Species-specific intracellular iron biomineralization in a 1.9-Ga microfossil assemblage

KEVIN LEPOT^{12*}, AHMED ADDAD³, ANDREW H. KNOLL⁴, ARMAND BÉCHÉ⁵ AND EMMANUELLE J. JAVAUX²

¹Laboratoire d'Océanologie et de Géosciences, Université de Lille, CNRS UMR8187, 59655 Villeneuve d'Ascq, France. *kevin.lepot@univ-lille1.fr

²Paléobiogéologie, Paléobotanique & Paléopalynologie, Département de Géologie, Université de Liège, 4000 Liège, Belgium

³Unité Matériaux et Transformations, Université Lille 1, 59655 Villeneuve d'Ascq, France.

⁴Department of Organismic and Evolutionary Biology,

Harvard University, Cambridge, MA 02139, USA

⁵Electron Microscopy for Material Science, University of Antwerp, 2020 Antwerp, Belgium

Gunflint-type Paleoprotezoroic (2.45-1.6 Ga) microfossil assemblages are dominated by spherical (*Huroniospora*) and filamentous (*Gunflintia*) microfossils with phylogenetically ambiguous morphologies. Based on depositional environment, mineral associations (carbonates, Fe-oxides, sulfides), and Fe-, S- and C-isotopes, microfossils have been interpreted variously as cyanobacteria, Fe-oxidizing bacteria, or S-oxidizing bacteria.

We studied microfossils in shallow water stromatolites of the 1.9 Ga Gunflint Iron Formation using a combination of Focused Ion Beam sectioning, Scanning Transmission Electron Microscopy, Electron Energy Loss Spectroscopy, nanobeam electron diffraction, and Scanning Transmission X-ray Microscopy. Taphonomic transformations and primary taxonomic features were distinguished by organic micro- to nanostructures. This defined two populations (thick- and thinwalled) of Huroniospora. Moreover, intracellular Fe-oxide minerals were systematically found in thick-walled Huroniospora, but not in thin-walled Huroniospora or in filaments (Gunflintia). Nanoscale distribution of iron oxidation states (Fe^{2+} vs Fe^{3+}), petrographic relationships, and cristallography provide constraints on the diagenetic fate of the initial Fe-bearing phases in these microfossils. We propose that these Fe-oxides formed after primary Fe3+-bearing intracellular biominerals in Huroniospora. The species-specific Femineralization rules out secondary processes affecting all organic fossils. Moreover, the intracellular locus of Femineralization, coupled with the large size (7-12 μ m) of the microfossils put constraints on the metabolism of thick-walled Huroniospora and on the chemistry of their environment.