
robust statistical tests have to be dedicated to these small datasets. To the best of our
knowledge, there was a lack of dedicated tests capable of analysing transverse data in
astronomy, such as polarizations or projected-spin axes of galaxies or quasars. Indeed,
these quantities are always defined in the plane orthogonal to the line of sight point-
ing to their corresponding sources through angles relative to one of the basis vectors.
Therefore, if we consider sources that are scattered on the celestial sphere, the results
of any statistical test performed on these angles will depend on the coordinate system
in which the source positions are reported. When numerous point sources are uniformly
scattered the problem is overcome through the use of spin 2 spherical harmonics (in the
case of CMB polarization, for instance). Nevertheless, as soon as sources are rare and
non-uniformly distributed over the sky, what is recurrent in astronomy, the problem of
tackling the coordinate-system dependence appears. Forgetting this fact could, in some
cases, lead to a misinterpretation of observational data.
In Pelgrims & Cudell (2014), we developed a dedicated tool to process this type of

sparse data. In the following, we introduce this new statistical test and present an appli-
cation to the sample of optical polarization measurements of 355 quasars non-uniformly
scattered on the sky.

2. The new method

The basic idea of our method is to consider the quantity which is really measured.
When studying polarization or other transverse data, this quantity is three-dimensional
and, the measured axis is defined by the direction of the line of sight ~s, where the source
is observed, and by the position angle (PA) (defined modulo π radians when axial) which
indicates the orientation in the plane orthogonal to ~s. In order to study the uniformity
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of orientations of transverse quantities in a sample, we move from the usual circular data
treatment to a spherical data treatment (in the sense of Fisher (1993) and Fisher et
al. (1993), respectively). Transporting the axes to the origin of the coordinate system,
we study their relative orientations through the study of density of points on a unit 2-
sphere, where points are the intersections of the axes with the sphere. Simple spherical
data analysis, such as those presented in Fisher et al. (1993), are not applicable in the
case of transverse quantities since points are constrained to lie on great circles embedded
in planes having the lines of sight as normal vectors. One can nevertheless evaluate the
density of points at each location on the unit 2-sphere by adopting Kamb-like methods
(e.g. Vollmer 1995).

We found convenient to use equal-area spherical caps. Indeed, under the assumption of
uniformity of orientations, this particular shape allows us to predict in a simple way the
density of points at each location, evaluating densities through a standard step function.

Namely, the probability ℓ(i) that the point attached to the source i, located in ~s(i), falls
inside the cap of half aperture angle η and centred in ~c is given by:

ℓ(i) =

{

2
π
acos

(

cos η
sin τ (i)

)

if sin τ (i) > cos η

0 otherwise
. (2.1)

where cos τ (i) = ~c · ~s(i). In fact, adopting a step function, the probability is simply the
ratio of the arc length of the great circle embedded inside the cap to that of the great
circle itself (i.e. π, as axial data are under consideration here). The case ℓ(i) = 0 is well
understood through geometrical argument. It is clear that this probability is independent
of the system of coordinates.

Now, considering a sample of sources, one obtains a set of individual probabilities
{

ℓ(i)
}

for each location on the sphere. Then, at each location, the Poisson-binomial probability
distribution of the density of points is built from the ℓ(i)’s using a recursive algorithm
presented in Pelgrims & Cudell (2014), Chen & Liu (1997) and Howard (1972). Then,
we are able to test the hypothesis of random orientations at each location of the sphere
by evaluating the p-value of the observed density.

For a given sample of sources, the direction of the strongest over-density defines the
alignment direction and the corresponding p-value, denoted by pmin, gives the likelihood
of this over-density in this direction. This value is a local probability, it is obtained
semi-analytically and it is coordinate-invariant. A global probability is also computed,
answering the question of likelihood of such an over-density in arbitrary direction. This
probability is evaluated through Monte Carlo simulations by keeping source positions
fixed while randomly varying PA according to a uniform distribution.

3. Application to real data

In Pelgrims & Cudell (2014), we applied this new statistical test to the sample of
355 optical polarization measurements of quasars for which unexpected large-scale cor-
relations have been previously reported in Hutsemékers (1998) and Hutsemékers et al.
(2005). Performing an analysis on the data sample with our test of density, we confirmed
these reported large-scale anomalies and, we proceeded to a precise identification of the
quasar regions showing aligned polarization vectors. Illustration of the new test for one of
these regions is shown in Fig. 1. Local and global probabilities for this region of quasars
are found to be 1.9× 10−6 and 1.0× 10−5, respectively.
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Figure 1. The new method at work. Top left: Small circles are source positions while con-
tinuous lines are geometrical loci of corresponding polarization points. Note the symmetry as
polarization are axial quantities. The probability distributions are computed at each location
from the arclength of geometrical loci embedded in the caps. Top right: We build expected den-
sity contours from these distributions, taking the mean densities. Dark shades indicate higher
density. Bottom: Observed densities are evaluated by counting the number of polarization points
(triangles) falling in each cap. Reporting the observed densities to their corresponding distribu-
tion, the alignment direction (crosses) is defined as the centre of the cap (transparent patches)
showing the most unexpected over-density. Hammer-Aitoff projected maps are centred on the
Galactic centre with positive Galactic latitude at the top and increasing longitude to the right.
The half aperture angle being used is η = 45◦.
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