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Key points 17 

- The workflow assesses posterior uncertainty in model and geological scenario  18 

- ERT data is used twice: to validate scenarios and condition MPS simulations 19 

- The workflow can be adapted to many contexts and methods 20 

Abstract 21 

In inverse problems, investigating uncertainty in the posterior distribution of model 22 

parameters is as important as matching data. In recent years, most efforts have focused on 23 

techniques to sample the posterior distribution with reasonable computational costs. Within a 24 

Bayesian context, this posterior depends on the prior distribution. However, most of the 25 

studies ignore modeling the prior with realistic geological uncertainty. In this paper, we 26 

propose a workflow inspired by a Popper-Bayes philosophy, that data should first be used to 27 

falsify models, then only be considered for matching. We propose a workflow consisting of 28 

three steps: (1) in defining the prior, we interpret multiple alternative geological scenarios 29 

from literature (architecture of facies) and site specific data (proportions of facies). Prior 30 

spatial uncertainty is modeled using multiple-point geostatistics, where each scenario is 31 

defined using a training image. (2) We validate these prior geological scenarios by simulating 32 

electrical resistivity tomography (ERT) data on realizations of each scenario and comparing 33 

them to field ERT in a lower dimensional space. In this second step, the idea is to 34 

probabilistically falsify scenarios with ERT, meaning that scenarios which are incompatible 35 

receive an updated probability of zero while compatible scenarios receive a non-zero updated 36 

belief. (3) We constrain the hydrogeological model with hydraulic head and ERT using a 37 

stochastic search method. The workflow is applied to a synthetic and a field case studies in an 38 

alluvial aquifer. This study highlights the importance of considering and estimate prior 39 

uncertainty (without data) through a process of probabilistic falsification. 40 
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1. Introduction 43 

Solving spatial inverse problems in the Earth Sciences remains a considerable challenge in 44 

particular when uncertainty quantification in the form of multiple Earth models is required. In 45 

a Bayesian framework, multiple models can be obtained by sampling a posterior distribution 46 

formulated as the product of a spatial (geostatistical) prior and a likelihood function 47 

depending on data and model errors. Many efforts have been done in recent years to propose 48 

efficient sampling techniques often based on Markov-Chain Monte Carlo [e.g., Fu and 49 

Gomez-Hernandez, 2009; Mariethoz et al., 2010; Hansen et al., 2012; Vrugt et al., 2013; 50 

Lochbühler et al., 2015]. However, most of these techniques become computationally 51 

prohibitive if the forward problem takes hours of computing time for one single model 52 

evaluation, such as is often the case when inverting dynamic flow and transport data.  53 

In addition, when uncertainty is important, the proposed solutions may be strongly dependent 54 

on the formulation of the prior distribution of models. In case geostatistical algorithms are 55 

used to model complex 3D heterogeneity on large grids, such prior is rarely available 56 

analytically or of closed form or parametric expressions. Moreover, due to the nature of 57 

geological interpretation and the nature of classification of geological systems, the prior 58 

uncertainty is often hierarchical. Based on well and geophysical data, hydrogeologists 59 

speculate on the nature of the depositional system and often form scenario-type hypothesis. In 60 

reservoir geology, a scenario can be seen as alternative understanding of subsurface 61 

heterogeneity leading to alternative parameter definitions for subsurface modeling [Martinius 62 

and Naess, 2005]. Within each scenario, one may then define within-scenario spatial 63 

uncertainty, usually generated through geostatistical algorithms. Most methodologies are 64 

focused on inverse modeling within a single limited scenario (e.g., a multi-Gaussian with 65 

variogram parameters or a single Boolean model definition) and ignore the discrete 66 

uncertainty related to the scenario itself. 67 
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Scenario uncertainty in hydrogeological inverse problems has been extensively studied in the 68 

past decades and is generally investigated using Bayesian model averaging (BMA) [e.g., Ye et 69 

al., 2004; Li and Tsai, 2009] or generalized likelihood uncertainty estimation (GLUE) [Beven 70 

and Binley, 1992, 2014 and reference therein] or a combination of both [e.g., Rojas et al., 71 

2008]. The basic idea of GLUE is to run many scenarios that reproduce equally well observed 72 

data and to compute on that basis a likelihood estimation. Monte Carlo simulations are 73 

performed through the different scenarios and a generalized likelihood measure is calculated 74 

for every proposed model according to its performance to reproduce observations. These 75 

likelihood estimations are normalized and use to build a cumulative density function 76 

expressing the uncertainty for some predictions of the models. Models with a likelihood 77 

below a threshold are generally rejected. The procedure requires a large and often practically 78 

prohibitive amount of simulations including those of dynamical data to reject some scenarios.  79 

The BMA uses a more common Bayesian framework [Hoeting et al., 1999]. To estimate the 80 

joint uncertainty, BMA combines the uncertainty within a scenario with the uncertainty 81 

regarding the scenario itself. Both uncertainty types are estimated through sampling the 82 

posterior distribution with Monte Carlo simulations. Given the high computational demand, 83 

many authors limit uncertainty analysis to the maximum likelihood BMA [Neuman, 2003]. 84 

Through the procedure, scenarios with low posterior probability may be rejected. As in 85 

GLUE, many simulations are required to identify inconsistent scenarios. For an overview of 86 

uncertainty analysis in hydrogeology, the readers are referred to Refsgaard et al. [2012]. 87 

In this paper, we propose a workflow for assessing uncertainty of the hydrogeological model 88 

that includes prior to inversion, a process of probabilistic falsification of scenarios. A Popper-89 

Bayes philosophy proposed for the Earth Sciences by Tarantola [2006], states that data should 90 

first be used to falsify models, then only be considered for matching. The aim of this process 91 

is to maintain realistic uncertainty by first stating a very wide prior (step 1 below), then 92 
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narrowing that prior by falsification (step 2 below).  The proposed process requires matching 93 

data (step 3 below) after falsification, and thus reduces significantly the computational cost 94 

when compared to methods such as GLUE or BMA. In practice we proposed a 95 

strategy/workflow based on three steps:  96 

1) Construction of a geologically informed spatial prior through the definition of 97 

alternative geological scenarios quantified as multiple-training images. Within 98 

scenario, variability (spatial uncertainty) is modeled using multiple-point geostatistics 99 

(MPS). 100 

2) Validation of the prior with geophysical data (electrical resistivity tomography - ERT) 101 

and estimation of an updated probability assigned to each training image (with 102 

possibly some training images being rejected/falsified) 103 

3) Matching dynamical data considering scenarios probabilities using a stochastic search 104 

method termed probability perturbation. 105 

In the first step, we generate alternative geological scenarios from literature data as well as 106 

some site specific data to propose various plausible facies architectures scenarios. Facies or 107 

hydrofacies-based approaches are common in hydrogeology [e.g., Fogg et al., 1998; 108 

dell’Arciprete et al., 2012; Zhang et al., 2013] and are generally used to reproduce complex 109 

geological architectures such as multimodal distributions which are difficult to reproduce with 110 

Gaussian distributions [McKenna and Poeter, 1995]. Multiple-point statistics (MPS) 111 

[Strebelle, 2002; Caers and Zhang, 2004; Mariethoz and Caers, 2015] was chosen for its 112 

ability to easily condition to data and for its ability to reproduce curvilinear and 113 

interconnected structures [Hu and Chugunova, 2008; dell’Arciprete et al., 2012] often 114 

encountered in aquifers. MPS has already been successfully applied in groundwater studies 115 

[e.g., Feyen and Caers, 2006; Ronayne et al., 2008; Huysmans and Dassargues, 2009, 2011]. 116 

The various scenarios will be quantified through a discrete set of training images. We 117 
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generate, within scenario, variation (spatial uncertainty) by stochastic simulations with each 118 

training images using the SNESIM algorithm [Strebelle, 2000, 2002]. The method is 119 

dependent on the choice of the training image and hence its uncertainty should be considered 120 

[Feyen and Caers, 2006; Park et al., 2013; Scheidt et al., in press; Khodabakhsi and 121 

Jafarpour, 2013].  122 

Ideally, Bayesian inverse models require a prior that is data-agnostic. However, this may also 123 

entail that the prior space is very large and possibly that some part of this prior is simply 124 

inconsistent with data. Therefore, in the second step, we validate prior geological scenarios 125 

(training images) using geophysical data. Geophysical methods may provide spatially 126 

distributed information on subsurface petrophysical properties and may thus be used to 127 

validate the architecture of prior scenarios. More specifically, potential-based methods such as 128 

electromagnetic or DC resistivity methods are commonly used to characterize aquifers [e.g., 129 

Robert et al., 2011; Hermans et al., 2012; Doetsch et al., 2012]. However, geophysical 130 

techniques provide indirect information on smaller scale geological heterogeneity represented 131 

by training images. We transform prior scenarios into resistivity distribution scenarios 132 

through forward and regularization-based geophysical inverse modeling to validate them with 133 

field ERT coming from the study site. The comparison is made through distance calculation 134 

and projection into a low dimensional space to calculate the probability of each scenario given 135 

field ERT data [Park et al., 2013; Hermans et al., 2014]. This consistency step between prior 136 

scenarios and secondary data also ensures that geophysics can be used to constrain the 137 

stochastic simulations as soft data in the third step of our strategy. The performance of this 138 

falsification procedure is first assessed using test cases where the reference model is known. 139 

The third step is most common in inverse modeling. We constrain the updated prior 140 

uncertainty with dynamic data, namely hydraulic heads, and geophysical data. The integration 141 

of dynamic data such as hydraulic heads or tracer breakthrough curves is not straightforward 142 
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in geostatistical methods (see Zhou et al. [2014] for a review). The relationship between the 143 

simulated parameter and the dynamical data is complex and requires to solve a non-linear 144 

spatial problem including flow (and possibly transport) equations. Several methods are 145 

available to solve such problems, under some prior spatial constraints (e.g., variograms or 146 

training images) such as the pilot-point method [e.g., de Marsily et al., 1984], the gradual 147 

deformation method [e.g., Roggero and Hu, 1998] or Markov chain Monte Carlo simulations 148 

[e.g., Irving and Singha, 2010]. Among them, the Probability Perturbation Method (PPM) 149 

[Caers, 2003] is a Bayesian stochastic search technique well-suited to integrate dynamical 150 

data in the MPS framework and successfully applied in several real-field cases [e.g., Hoffman 151 

et al., 2006; Caers et al., 2006; Ronayne et al., 2008; Park et al., 2013]. In the case of discrete 152 

variables [Caers and Hoffman, 2006], PPM corresponds to a stochastic search for MPS 153 

realizations that match the dynamic data. PPM is applied within each considered scenario to 154 

search for MPS realization matching hydraulic heads.  155 

In the next section, we provide an overview of the technical components of the entire 156 

workflow. Next, the performance of the falsification/updating procedure is assessed using 157 

synthetic cases. Then, the proposed workflow is illustrated using a field example located in 158 

the alluvial aquifer of the Meuse River in Hermalle-sous-Argenteau, Belgium. 159 

2. Technical Details of the Workflow 160 

2.1. Modeling the posterior distribution with scenarios 161 

We consider the inverse problem in hydrogeology of matching hydraulic heads data Dhead 162 

given some uncertain prior spatial constraints. The aim of the proposed workflow is to model 163 

the posterior distribution considering jointly the uncertainty in the facies model M and in the 164 

geological scenario Sc. In this process, we consider the use of geophysical tomographic data 165 

(electrical resistivity tomography) DERT.  166 
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The problem is decomposed in two parts: the first part is to assess the probability of the 167 

geological scenarios given geophysical data P(Sci|DERT). This is used to determine how many 168 

realizations of each scenario should be used to build the posterior distribution. The second 169 

part is related to the pre-posterior uncertainty for any given scenario P(M |Sci,DERT,Dhead). The 170 

latter is calculated using PPM with MPS simulations constrained with geophysical data.  171 

Then, we combine those two terms to derive the posterior distribution considering the 172 

uncertainty in geological scenarios 173 

N

i 1

( , | , ) ( | , , ) ( | )i iP Sc P Sc P Sc
=

=∑ERT head ERT head ERTM D D M D D D  (equation 1) 174 

where N  is the number of geological scenarios. Equation 1 corresponds to a weighted sum of 175 

individual pre-posterior distributions. This equation is similar to the BMA approach, except 176 

that the term P(Sci|DERT) is calculated before inverse modeling. 177 

In this workflow, we do not validate geological scenarios with hydraulic heads; we assume 178 

that DERT, given its spatial distribution, is more informative about the scenario variable Sc 179 

than Dhead, because of the spatial nature of geophysical data. Note that DERT is used twice in 180 

the workflow: 1) to validate globally the geological scenarios 2) to constrain locally MPS 181 

simulations. 182 

2.2. Construction of a spatial prior with multiple alternative geological scenarios 183 

The construction of the prior with alternative geological scenarios is based on the generation 184 

of several training images representing uncertainty related to interpretation of geological 185 

heterogeneity. Hydrogeologists may postulate several scenarios, constructed from conceptual 186 

understanding and based on analog databases containing information of geometric shapes, 187 

spatial positioning and other important elements of subsurface heterogeneity [see Eschard et 188 
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al., 2002; Kiessling and Flügel, 2002; Gibling, 2006; Kenter and Harris, 2006; Jung and 189 

Aigner, 2012; Pyrcz et al., 2008; Colombera et al., 2012]. In the following, we will refer to a 190 

specific geological scenario as Sci with i = 1, 2,…, N. We will use Boolean simulation 191 

[Maharaja, 2008] to generate a training image for each scenario. 192 

To generate realizations for a given scenario, we use multiple-point geostatistics [see Hu and 193 

Chugunova, 2008]. The (possibly infinite) set of realizations drawn from multiple training 194 

images then constitutes our prior. In particular, we use the SNESIM algorithm [Strebelle, 195 

2000, 2002] to generate realizations for a given training image. The SNESIM algorithm relies 196 

on storing frequencies into a search tree, thereby alleviating the calculation of conditional 197 

probabilities in sequential simulation. The method easily allows constraining to any facies 198 

information (drilling) from wells. In addition, should soft data in the form of facies 199 

probabilities derived from geophysical data be available, then such information models can 200 

easily be constrained to such information [e.g., Trainor, 2010; Castro et al., 2007; Strebelle et 201 

al.; 2002]. However, within our strategy, such constraining is only done at the very end, after 202 

falsification of scenarios. 203 

2.3. Electrical resistivity tomography 204 

Electrical resistivity tomography (ERT) data DERT are used twice in the process. First, they 205 

are used to validate globally the geological scenarios and update the prior (section 2.4). 206 

Second, they are included as soft data to constrain MPS simulations in the sampling process 207 

(section 2.5).  208 

The electrical resistivity distribution is obtained after inversion of electrical resistance data 209 

collected on the field site. A least-square regularization procedure [Tikhonov and Arsenin, 210 

1977] is used for the deterministic inversion of resistance data. For the field study, we used 211 

the model parameter covariance matrix as regularization operator and a reference model in 212 
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inversion to improve the inversion results compared to the traditional smoothness constrained 213 

inversion [see Hermans et al., 2012; Caterina et al., 2014]. This ensures that our ERT 214 

inversions are more informative and provide better estimates of the true resistivity 215 

distribution. 216 

For constraining MPS simulation, the electrical resistivity distribution DERT is transformed 217 

into conditional facies probability maps P(M |DERT). The latter is computed using the 218 

comparison of co-located values for both geophysical parameter and facies. This probabilistic 219 

approach avoids the definition of a petrophysical relationship linking the geophysical 220 

parameters and the facies or hydrogeological parameter. Several studies have shown the 221 

limitation of using such a direct link in tomographic methods to derive hydrogeological 222 

parameters due to the regularization and spatially variable resolution inherent to those 223 

methods [e.g., Day-Lewis et al., 2005]. Synthetic simulations relationships were proposed to 224 

overcome those limitations [Moysey et al., 2005; Singha and Moysey, 2006]. To avoid 225 

regularization, one has to consider coupled inversion schemes where the hydrogeological 226 

parameters are transformed to geophysical parameters, using a petrophysical relationship, to 227 

check that geophysical observations are fitted [e.g., Hinnel et al., 2010; Irving and Singha, 228 

2010]. Recently, it has been proposed that geophysical imaging could be improved through 229 

physically-based regularization using synthetic simulations and principal component analysis 230 

(PCA) [Oware et al., 2013]. Although very promising, these techniques have been mostly 231 

demonstrated in synthetic test cases or relatively simple field cases where the processes and 232 

conceptual models are well known.  233 

In the traditional soft data approach, each value of resistivity will correspond to a certain 234 

probability of observing the different facies. This is a conservative approach because it does 235 

not impose facies or parameter values. The derived facies probability maps integrate 236 

uncertainties related to ERT inversion, including those linked with the regularization operator. 237 
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One limitation is that the loss of resolution with depth for surface arrays is globalized. Taking 238 

into account resolution loss more accurately would require sufficient borehole data to estimate 239 

the resistivity distribution of the different facies according to depth, resolution or sensitivity. 240 

2.4. Falsification and updating of scenario probability 241 

The initial set of training images, defined from analog information may be incompatible with 242 

actual subsurface data, such as dynamic or geophysical data, and the initial (often 243 

equiprobable) training image probabilities need to be updated once subsurface information is 244 

considered. Park et al. [2013] proposes a Bayesian method for updating the initial 245 

probabilities with subsurface data (in their case dynamic flow data in an oil reservoir) and to 246 

reject training images deemed incompatible with flow data. Scheidt et al. [in press] used the 247 

same method to falsify scenario of turbidite reservoir using a new drilled well. The method 248 

was adapted by Hermans et al. [2014] to deal with geophysical data and is shortly reviewed 249 

here. The idea is to compute the probability of observing a specific training image Sci given 250 

some observed geophysical data DERT: P(Sc=Sci|DERT) = P(Sci|DERT) in a lower dimensional 251 

space. The falsification procedure can be summarized in the following steps: 252 

1. Consider N scenarios with equal probability P(Sci)=1/N. A set of unconditional 253 

geostatistical realizations are constructed for each one. 254 

2. From field knowledge and analogs, a value of geophysical parameter is assigned to 255 

each facies. This is the responsibility of the geophysicist to choose a coherent value; 256 

otherwise, the method may be misleading. 257 

3. The forward geophysical response is calculated. 258 

4. Simulated and field geophysical data sets are inverted using the same inversion 259 

parameters (e.g. section 2.3. and reference therein) to generate simulated and field 260 

inverted geophysical models. 261 
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5. The pair-wise Euclidean distance between any two simulated inverted models and 262 

between any simulated inverted model and field inverted model is calculated and 263 

stored in a distance matrix D.  264 

6. The simulated and field inverted models are projected in a lower d-dimensional space, 265 

using multidimensional scaling (MDS) [Borg and Groenen, 2006; Caers, 2011]. 266 

Multi-dimensional scaling approximates the above Euclidean distance with a lower 267 

dimensional Euclidean distance in Cartesian space using the eigen-value 268 

decomposition of D. MDS therefore reduces the dimension of the data variable DERT 269 

to a new d-dimensional variable D*
ERT of much lower dimension. The actual observed 270 

field data D*
ERT,obs can also be mapped into this lower dimension. If it falls outside the 271 

distribution of simulated models, this indicated that none of the training image is 272 

consistent with the data. Because a Cartesian space is now constructed and mapped, 273 

density estimation can proceed directly in that lower dimensional space. 274 

7. Adaptive kernel smoothing [see Park et al., 2013] is applied in the d-dimension space 275 

to estimate the probability density of the data variable for each training image 276 

f(����
∗ |Sci). This allows calculating the probability P(Sci|DERT) using Bayes’ rule: 277 

( ) ( )
* *

* *
N

*
ERT

i 1

( | ) ( )
( | )

( | ) ( )

i i
ii

i

i

i

P Sc P Sc
f Sc P Sc

| | P Sc
f Sc P Sc

=

=
= = =

∑

ERT ERT,obs
ERT ERT,ERT, obs

ERT

obs

D D
D D

D
D D ≃278 

 (equation 2)  279 

The scenarios for which this probability is very low are falsified by the data. 280 

The main idea of this method is to reduce dimension based on a distance defined between 281 

multiple geophysical inversions and the actual field data. Then, we calculate scenario 282 

probability. Note that at no point does the method call for matching models (M ) to data 283 

DERT,obs. At this point, some scenarios Sci with a very low probability can be rejected due to 284 
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their inconsistency with available subsurface data. Note that this step does not require the 285 

simulation of dynamical data, which leads to a significant gain of computing time. 286 

For some geophysical methods, step 4 can be avoided and the distance calculation can be 287 

made directly on the geophysical data. However, for ERT, the voltages or apparent 288 

resistivities are highly dependent on the resistivity of the very-shallow subsurface. 289 

Consequently, two identical models differing only by the “first” layer resistivity would have a 290 

large distance in the apparent resistivity even if their true resistivity distribution is relatively 291 

close. 292 

2.5. Sampling with the Probability Perturbation Method 293 

We now focus on the pre-posterior term P(M |Sci,DERT,Dhead) in equation 1. At this stage one 294 

could opt for sampling methods [e.g., Fu and Gomez-Hernandez, 2009; Mariethoz et al., 295 

2010; Hansen et al., 2012; Vrugt et al., 2013] but given the subjective nature of the prior, it is 296 

our opinion that accurately sampling from a posterior distribution which itself relies on 297 

considerable (subjective) geological prior interpretation is not desirable. In addition, sampling 298 

requires the evaluation of 1000s of forward model runs which is impossible when the forward 299 

models takes hours of computing time.  300 

Instead, we opt for a stochastic search method termed probability perturbation method (PPM) 301 

[Caers, 2003]. The aim is not for a rigorous sampling but for a broad search of the prior space 302 

for realizations that match the hydraulic head data. In short PPM, much like gradual 303 

deformation [Caers, 2007], allows for perturbation of an initial model M  into a new model 304 

M’ , without destroying the prior geological scenario. In other words, the perturbation is a 305 

sample of the prior. What is ignored in PPM is the transition probability associated with this 306 

perturbation, hence the less rigorous sampling. 307 
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At this stage, samples of the prior are generated with MPS sequential simulations with ERT 308 

probability maps used as soft data. 309 

PPM is an iterative process which stops when the objective function ϕ reaches the targeted 310 

level ε: 311 

K
obs calc 2
k k

k 1

(h h )

K
φ ε=

−
= ≤
∑

 (equation 3) 312 

where K is the number of observation points, hk
obs is the kth  observed hydraulic head and hk

calc 313 

is the kth calculated hydraulic head. We performed groundwater flow modeling with 314 

HydroGeoSphere [Therrien et al., 2010].  315 

3. Synthetic study 316 

In this section, we propose 4 synthetic experiments (case 1 to case 4 below) to assess the 317 

falsification/updating procedure in controlled set-ups. In contrasts with Park et al. [2014] and 318 

Scheidt et al. [in press] who validated their procedure with the rejection sampler, we propose 319 

here to analyze the performance considering a large number of reference truths (true Earth 320 

models). The aim is to analyze the sensitivity of the method to identify the training image 321 

belonging to the reference truth as well evaluate the updated probabilities as calculated from 322 

our method.  323 

Within this synthetic study, we will consider 8 different training images representing alluvial 324 

deposits (Figure 1). They are all based on a background facies made of sand and a 325 

combination of gravel channels and/or clay lobes. Three sizes of channels (small (SC), 326 

medium (MC) and big (BC)) and two sizes of lobes (small (SL) and big (BL)) are considered. 327 

For example, the scenario with small channels of gravels and small clay lobes will be 328 

identified as SC/SL. If not specified, the proportions of gravel and clay facies in the training 329 
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image are respectively 20% and 22%. The facies were assigned a value of logarithm of 330 

resistivity (in Ohm.m) equal to 1.95 for the clay facies, 2.2 for the sand facies and 2.65 for the 331 

gravel facies for calculating their ERT response. 332 

The set-up of the synthetic case mimics the field case (see sections 4 and 5): a 10 m thick 333 

alluvial aquifer with cells 0.5m thick and 1m wide. ERT data are simulated using profiles of 334 

64 electrodes with 2m spacing (126 m length) and a dipole-dipole configuration. Noise was 335 

added on the resistance data to a level similar to the one encountered on the field (0.25%) 336 

before inversion. 337 

100 different models are considered for each training image/geological scenario. For each 338 

experiment, all the models are subsequently used as a reference truth model and the updated 339 

probabilities are computed. We assess the ability of the method by computing a Bayesian 340 

confusion matrix. This matrix states how many models of Sci are classified as Scj. An identity 341 

matrix would correspond to a perfect classification. Similarly, we compute the mean of the 342 

updated probabilities over models from the same TI to assess the performance of the method. 343 

3.1.Case 1: Prior containing distinctive geological scenarios 344 

For this case, we consider 4 different training images: one with three facies and three with two 345 

facies: SC/SL, BC, BL1 (proportion of 30%) and BL2 (proportion of 50%). The 4 considered 346 

scenarios are clearly different in terms of facies geometry and resistivity distribution; hence 347 

we use this case to test how well the procedure can identify the true scenario. The 348 

corresponding 2D MDS map (Figure 2A) shows that the different scenarios are clearly 349 

identified in as few as two dimensions (representing more than 95 % of the variance). Table 1 350 

summarizes the Bayesian confusion matrix and the mean updated probability.  351 

The confusion matrix for this case illustrates that more than 90% of the models are correctly 352 

classified using the updating procedure, with a mean probability over 75%. It also illustrates 353 
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that scenarios with very differencing facies geometries (channels vs. lobes) can be falsified 354 

using the procedure. This shows how the falsification with geophysical data is able to indicate 355 

which scenarios should be rejected. 356 

3.2. Case 2: Prior containing geological scenarios with similarities 357 

For this case, we consider 4 different training images with three facies and similar 358 

proportions: SC/SL, SC/BL, MC/SL, MC/BL. The difference between these 4 scenarios lies 359 

only in the geometry of the facies. Because of these similarities, this represents a more 360 

challenging case for the falsification procedure. The corresponding 2D MDS plot (Figure 2B, 361 

the crosses are used later in Case 4) represents only 49% of the total variance. Considerable 362 

overlap between scenarios with the MDS plot can now be observed. Table 2 shows the 363 

confusion matrix and the probabilities for 5 dimensions (73 % of the variance). 364 

In this case, the methodology, on average identifies correctly the training image used to 365 

generate the reference model. However, given the similarities among the training images, the 366 

misclassification is more abundant. The mean probabilities are around 60% when calculated 367 

in 5D. When the scenarios are more alike, to allow for a good discrimination, it is necessary 368 

to consider higher dimensions for calculating updated probabilities. In this specific case, 369 

calculating in 10 dimensions (90% of the variance) allows to discriminate the scenarios as 370 

well as in Case 1. 371 

Geophysical data is not always able to identify the correct training image because of spatial 372 

uncertainty. Due to the particular arrangement of geological bodies in space, one scenario 373 

may look like another based on the limited resolution geophysical data. This justifies the idea 374 

of considering several scenarios since retaining a single scenario may yield too small 375 

uncertainty in the modeling and hence later in forecasting. 376 

3.3. Case 3: Prior containing geological scenarios similar to the reference TI 377 
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For this case, we consider the seven training images of Cases 1 and 2 and an additional 378 

training image with small channels (SC). We only consider as reference scenario the scenario 379 

SC/SL. The idea is to test the behavior of the methodology when the reference scenario is not 380 

included in the prior, but consistent ones are. 2D MDS map (Figure 2C) shows that some 381 

scenarios are clearly falsified while others seem consistent. Table 3 summarizes the 382 

classification performance and mean probability when the reference TI (SC/SL) is included, 383 

or not, for five dimensions (94% of the variance). For the latter case, models from SC/SL 384 

were taken out of the prior for MDS map and updated probability calculation. 385 

The methodology correctly identifies the reference training image if it is included in the prior. 386 

When this is not the case, the highest probabilities are assigned to those training images 387 

sharing at least one element in common with the reference training image: SC, MC/SL and to 388 

a lesser extent SC/BL. The methodology is thus able to identify geological scenarios 389 

consistent with the reference truth model. In both cases, the falsification procedure rejects 390 

inconsistent training images. 391 

3.4. Case 4 : Prior containing geological scenarios distinct from the reference TI 392 

The last case considers the four training images from Case 2 as part of the prior but uses 393 

models from the training image BL2 as reference models. We test here what happens when 394 

the geological scenarios of the prior are all inconsistent with the reference truth model. Figure 395 

2B shows an example of the resulting 2D MDS map including 2 reference truth models 396 

(crosses). One of the models lies outside the distribution of the prior, this is an indication that 397 

the prior is not consistent with geophysical data. For the second model, the inconsistency only 398 

appears in 3D (Figure 2D). It is now up to the modeler to decide whether such training images 399 

should be excluded. In such a case, calculating updated probabilities is worthless. A new prior 400 

should be drawn with consistent geological scenarios.  401 
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4. Field site  402 

Field data used in this study are from an experimental site of University of Liege located in 403 

the alluvial aquifer of the Meuse River, in Hermalle-sous-Argenteau (Belgium) near the 404 

Dutch-Belgian boarder (Figure 3A and B), between the Meuse River and the Albert Canal.  405 

4.1. Building prior geological scenarios 406 

According to geological and hydrogeological investigations [Haddouchi, 1987; Rentier, 2003; 407 

Battle-Aguilar, 2007], the deposits of the Meuse River are mostly representative of braided 408 

systems but structures characteristics of meandering systems are also possible. Deposition is 409 

mostly composed of sandy gravel. Heterogeneity in the deposits is characterized by zones of 410 

clean gravel (and pebble) having a higher hydraulic conductivity and zones composed of 411 

loam, clay and clayey gravel of lower hydraulic conductivity. The latter are remaining of old 412 

and eroded floodplain deposits, crevasse splays or old channels filled with fine sediments. 413 

A facies description is available for 23 boreholes on the site (Figure 3C). Alluvial deposits are 414 

10 m thick and lie on a bedrock composed of Visean and Houiller shales and schists. The 415 

boreholes were drilled down to the bedrock. 416 

Globally, the deposits are divided in three main units (layers). The first unit is 0.5 to 5 m thick 417 

and is composed of fluvial loams. The second unit is composed of sandy gravel and the third 418 

unit is mainly made of clean gravel with large decimetric pebbles (Figure 3D). According to 419 

borehole logs, one of the two last units may not exist and their thickness varies with their 420 

location. However, previous studies made on the site with solute tracer tests [Brouyère, 2001] 421 

and heat tracing experiments [Hermans et al., 2015; Wildemeersch et al., 2014] have shown 422 

that heterogeneity exists inside these predefined units and that a simple model with three 423 

horizontal layer is not sufficient to catch heterogeneity realistically. Therefore, we used 424 

training image-based scenarios to model the prior. 425 
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Three facies are defined: a clay/loam facies corresponding to low hydraulic conductivity 426 

deposits, a sand/sandy gravel facies having an intermediate hydraulic conductivity and a 427 

gravel facies with high hydraulic conductivity. The analysis of borehole shows that the 428 

proportions of these facies in Hermalle-sous-Argenteau are respectively 18, 40 and 42%. 429 

From geological descriptions of the alluvial deposits of the Meuse River [Haddouchi, 1987; 430 

Rentier, 2003; Battle-Aguilar, 2007] in the area of Liege (Belgium) and from interpretation of 431 

the borehole data, several training images are proposed. Considering that the gravel facies, 432 

with its higher hydraulic conductivity, has the most influence on groundwater flow, we 433 

propose two types of training images: one with the gravel facies represented as long 434 

continuous channels, the second one with gravel as shorter, but elongated bars. For each type, 435 

we considered two different sizes for the gravel elements, leading to a total of 4 different 436 

training images (Figure 4). The clay/loam facies is represented by lobes of various sizes.  437 

4.2. Geophysical data 438 

The geophysical data set is composed of 12 ERT parallel profiles (Figure 3C). The profiles 439 

are 126 m long (except for the northern profile which is shorter) and are separated in the 440 

perpendicular direction by 4 m. They were collected with 64 electrodes (2 m spacing between 441 

electrodes) using a dipole-dipole configuration (dipole size a < 9 and dipole separation n < 7). 442 

The noise level was estimated using reciprocal measurements and a linear error model was 443 

used to weight data during inversion [Slater et al., 2000], which should avoid the creation of 444 

artifacts in the inverted sections.  445 

The profiles were inverted as explained in section 2.3. The model parameter covariance 446 

matrix was computed based on a spherical variogram with a vertical range of 4.4m 447 

(determined using electromagnetic logs performed in the boreholes) and an anisotropy ratio of 448 

2.5 [see Hermans et al., 2012]. The reference model was divided in two horizontal zones. The 449 
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first zone represents alluvial deposits (0 to 10 m depth) and has a resistivity value of 160 450 

Ohm.m. The second zone corresponds to the bedrock and has a resistivity value of 300 451 

Ohm.m. The two zones are disconnected during inversion, i.e. values of parameters lying in 452 

different zones are not correlated. 453 

Figure 5A shows one typical profile collected on the site. In the north-eastern part of the 454 

profile, a low electrical resistivity zone corresponds to thick, clayey and loamy deposits. 455 

Below, the deposits are characterized by two layers of different resistivity. The first one is 456 

composed of sand, the second one is made of gravel. Lateral heterogeneity is visible in both 457 

layers showing that the division of the deposits in homogeneous layers is not satisfying. 458 

Nevertheless, it is expected that the gravel facies is preferentially located at the bottom part of 459 

the deposits. 460 

4.3.Relationship between electrical resistivity and facies 461 

By comparing electrical resistivity and facies at the position of borehole (Figure 5B) a 462 

histogram of resistivity for each of the three facies was constructed. Generally, a higher 463 

resistivity is observed for gravel facies due to the absence, or smaller amount, of fine 464 

sediments having a relatively high surface conductivity [Bersezio et al., 2007; Doetsch et al., 465 

2010]. In this case, the sand facies globally has a higher resistivity (240 Ohm.m) than the 466 

gravel facies (140 Ohm.m). The reason lies in the nature of the gravel facies, which is 467 

composed of large pebbles and has much higher water content than the sand facies whereas 468 

the amount of fine sediments with non-negligible surface conductivity is low for both of them.  469 

The clay facies is the only one characterized by resistivity values below 90 Ohm.m. However, 470 

due to the limited resolution of ERT, the clay facies also displays resistivity values in the 471 

same range that the gravel facies.  472 
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The histograms (Figure 5B) are then use to compute the facies conditional probability as 473 

function of electrical resistivity (Figure 5C). To constrain MPS simulations, resistivity 474 

distributions in the subsurface (Figure 5A) are transformed in facies probability maps that can 475 

be used as soft data. 476 

4.4. Hydrogeological data 477 

The hydrogeological data set consists in drawdowns measured in 9 of the boreholes (Old 478 

piezometers in Figure 3C) screened on the whole thickness of the aquifer after reaching 479 

steady-state conditions during a pumping test. The boundaries of the hydrogeological model 480 

are drawn in Figure 3C. The model is 167 m x 93 m x 10 m. MPS simulations were drawn on 481 

a grid size of 1 m x 1 m X 0.5 m (310620 cells). The boundary conditions are imposed 482 

hydraulic heads extracted from a regional flow model [Brouyère, 2001]. A recharge of 300 483 

mm/year is considered. The hydraulic conductivity of each facies is chosen according to our 484 

prior knowledge of the site and a sensitivity analysis; they remain constant during PPM. The 485 

hydraulic conductivity of the gravel facies is the most sensitive parameter. We imposed a 486 

value of 5.10-2 m/s for the gravel facies, 10-4 m/s for the sand facies and 10-6 m/s for the clay 487 

facies. 488 

5. Application of the workflow to the field case 489 

5.1.Updating of training-image scenarios 490 

The four training image scenarios proposed for the field site (Figure 4) have the same prior 491 

probability of 0.25. To compute the MDS plot and perform kernel density estimation, we 492 

simulated 24 sections for each training image, leading to a total of 96 simulated facies models 493 

from the prior. The number of simulated models is a compromise between the time to produce 494 

the MDS map and its representativeness. The number of models must be sufficient to estimate 495 
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the density distribution f(DERT|Sci) in the chosen dimension. The larger the amount of models 496 

used, the more precise the estimate is.  497 

According to field observations (Figure 5B and C), a value of resistivity was assigned to each 498 

facies: 100 Ohm.m for the clay facies, 140 Ohm.m for the gravel facies and 240 Ohm.m for 499 

the sand facies. Then, for each simulated resistivity model, electrical resistances were 500 

simulated. Noise was added to the data according to the level measured on the field with 501 

reciprocal measurements. Simulated data sets were inverted with the same procedure as field 502 

data sets leading to 96 geophysical models.  503 

Based on the distance matrix calculated with those 96 geophysical models, an MDS plot is 504 

drawn in 2 dimensions (Figure 6). In this plot, the four scenarios are characterized by a color 505 

code. Field models are represented by black squares. In this 2D projection, the field cases fall 506 

in the distribution of training images-based scenario cases, hence none of training images can 507 

be visually falsified with the ERT data. We observe the effect of varying the training image: 508 

models from Sc4 occupy the bottom part of the plot, whereas from Sc2 are concentrated in the 509 

right part. Sc1 and Sc3 have a higher density in the middle of the plot. 510 

The analysis of the eigen-values spectrum of the distance matrix obtained with MDS enables 511 

to select the dimensions in which kernel density estimation will be performed. The higher the 512 

dimensions d, the higher the considered variance is and the closest the distance in the d-513 

dimensions is to the real distance. The 2D projection represents slightly more than half the 514 

total variance. More than 85% of the total variance is reached at the fifth dimension. Then the 515 

contributions of eigenvalues decrease significantly. Note that we do not aim to reach 100% of 516 

the variance, mainly because not only the geological scenario influences the results (what we 517 

want to quantify) but also the methodology itself (undesirable effect): the choice of the 518 
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distance metrics, the noise on the data, the geophysical parameter values and the number of 519 

simulated cases.  520 

The probabilities of scenarios were calculated from kernel density estimation. We aggregated 521 

the contribution of individual profiles (each black square) to come up with a single probability 522 

for each scenario. The results are summarized in Table 4. According to ERT data, the lowest 523 

probability is assigned to Sc2. However, its probability of 14% is not sufficiently low to falsify 524 

this geological scenario. The three other scenarios have quite similar probabilities with 29, 27 525 

and 30% for Sc1, Sc3 and Sc4 respectively. Using the 2D map would have led to an 526 

overestimation of the probability of Sc2 and Sc4 and an underestimation of Sc1. 527 

Prior uncertainty is represented by generating multiple realizations from each scenario, but 528 

taking into account the updated probabilities of Table 4. Figure 7 (top) shows the probability 529 

of the gravel facies considering those updated probabilities. It consists in 100 independent 530 

realizations. The number of realizations per scenario is given by ( | )i MP Sc N×ERTD  with NM 531 

equals the number of desired realizations, 100 in this case. This updated prior takes into 532 

account the uncertainty related to training image based scenarios and the facies observed in 533 

boreholes on the field which are considered here as certain. 534 

This updated prior is then constrained with soft data from ERT, DERT. This constitutes the 535 

updated/constrained prior or pre-posterior distribution P(M |Sc,DERT). Models going into PPM 536 

for matching hydraulic heads are sampled from this distribution. As can be seen from Figure 7 537 

(bottom), adding spatially distributed information, such as geophysical data, reduces prior 538 

uncertainty where boreholes are not available. Where no specific data is available (hard or 539 

soft), the probability of gravel is close to the expected proportions (42%).  540 

5.2.Matching hydrogeological data 541 
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In matching the dynamic head data with PPM, the targeted level of the objective function was 542 

set to 0.015. This level is easily reached in a few iterations through the PPM process for all 543 

the scenarios (Figure 8).  544 

Models drawn from the updated prior distribution and matching data belongs to the posterior 545 

distribution. Individual realizations have different geometrical characteristics depending on 546 

the training image used for simulation (Figure 9). For Sc1 and Sc2, there are continuous 547 

channel-shaped gravel bodies crossing the model. Sc2 and Sc4 have larger gravel zones.  548 

The pre-posterior distribution P(M |Sci,DERT,Dhead) can be calculated by averaging the facies 549 

indicators (0 or 1) over multiple realizations that match the hydraulic head data (see Figure 550 

10). These 3D probability cubes differ for each training image-based scenario. This shows 551 

that the training image uncertainty is important and influences strongly the results. In this 552 

case, we observe how scenarios with big elements (Sc2 and Sc4) lead to wider and more 553 

continuous zones where the probability of gravel is high. 554 

5.3. Computing the posterior distribution 555 

The posterior distribution is computed using equation 1 (Figure 11) considering a number of 556 

realizations coherent with the value of P(Sci|DERT) from Table 4. Based on the posterior 557 

probability distribution, a classification model is proposed just for visualization. The most 558 

probable facies is assigned to each cell (Figure 11). This result confirms that the proportion of 559 

gravel tends to increase with depth whereas sand is more abundant in the upper part of the 560 

deposits, but that lateral heterogeneity exists within the deposits. Except near the surface, 561 

where a large clay zone is observed, clay only appears as small anomalies in the proposed 562 

classification model. This is also an effect of the lower proportion of clay compared to the two 563 

other facies. 564 

6. Discussion and Conclusion 565 
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We propose a workflow in three steps to solve the inverse problem of matching hydraulic 566 

heads and model the posterior distribution considering jointly the uncertainty in the facies 567 

model and in the geological scenarios: 568 

1) Construction of a geologically informed spatial prior with multiple scenarios 569 

2) Validation/falsification of the prior with geophysical data  570 

3) Matching dynamical data considering scenarios probabilities and geophysical data 571 

using a stochastic search method 572 

The originality of the method lies in the use of geophysical data both to validate/falsify 573 

geological scenarios and to constrain geostatistical realizations and to perform this in a 574 

manageable computational time for practical field cases. The method is sensitive to the 575 

geophysical parameters used to produce simulated models in the falsification procedure. They 576 

should be chosen carefully to avoid eliminating consistent scenarios. We have successfully 577 

assessed the validity of the method on 4 synthetic test cases and demonstrated its applicability 578 

on a case study in an alluvial aquifer using MPS and PPM. However, one of the workflow’s 579 

strength is its adaptability. The workflow is not limited to training image-based scenarios, step 580 

1 can be based on variogram-based scenarios or any other geostatistical methods.  581 

The falsification procedure causes an additional computational cost, but it is relatively small 582 

compared to the time required by the hydrogeological inverse procedure. The additional cost 583 

is related to the forward and inverse modeling of synthetic geophysical data. As an example, 584 

the falsification procedure for the field case required 96 synthetic models. It was run on a 3.07 585 

GHz computer with 8 GB RAM in 8.5 hours without parallelization. The MDS procedure 586 

only takes a few minutes. As a comparison, the time to calibrate one model with PPM on the 587 

same computer, given the size of the 3D model, takes about 3 hours. The cost increases when 588 
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more synthetic models are used and is highly dependent on the type of data used for 589 

falsification. It can be easily estimated knowing the time needed for one synthetic model. 590 

Similarly, the application of MDS mapping for the calculation of probability in step 2 is not 591 

limited to the use of geophysical data. One may combine both geophysical and informative 592 

hydrogeological data sets, to assess the probability of scenarios P(Sc|DERT,Dhydro) or even use 593 

hydrogeological data alone. In this study, we used geophysical data only because there are 594 

more informative on the spatial distribution of facies than head data. The fast calibration of 595 

models from any scenario suggests that head data are not very useful to discriminate the 596 

considered scenarios in this case. Transient data would likely be more informative. Actually, 597 

any method relevant to assess the pertinence of geological scenarios could be applied. 598 

Combining different data types would require the definition of a distance balancing between 599 

several terms and should result in some refinement in the falsification/updating procedure to 600 

identify more precisely the most probable scenarios. However, it would be at the cost of more 601 

computations, hence be more time consuming.  Other geophysical techniques, such as the 602 

spectral induced polarization method could also be used, given its high potential for 603 

discriminating facies based on their permeability. Step 2 strongly depends on the definition of 604 

the distance metrics, the latter could be adapted depending on the context. 605 

The application of the falsification procedure on several test cases highlights that the method 606 

is suitable for the rejection of inconsistent training images because the reference or field 607 

model lies outside the distribution of the prior. In most cases, the methodology correctly 608 

identifies the reference training image (highest updated probability). However, 609 

misclassification due to spatial uncertainty may occur resulting in an incorrect training image 610 

being favored. This illustrates that the geophysical data is not always sufficient to reveal 611 

geological scenarios and that a large prior (several scenarios) is needed to avoid 612 

underestimating uncertainty. The number of simulated models should always be sufficient to 613 
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estimate the density distribution in the MDS map. Otherwise, updated probability could be 614 

badly estimated. 615 

In the last step of the workflow, any sampling technique can be considered as long as it can 616 

integrate the probability of geological scenarios. It means that McMC or any other techniques 617 

can be used to sample the pre-posterior distributions and then combine the results using 618 

equation 1.  619 

In many hydrogeological problems, the model relies on relatively sparse data generally 620 

limited to observed borehole facies. Potential-based methods such as electromagnetic or DC 621 

resistivity methods are commonly used to characterize aquifers but, they are rarely considered 622 

directly in the modeling step. While the MPS framework proposes an established way to 623 

integrate soft data, very few hydrogeological studies have considered the use of geophysics as 624 

spatially distributed conditioning data in MPS simulations [Trainor, 2010]. Our work shows 625 

that the use of ERT as soft data is twofold. First, constraining MPS simulations with 626 

geophysical data reduces the number of possible models that are proposed to the PPM 627 

algorithm. It reduces the variability in the prior and subsequently reduces the variability in the 628 

posterior distribution, too. Second, the convergence of the PPM is increased. This is a non-629 

negligible advantage regarding the high computational demand for solving non-linear flow 630 

and transport models.  631 
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TABLE 848 

 Confusion matrix (%) Mean updated probability (%) 

Scenario SC/SL BL1 BL2 BC P(SC/SL|ref) P(BL1|ref) P(BL2|ref) P(BC|ref) 

SC/SL 100 0 0 0 88.3 1.8 0.8 9.1 

BL1 3 96 1 0 3 75.1 21.7 0.2 

BL2 3 15 82 0 1.7 21.6 76.6 0.1 

BC 14 0 0 86 14.5 0.1 0 85.4 

Table 1. Confusion matrix and updated probability for Case 1 in 2 dimensions. 849 

 Confusion matrix (%) Mean updated probability (%) 

Scenario SC/SL SC/BL MC/SL MC/BL P(SC/SL|ref) P(SCLBL|ref) P(MC/SL|ref) P(MC/BL|ref) 

SC/SL 93 4 2 1 62.9 18.2 15.4 3.5 

SC/BL 11 88 1 0 18.3 68.2 10.6 2.9 

MC/SL 29 10 51 10 24.2 12 42.7 21.1 

MC/BL 8 6 19 67 9.9 6.1 30 54 

Table 2. Confusion matrix and updated probability for Case 2 in 5 dimensions. 850 

Scenario SC/SL SC/BL MC/SL MC/BL BL1 BL2 BC SC 

Classification 

with SC/SL 70 2 4 1 0 0 0 23 

without SC/SL  4 32 1 0 0 0 63 

Mean updated probability 

with SC/SL 46.2 7.7 14.7 7 0.8 0.4 2.2 21 

without SC/SL  17 26.7 8.3 2 1.4 4 40.6 

Table 3. Classification performance and updated probability for Case 3 in 5 dimensions. 851 
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 852 

Scenario Gravel geometry P(Sci) P(Sci|DERT) – 2D P(Sci|DERT) – 5D 

Sc1 Small channels 0.25 0.2 0.29 

Sc2 Medium channels 0.25 0.18 0.14 

Sc3 Small bars 0.25 0.27 0.27 

Sc4 Big bars 0.25 0.35 0.30 

Table 4: Scenario and updated probability 853 

  854 
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FIGURE CAPTIONS 855 

Figure 1: The eight training images used for the synthetic study are composed of gravel 856 

channels and clay lobes of different sizes, SC stands for small channels, MC for medium 857 

channels, BC for big channels, SL for small lobes, BL for big lobes. BL1 and BL2 have 858 

respectively 30 and 50 % of clay instead of 22%. 859 

Figure 2: 2D MDS maps for the synthetic cases 1 (A), 2 (B), 3 (C) and 3D MDS map for the 860 

case 4 (D). Each color represents a specific prior scenario (TI).  The percentages in 861 

parenthesis quantify the part of the variance represented by the dimension. When the 862 

scenarios are relatively different (A and C), the colors are well differentiated, showing that the 863 

methodology is able to falsify bad scenarios. When scenarios are more similar (B and D), 864 

more dimensions are needed to discriminate reliably the scenarios. 865 

Figure 3: Location of the field site in the Meuse River alluvial aquifer (A and B), of the 866 

boreholes on the site together with the position of ERT profiles and model boundaries (C) and 867 

typical geological logs on the site (D). 868 

Figure 4: The four training image scenarios considered at Hermalle-sous-Argenteau. Sc1 = 869 

small channels, Sc2= medium channels, Sc3 = small bars, Sc4 = big bars. 870 

Figure 5: (A) Inversion results of one typical profile collected on the site. The global 871 

structures are perpendicular to the profiles. The histograms of resistivity (B) show that the 872 

sand facies is the most resistive and that low resistivity values correspond to clay. The 873 

histograms are used to compute the conditional probability (C) of facies given the resistivity. 874 

Figure 6: On the 2D MDS map, the field models fall inside the distribution of simulated 875 

models, showing that all training images are visually consistent with geophysical data 876 
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Figure 7: The updated prior uncertainty was computed using MPS simulations with borehole 877 

data (hard data only) and the probabilities deduced from the MDS map (top). Then, we 878 

introduce ERT data as soft data to deduce the updated and constrained prior uncertainty 879 

(bottom). The latter is used for matching hydraulic heads with PPM. 880 

Figure 8: The data misfit is similar for all the scenarios showing that on the hydrogeological 881 

point of view, all scenarios can explain the observed hydraulic heads. 882 

Figure 9: Individual realizations display various geometrical characteristics corresponding to 883 

their training image-based geological scenario. 884 

Figure 10: The pre-posterior distributions obtained for the four different training show 885 

variations due to the architecture of facies relative to each training image 886 

Figure 11: Posterior distribution (top) and classification (bottom) of the facies considering the 887 

use of geophysical data and the probability of training image scenarios.  888 
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FIGURES 889 

 890 

Figure 1: The eight training images used for the synthetic study are composed of gravel 891 

channels and clay lobes of different sizes, SC stands for small channels, MC for medium 892 

channels, BC for big channels, SL for small lobes, BL for big lobes. BL1 and BL2 have 893 

respectively 30 and 50 % of clay instead of 22%. 894 
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 895 

Figure 2: 2D MDS plots for the synthetic cases 1 (A), 2 (B), 3 (C) and 3D MDS plot for the 896 

case 4 (D). Each color represents a specific prior scenario (TI).  The percentages in 897 

parenthesis quantify the part of the variance represented by the dimension. When the 898 

scenarios are relatively different (A and C), the colors are well differentiated, showing that the 899 

methodology is able to falsify bad scenarios. When scenarios are more similar (B and D), 900 

more dimensions are needed to discriminate reliably the scenarios. 901 
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 904 

 905 

Figure 3: Location of the field site in the Meuse River alluvial aquifer (A and B), of the 906 

boreholes on the site together with the position of ERT profiles and model boundaries (C) and 907 

typical geological logs on the site (D). 908 
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 910 

Figure 4: The four training image scenarios considered at Hermalle-sous-Argenteau. Sc1 = 911 

small channels, Sc2= medium channels, Sc3 = small bars, Sc4 = big bars. 912 
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 914 

 915 

Figure 5: (A) Inversion results of one typical profile collected on the site. The global 916 

structures are perpendicular to the profiles. The histograms of resistivity (B) show that the 917 

sand facies is the most resistive and that low resistivity values correspond to clay. The 918 

histograms are used to compute the conditional probability (C) of facies given the resistivity. 919 
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 921 

 922 

Figure 6: On the 2D MDS map, the field models fall inside the distribution of simulated 923 

models, showing that all training images are visually consistent with geophysical data. 924 
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 926 

Figure 7: The updated prior uncertainty was computed using MPS simulations with borehole 927 

data (hard data only) and the probabilities deduced from the MDS map (top). Then, we 928 

introduce ERT data as soft data to deduce the updated and constrained prior uncertainty 929 

(bottom). The latter is used for matching hydraulic heads with PPM. 930 
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 932 

Figure 8: The data misfit is similar for all the scenarios showing that on the hydrogeological 933 

point of view, all scenarios can explain the observed hydraulic heads. 934 
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 936 

 937 

Figure 9: Individual realizations display various geometrical characteristics corresponding to 938 

their training image-based geological scenario. 939 
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 941 

Figure 10: The pre-posterior distributions obtained for the four different training show 942 

variations due to the architecture of facies relative to each training image. 943 
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 945 

Figure 11: Posterior distribution (top) and classification (bottom) of the facies considering the 946 

use of geophysical data and the probability of training image scenarios. 947 


