

Rhizobacterial volatiles influence root system architecture, biomass production and allocation of the model grass *Brachypodium distachyon* (L.) P. Beauv.

PIERRE DELAPLACE, ELENA ORMEÑO-LAFUENTE, BENJAMIN M. DELORY, CAROLINE BAUDSON, MAGDALENA MENDALUK-SAUNIER DE CAZENAVE, STIJN SPAEPEN, SÉBASTIEN VARIN, YVES BROSTAUX, PATRICK DU JARDIN

10th International PGPR Workshop Liège, Belgium – 2015

Pierre.Delaplace@ulg.ac.be http://www.gembloux.ulg.ac.be/biologie-vegetale/

MATERIAL & METHODS

RESULTS &
DISCUSSION

CONCLUSIONS

MATERIAL & METHODS

RESULTS &
DISCUSSION

CONCLUSIONS

Some Volatile Organic Compounds emitted by rhizobacteria can promote plant growth.

Ryu et al. (2003) PNAS 100: 4927-4932

MATERIAL & METHODS

How to unravel plant response to rhizobacterial volatiles while studying root system architecture (RSA)?

RESULTS &
DISCUSSION

CONCLUSIONS

- Surface-sterilization of caryopses
- Vernalization
- Pre-germination
- Cocultivation for 10 days with bacteria in a shared atmosphere

Strain	Gram type	Family	Caracteristics	
Azospirillum brasilense SP245	-	Rhodospirillaceae	Associative microaerophilic diazotroph (Kennedy et al., 2004)	
Azotobacter vinelandii A60 - F08 19	-	Pseudomonadaceae	Free-living aerophilic diazotroph (de Freitas et al., 1990)	
Bacillus amyloliquefaciens AP278 - IN937a	+	Bacillaceae	Some strains are diazotrophic, facultative microaerophilic; many <i>Bacillus</i> produce antibiotics (Ryu et al., 2003 and 2005, Farag et al., 2006, Zhang et al., 2007 and 2008, *newly isolated strain)	
Bacillus pasteurii AP277 - C9	+	Bacillaceae		
Bacillus pumilus AP280 - T4	+	Bacillaceae		
Bacillus pumilus AP281 - SE34	+	Bacillaceae		
Bacillus pumilus C26*	+	Bacillaceae		
Bacillus subtilis AP305 - GB03	+	Bacillaceae		
Burkholderia cepacia A01-45	-	Burkholderiaceae	Rarely diazotrophic, associative endophytic nitrogen fixer, wheat PGPR (Walley and Germida, 1997)	
Enterobacter cloaceae AP12 - JM22	-	Enterobacteriaceae	PGPR (Ryu et al., 2003)	
Escherichia coli DH5 alpha 99B829	-	Enterobacteriaceae	Bacterial control (Ryu et al., 2003)	
Paenibacillus polymyxa AP294 - E681	+	Paenibacillaceae	Facultative microaerophilic, can produce phytohormones, suppress pathogens and solubilize organic phosphate (Ryu et al., 2005, *newly isolated strain)	
Paenibacillus polymyxa MXC5*	+	Paenibacillaceae		
Pseudomonas aeruginosa 103-73	-	Pseudomonadaceae	Associative wheat PGPR (Walley and Germida, 1991)	
Pseudomonas fluorescens AP2 - 89B61	-	Pseudomonadaceae		
Pseudomonas fluorescens Pf29Arp	-	Pseudomonadaceae		
Pseudomonas putida KT2440 - B02 66	-	Pseudomonadaceae		
Raoultella terrigena Tfi08*	-	Enterobacteriaceae	Aerophilic or facultatively anaerophilic, newly isolated	
Serratia marcescens AP4 - 90 166	-	Enterobacteriaceae	PGPR (Ryu et al., 2003 and 2005)	

MATERIAL & METHODS

RESULTS &
DISCUSSION

CONCLUSIONS

Rhizobacterial VOC analysis by SPME-GC-MS

- Solid Phase Micro-Extraction
- Gas Chromatography
- Mass Spectrometry

→ identification and quantitation based on retention time of commercial standards, mass spectra and peak area relative to internal standard

MATERIAL & METHODS

RESULTS &
DISCUSSION

Linking five biomass-related variables and nine RSA traits...

Conclusions

- Fourteen measured variables
- Four independent experimental replicates
- Principal Component analysis on weighted and reduced variables
- Hierarchical clustering based on the principal components
- Two-way ANOVA and Dunnett's test

MATERIAL & METHODS

RESULTS &

DISCUSSION

CONCLUSIONS

Bacterial volatiles have a significant impact on the early developmental stages of a model grass

- Stage 12 vs 13 after 10 days
- Roots on top of the agar
- Strong correlation between biomass production and root branching traits
- Weak correlation with primary root length (PRL)
- PRL not correlated with other RSA traits

MATERIAL & METHODS

RESULTS & DISCUSSION

CONCLUSIONS

Contrasting biomass and RSA modulations define five groups of bacterial strains

MATERIAL & METHODS

RESULTS &
DISCUSSION

CONCLUSIONS

From non-significant to very high enhancement of biomass production

Relative growth promotion effects on RSA traits

MATERIAL & METHODS

RESULTS &

DISCUSSION

Conclusions

MATERIAL & METHODS

RESULTS &
DISCUSSION

CONCLUSIONS

Variability exists up to the intra-specific level and is not related to taxonomy

MATERIAL & METHODS

RESULTS &
DISCUSSION

CONCLUSIONS

Variability exists up to the intra-specific level and is not related to taxonomy

Significant changes compared with the control without bacteria are marked with an asterisk (*).

MATERIAL & METHODS

RESULTS &
DISCUSSION

CONCLUSIONS

Variability exists up to the intra-specific level and is not related to Gram type

MATERIAL & METHODS

RESULTS &
DISCUSSION

CONCLUSIONS

Variability exists up to the intra-specific level and is not related to Gram type

Material & Methods

RESULTS &
DISCUSSION

CONCLUSIONS

Contrasting effects indicate some heterogeneity in bacterial volatile production

Identified compounds after 24 hours of growth			
CO2	n-butylacetate		
methanol	5-methyl-2-hexanone		
ethanol	3-methyl-butanoic acid		
propanone	2-methyl-butanoic acid		
isoprene	3-methyl-acetate-1-butanol		
dimethyl sulfide	4-penten-1-yl-acetate		
3-methyl-butanal	1-nonene		
2-methyl-butanal	2-heptanone		
butane-1-methoxy-3-methyl	styrene		
acetoin	heptanal		
1-butanol,3-methyl	oxime metoxiphenyl		
1-butanol,2-methyl	2-buten-1-ol,3methyl-acetate		
dimethyl,-disulfide	6-methyl-2-heptanone		
butanoic acid, 2-methyl, methyl ester	5-methyl-2-heptanone		
butane-2,3-diol	benzaldehyde		
hexanal	2-ethylhexanol		

MATERIAL & METHODS

RESULTS &

DISCUSSION

Conclusions

The observed effects can not be explained using previously published growth-promoting bacterial VOC.

MATERIAL & METHODS

RESULTS &
DISCUSSION

Conclusions

The observed effects can not be explained using previously published growth-promoting bacterial VOC.

MATERIAL & METHODS

RESULTS &
DISCUSSION

Conclusions

The observed effects can not be explained using previously published growth-promoting bacterial VOC.

Material & Methods

RESULTS &
DISCUSSION

Conclusions

Take-home messages and future prospects!

MATERIAL & METHODS

RESULTS &
DISCUSSION

Conclusions

- First report of bacterial volatile-mediated growth promotion of a grass plant (submitted to *BMC Plant Biology*)
- A screening tool for bacterial volatile-mediated growth promotion and RSA modulation
- Five groups of bacterial strains can be identified based on their contrasted effects on biomass production and RSA traits.
- The growth promotion effects can be linked to **modifications in shoot** development and root architecture (length and branching)
- Irrespective of the considered variables, *Bacillus subtilis* GB03 volatile compounds induced the most significant changes
- ■The plant growth-promoting strains emit **different volatile blends** that should be further investigated to be linked to their biological effects.
- ■Bioactive compounds identification: a prerequisite to assess effects on older developmental stages and focus the VOC exposure on the root system?
- Bioactive compounds identification: a first step towards slow-release formulations of VOC candidates?
- From in vitro to the field: RSA modulations => drought stress tolerance, increased nutrient uptake?

Acknowledgments

MATERIAL &
METHODS

RESULTS &

DISCUSSION

CONCLUSIONS

University of Liège, Gembloux Agro-Bio Tech – Plant Biology

- Elena Ormeño-Lafuente
- Benjamin M. Delory
- Caroline Baudson
- Magdalena Saunier de Cazenave
- Sébastien Varin
- Adeline Blondiaux
- Patrick du Jardin

University of Liège, Gembloux Agro-Bio Tech – General and Organic Chemistry

- Jean-Paul Wathelet
- Vincent Hote †
- Dany Trisman

University of Liège, Gembloux Agro-Bio Tech – Applied Statistics, Computer Science and Modeling

Yves Brostaux

Koninglijk Univeristeit van Leuven

- Stijn Spaepen
- Jos Vanderleiden

Texas Tech University, Chemistry & Biochemistry

- Paul Paré
- John McInroy

Université Libre de Bruxelles, Laboratoire de Physiologie et Génétique moléculaire des Plantes

- Nathalie Verbruggen
- Christian Hermans

MATERIAL & METHODS

RESULTS &

DISCUSSION

CONCLUSIONS

Thank you for your attention!

Baudson C., Delory B.M., du Jardin P., Delaplace P. (2015). **Can plant-growth promoting rhizobacteria mitigate P-starvation stress in** *Brachypodium distachyon*? Rhizosphere 4: Below and above ground interactions (Tuesday 23rd of June)

Delory B.M., Baudson C., Brostaux Y., Lobet G., du Jardin P., Pagès L., Delaplace P. (2015). archiDART: an R package for the automated 2D computation of root architectural traits. Rhizosphere 4: New tools and concepts in the rhizosphere (Wednesday 24th of June)

Dr Ir Pierre Delaplace *Lecturer*

Université de Liège Gembloux Agro-Bio Tech (GxABT) Laboratoire de Biologie végétale

Tél. +32(0)81 622450

Email: pierre.delaplace@ulg.ac.be