

AUTOGRASSMILK

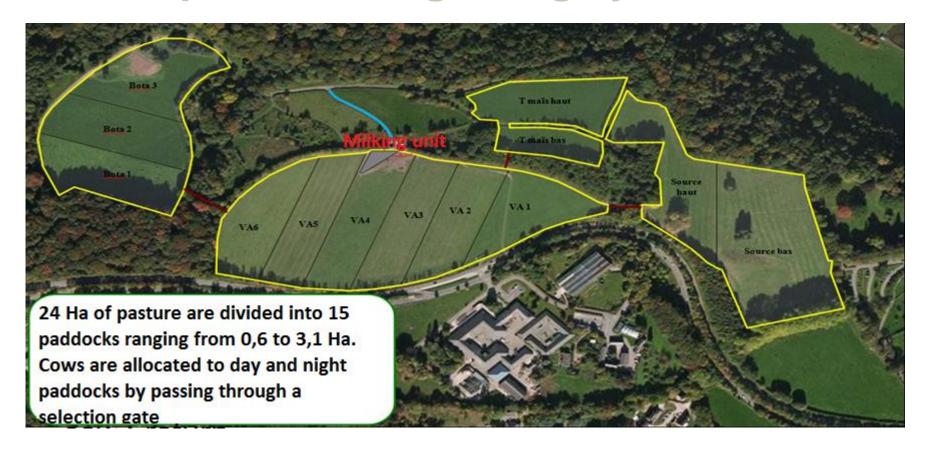
Effects of heat stress periods on milk production, milking frequency and returns of grazing dairy cows milked by a mobile automatic system in 2013.

F.Lessire, J.-L Hornick, J. Minet, I. Dufrasne

SME Farm DK Thure and Susanne Worm

- Herd: 45 dairy cows
- Milked on pasture by a mobile AMS (Lely A3®)

Transponders are fixed on cows'neck collar


Several parameters are registered:

- milk yield (MY)
- number of milkings/day
- number of milkings failure/day (e.g. robot cannot find the teat)
- number of refusals/day (e.g. interval between milkings too short)
- returns = (Milkings + refusals + failures)/day

Description of the grazing system

Grazing from 24/4/2013 till 24/10/2013

- Strip grazing based on grass height
- Height measurements by rising plate meter when cows came in/out
- Grass sampling to assess nutritional

value

Determination of Heat stress periods

✓ Temperature humidity indexes (THI) were calculated according to Ingraham et al (1979)

THI = $(1.8 \times AT + 32) - (0.55 - 0.55 \times RH) \times [(1.8 \times AT + 32) - 58]$ AT: ambiant T°C- RH: relative humidity (%)

- ✓ Heat stress periods were defined by THI >72
- 2 periods of heat stress were identified in July(J) and in August (A)
- ✓ Each heat stress period compared with a "normal period"(N).

Results

Experimental design

		Nb	DIM	LN	distance	THI
		cows				
July	HS	33 ± 0	183 ± 85	2.46 ± 1.68	700 ± 0	78.4 ± 4.0
	N	33 ± 0	182 ± 85	2.39 ± 1.64	635 ± 150	69.8 ± 2.0
August	HS	33 ± 0	186 ± 92	2.58 ± 1.85	250 ± 34	77.3 ± 4.2
	N	33 ± 0	191 ± 75	2.30 ± 1.60	304 ± 0	67.9 ± 1.6

DIM: days in milk; LN: lactation number;

Distance: distance from the pasture to the robot.

Results

Grass supply

Month	Grass height (cm)		Grass yield (kg DM/ha)	Grass available (kg DM/cow/d)	
	Entry	Exit			
July	12.0	6.6	1587	15	
August	11.4	6	1734	17	

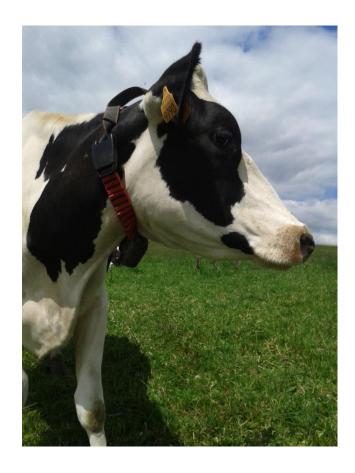
Results

	Ju	ly	August		
	N	HS	N	HS	
Milk yield (kg/cow/d)	20.3 ± 0.9***	16.8 ± 0.9	19.4 ± 0.9 NS	20.9 ± 0.9	
Milkings (/cow/d)	2.23 ± 0.09***	2.41 ± 0.12	2.28 ± 0.10 NS	2.33 ± 0.11	
Returns (/cow/d)	3.03 ± 0.18 ***	3.97 ± 0.22	3.20 ± 0.24 NS	3.35 ± 0.22	

Values are means ± SE

***: p< 0.001 - NS: p>0.05

Stat: SAS 9.3 proc mixed repeated day - cs


Conclusion

- HS induced a decrease in MY in July
- due to lesser grass availability compared with August
- due to higher THI value (78.4) than in August (77.3)
- Milkings and returns were increased in July
- This could be due to water availability nearby the mobile robot (extra tin)

Thank you for your attention

The research has received funding from the European Union's Seventh Framework Program under Grant Agreement FP/-SME-2012-314879-AUTOGRASSMILK