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Key points

- The workflow assesses posterior uncertainty in rhade geological scenario
- ERT data is used twice: to validate scenarios amdiiion MPS simulations

- The workflow can be adapted to many contexts anthods

Abstract

In inverse problems, investigating uncertainty ime tposterior distribution of model
parameters is as important as matching data. kentegears, most efforts have focused on
techniques to sample the posterior distributiorhw#asonable computational costs. Within a
Bayesian context, this posterior depends on ther mtistribution. However, most of the
studies ignore modeling the prior with realisticolggical uncertainty. In this paper, we
propose a workflow inspired by a Popper-Bayes gbittny, that data should first be used to
falsify models, then only be considered for matghiwe propose a workflow consisting of
three steps: (1) in defining the prior, we intetpmaultiple alternative geological scenarios
from literature (architecture of facies) and sifgedfic data (proportions of facies). Prior
spatial uncertainty is modeled using multiple-pog#ostatistics, where each scenario is
defined using a training image. (2) We validateséhprior geological scenarios by simulating
electrical resistivity tomography (ERT) data onlidions of each scenario and comparing
them to field ERT in a lower dimensional space.this second step, the idea is to
probabilistically falsify scenarios with ERT, meagithat scenarios which are incompatible
receive an updated probability of zero while conig@tscenarios receive a non-zero updated
belief. (3) We constrain the hydrogeological modéth hydraulic head and ERT using a
stochastic search method. The workflow is appleed synthetic and a field case studies in an
alluvial aquifer. This study highlights the impart@ of considering and estimate prior

uncertainty (without data) through a process obphulistic falsification.
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1. Introduction

Solving spatial inverse problems in the Earth Smsiremains a considerable challenge in
particular when uncertainty quantification in tleerh of multiple Earth models is required. In
a Bayesian framework, multiple models can be obthiny sampling a posterior distribution
formulated as the product of a spatial (geosta#iftprior and a likelihood function
depending on data and model errors. Many effong lbh&en done in recent years to propose
efficient sampling techniques often based on Mai€btnain Monte Carlo [e.gFu and
Gomez-Hernande2009;Mariethoz et al.2010;Hansen et a).2012;Vrugt et al, 2013;
Lochbunhler et al.2015]. However, most of these techniques becamepatationally
prohibitive if the forward problem takes hours ofrgputing time for one single model

evaluation, such as is often the case when ingedymamic flow and transport data.

In addition, when uncertainty is important, thegsed solutions may be strongly dependent
on the formulation of the prior distribution of madd. In case geostatistical algorithms are
used to model complex 3D heterogeneity on largésgguch prior is rarely available
analytically or of closed form or parametric exgiess. Moreover, due to the nature of
geological interpretation and the nature of classiifon of geological systems, the prior
uncertainty is often hierarchical. Based on well geophysical data, hydrogeologists
speculate on the nature of the depositional systeanoften form scenario-type hypothesis. In
reservoir geology, a scenario can be seen as aliezrunderstanding of subsurface
heterogeneity leading to alternative parametendefns for subsurface modelinilfrtinius
and Naess2005]. Within each scenario, one may then defiitkin-scenario spatial
uncertainty, usually generated through geostadistilgorithms. Most methodologies are
focused on inverse modeling within a single limigegnario (e.g., a multi-Gaussian with
variogram parameters or a single Boolean modehtitiefn) and ignore the discrete

uncertainty related to the scenario itself.
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Scenario uncertainty in hydrogeological inversebpgms has been extensively studied in the
past decades and is generally investigated usiggdtan model averaging (BMA) [e,i(e et
al., 2004;Li and Tsaj 2009] or generalized likelihood uncertainty estiton (GLUE) Beven
and Binley 1992, 2014 and reference therein] or a combinaifdoth [e.g.Rojas et al.

2008]. The basic idea of GLUE is to run many scesahat reproduce equally well observed
data and to compute on that basis a likelihoodnegion. Monte Carlo simulations are
performed through the different scenarios and &igdized likelihood measure is calculated
for every proposed model according to its perforoeaio reproduce observations. These
likelihood estimations are normalized and use fitdaucumulative density function
expressing the uncertainty for some predictiontheimodels. Models with a likelihood

below a threshold are generally rejected. The ghaeerequires a large and often practically

prohibitive amount of simulations including thodedgnamical data to reject some scenarios.

The BMA uses a more common Bayesian framewblideting et al. 1999]. To estimate the
joint uncertainty, BMA combines the uncertainty it a scenario with the uncertainty
regarding the scenario itself. Both uncertaintyetypare estimated through sampling the
posterior distribution with Monte Carlo simulatior@iven the high computational demand,
many authors limit uncertainty analysis to the maxmn likelihood BMA Neuman 2003].
Through the procedure, scenarios with low postgmobability may be rejected. As in
GLUE, many simulations are required to identifyansistent scenarios. For an overview of

uncertainty analysis in hydrogeology, the readezgeferred tdRefsgaard et a[2012].

In this paper, we propose a workflow for assesamgertainty of the hydrogeological model
that includes prior to inversion, a process of pimlistic falsification of scenarios. A Popper-
Bayes philosophy proposed for the Earth Sciencekabgntola [2006], states that data should
first be used to falsify models, then only be cdased for matching. The aim of this process

is to maintain realistic uncertainty by first statia very wide prior (step 1 below), then
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narrowing that prior by falsification (step 2 belowl he proposed process requires matching
data (step 3 below) after falsification, and theduces significantly the computational cost
when compared to methods such as GLUE or BMA. &tize we proposed a

strategy/workflow based on three steps:

1) Construction of a geologically informed spatialgprihrough the definition of
alternative geological scenarios quantified as ipleltraining images. Within
scenario, variability (spatial uncertainty) is miatkeusing multiple-point geostatistics
(MPS).

2) Validation of the prior with geophysical data (etezal resistivity tomography - ERT)
and estimation of an updated probability assigoeshth training image (with
possibly some training images being rejected/fiaid)f

3) Matching dynamical data considering scenarios itiias using a stochastic search

method termed probability perturbation.

In the first step, we generate alternative geoklgicenarios from literature data as well as
some site specific data to propose various plagiséaies architectures scenarios. Facies or
hydrofacies-based approaches are common in hydaggefe.g.,Fogg et al., 1998;
dell'Arciprete et al, 2012;Zhang et al.2013] and are generally used to reproduce complex
geological architectures such as multimodal distrdns which are difficult to reproduce with
Gaussian distributiond/[cKenna and Poeted 995]. Multiple-point statistics (MPS)
[Strebelle 2002;Caers and Zhang2004;Mariethoz and Caer2015] was chosen for its
ability to easily condition to data and for its léito reproduce curvilinear and
interconnected structuredyi and Chugunovi&008;dell’Arciprete et al, 2012] often
encountered in aquifers. MPS has already been ssictly applied in groundwater studies
[e.g.,Feyen and Caer2006;Ronayne et al2008;Huysmans and Dassargye$09, 2011].

The various scenarios will be quantified througtistrete set of training images. We

6
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generate, within scenario, variation (spatial utaety) by stochastic simulations with each
training images using the SNESIM algorith8trebelle 2000, 2002]. The method is
dependent on the choice of the training image amtd its uncertainty should be considered
[Feyen and Caer006;Park et al, 2013;Scheidt et al.in pressKhodabakhsi and

Jafarpour, 2013].

Ideally, Bayesian inverse models require a priat th data-agnostic. However, this may also
entail that the prior space is very large and fbgshat some part of this prior is simply
inconsistent with data. Therefore, in the secorg,stie validate prior geological scenarios
(training images) using geophysical data. Geoplaysiethods may provide spatially
distributed information on subsurface petrophyspraperties and may thus be used to
validate the architecture of prior scenarios. Mgpecifically, potential-based methods such as
electromagnetic or DC resistivity methods are comimased to characterize aquifers [e.g.,
Robert et al.2011;Hermans et a).2012;Doetsch et al.2012]. However, geophysical
techniques provide indirect information on smadleale geological heterogeneity represented
by training images. We transform prior scenarids nesistivity distribution scenarios

through forward and regularization-based geophi/sivarse modeling to validate them with
field ERT coming from the study site. The comparnigomade through distance calculation
and projection into a low dimensional space touate the probability of each scenario given
field ERT dataPark et al, 2013;Hermans et aJ.2014]. This consistency step between prior
scenarios and secondary data also ensures thdtyggogpcan be used to constrain the
stochastic simulations as soft data in the thieg sif our strategy. The performance of this

falsification procedure is first assessed usingdases where the reference model is known.

The third step is most common in inverse modeNiig.constrain the updated prior
uncertainty with dynamic data, namely hydraulicdegand geophysical data. The integration

of dynamic data such as hydraulic heads or tra@aidthrough curves is not straightforward

7
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in geostatistical methods (see Zhou et al. [20@4hfreview). The relationship between the
simulated parameter and the dynamical data is araid requires to solve a non-linear
spatial problem including flow (and possibly traogp equations. Several methods are
available to solve such problems, under some gpatial constraints (e.g., variograms or
training images) such as the pilot-point method.[ee Marsily et al. 1984], the gradual
deformation method [e.gRoggero and Hu1998] or Markov chain Monte Carlo simulations
[e.g.,Irving and Singha2010]. Among them, the Probability Perturbatioathbd (PPM)
[Caers 2003] is a Bayesian stochastic search techniaglleswited to integrate dynamical
data in the MPS framework and successfully apphexkveral real-field cases [e.Bloffman
et al, 2006;Caers et al.2006;Ronayne et al2008;Park et al, 2013]. In the case of discrete
variables Caers and Hoffmar2006], PPM corresponds to a stochastic searchliR$
realizations that match the dynamic data. PPM jdiegh within each considered scenario to

search for MPS realization matching hydraulic heads

In the next section, we provide an overview oftdwhnical components of the entire
workflow. Next, the performance of the falsificatiapdating procedure is assessed using
synthetic cases. Then, the proposed workflow usithted using a field example located in

the alluvial aquifer of the Meuse River in Hermallaus-Argenteau, Belgium.

2. Technical Details of the Workflow

2.1. Modeling the posterior distribution with scenaios

We consider the inverse problem in hydrogeologsnatching hydraulic heads dddgeaq
given some uncertain prior spatial constraints. dineof the proposed workflow is to model
the posterior distribution considering jointly thecertainty in the facies modél and in the
geological scenari8c In this process, we consider the use of geopalygimographic data

(electrical resistivity tomograph¥)err.
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The problem is decomposed in two parts: the figst |3 to assess the probability of the
geological scenarios given geophysical d®(&G|Der). This is used to determine how many
realizations of each scenario should be used 1d the posterior distribution. The second
part is related to the pre-posterior uncertaintyafioy given scenariB(M |SG,Dert Dhead)- The

latter is calculated using PPM with MPS simulatiocnsastrained with geophysical data.

Then, we combine those two terms to derive thegpstdistribution considering the

uncertainty in geological scenarios
N

P(M, SCID crr Dyg )= PM | S ¢ D ype) R SP ) (equation 1)
i=1

where N is the number of geological scenarios. Equationriesponds to a weighted sum of
individual pre-posterior distributions. This equaatiis similar to the BMA approach, except

that the ternmP(Sg|Dery) is calculated before inverse modeling.

In this workflow, we do not validate geological seeios with hydraulic heads; we assume
thatDegrr, given its spatial distribution, is more informegtiabout the scenario varial8e
thanDneag, because of the spatial nature of geophysical daite thaDerr is used twice in
the workflow: 1) to validate globally the geolodicaenarios 2) to constrain locally MPS

simulations.
2.2. Construction of a spatial prior with multiple alternative geological scenarios

The construction of the prior with alternative geptal scenarios is based on the generation
of several training images representing uncertaieiyted to interpretation of geological
heterogeneity. Hydrogeologists may postulate ségeemarios, constructed from conceptual
understanding and based on analog databases ¢ngtaformation of geometric shapes,

spatial positioning and other important elementsutfsurface heterogeneity [degchard et
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al., 2002;Kiessling and Fligel2002;Gibling, 2006;Kenter and Harris 2006;Jung and
Aigner, 2012;Pyrcz et al. 2008;Colombera et a).2013. In the following, we will refer to a
specific geological scenario &g withi =1, 2,..., N We will use Boolean simulation

[Maharaja 2008] to generate a training image for each so@na

To generate realizations for a given scenario, $eemultiple-point geostatistics [skE@ and
Chugunova2008]. The (possibly infinite) set of realizatsodrawn from multiple training
images then constitutes our prior. In particulag, wge the SNESIM algorithns{rebelle

2000, 2002] to generate realizations for a givaming image. The SNESIM algorithm relies
on storing frequencies into a search tree, theadlbyiating the calculation of conditional
probabilities in sequential simulation. The metleadily allows constraining to any facies
information (drilling) from wells. In addition, skid soft data in the form of facies
probabilities derived from geophysical data be labde, then such information models can
easily be constrained to such information [e€lgainor, 2010;Castro et al. 2007;Strebelle et
al.; 2002]. However, within our strategy, such constray is only done at the very end, after

falsification of scenarios.

2.3. Electrical resistivity tomography

Electrical resistivity tomography (ERT) dderr are used twice in the process. First, they
are used to validate globally the geological sdesaand update the prior (section 2.4).
Second, they are included as soft data to cong¥&8 simulations in the sampling process

(section 2.5).

The electrical resistivity distribution is obtainafier inversion of electrical resistance data
collected on the field site. A least-square regugion procedureTlikhonov and Arsenijn
1977] is used for the deterministic inversion cfiséance data. For the field study, we used

the model parameter covariance matrix as regulamizaperator and a reference model in
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inversion to improve the inversion results compacethe traditional smoothness constrained
inversion [sedHermans et a).2012;Caterina et al. 2014]. This ensures that our ERT
inversions are more informative and provide betstimates of the true resistivity

distribution.

For constraining MPS simulation, the electricalsegty distributionDggr is transformed

into conditional facies probability map¥M |Dert). The latter is computed using the
comparison of co-located values for both geophygaeameter and facies. This probabilistic
approach avoids the definition of a petrophysieddtionship linking the geophysical
parameters and the facies or hydrogeological paeamnteeveral studies have shown the
limitation of using such a direct link in tomograpimethods to derive hydrogeological
parameters due to the regularization and spatralfiable resolution inherent to those
methods [e.gDay-Lewis et al.2005]. Synthetic simulations relationships weregppsed to
overcome those limitationdfoysey et aJ.2005;Singha and Moyseg006]. To avoid
regularization, one has to consider coupled ineerschemes where the hydrogeological
parameters are transformed to geophysical parasyetEng a petrophysical relationship, to
check that geophysical observations are fitted [Elignel et al, 2010;Irving and Singha
2010]. Recently, it has been proposed that geopalysnaging could be improved through
physically-based regularization using syntheticudations and principal component analysis
(PCA) [Oware et al. 2013]. Although very promising, these technigliage been mostly
demonstrated in synthetic test cases or relatsiefple field cases where the processes and

conceptual models are well known.

In the traditional soft data approach, each vafuesistivity will correspond to a certain
probability of observing the different facies. Tissa conservative approach because it does
not impose facies or parameter values. The defagds probability maps integrate

uncertainties related to ERT inversion, includihgge linked with the regularization operator.
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One limitation is that the loss of resolution watbpth for surface arrays is globalized. Taking
into account resolution loss more accurately waatflire sufficient borehole data to estimate

the resistivity distribution of the different fasiaccording to depth, resolution or sensitivity.

2.4. Falsification and updating of scenario probalbity

The initial set of training images, defined fromaboy information may be incompatible with
actual subsurface data, such as dynamic or geagahyiita, and the initial (often
equiprobable) training image probabilities neebde¢aipdated once subsurface information is
consideredPark et al.[2013] proposes a Bayesian method for updatingrtial

probabilities with subsurface data (in their cageainic flow data in an oil reservoir) and to
reject training images deemed incompatible witlvfttata.Scheidt et alfin press] used the
same method to falsify scenario of turbidite resgrusing a new drilled well. The method
was adapted biermans et al[2014] to deal with geophysical data and is siyadviewed
here. The idea is to compute the probability ofepbisg a specific training imadgeg given
some observed geophysical dBtar: P(Sc=S¢@Dert) = P(SG|Derr) in @ lower dimensional

space. The falsification procedure can be summaiizéhe following steps:

1. Consider N scenarios with equal probabiR{56)=1/N. A set of unconditional
geostatistical realizations are constructed foheate.

2. From field knowledge and analogs, a value of geejglay parameter is assigned to
each facies. This is the responsibility of the dgjcist to choose a coherent value;
otherwise, the method may be misleading.

3. The forward geophysical response is calculated.

4. Simulated and field geophysical data sets are fadarsing the same inversion
parameters (e.g. section 2.3. and reference theacegenerate simulated and field

inverted geophysical models.
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5. The pair-wise Euclidean distance between any twwlsited inverted models and
between any simulated inverted model and fieldteeemodel is calculated and
stored in a distance matrix D.

6. The simulated and field inverted models are prega a lowed-dimensional space,
using multidimensional scaling (MDSB¢rg and Groengn2006;Caers 2011].
Multi-dimensional scaling approximates the abovelifliean distance with a lower
dimensional Euclidean distance in Cartesian spaitgyuhe eigen-value
decomposition of D. MDS therefore reduces the dsmamof the data variab@grr
to a newd-dimensional variabl® grr of much lower dimension. The actual observed
field dataD erT obs Can also be mapped into this lower dimensiort.fHlis outside the
distribution of simulated models, this indicatedtthone of the training image is
consistent with the data. Because a Cartesian spaosv constructed and mapped,
density estimation can proceed directly in thatdodimensional space.

7. Adaptive kernel smoothing [s&&ark et al, 2013] is applied in thd-dimension space
to estimate the probability density of the datdalae for each training image

f(Dgrt[SG). This allows calculating the probabiliB(Sg|Dert) using Bayes' rule:

D - : f (Derr = Derrons | SG) RSO
P(S¢Dexr) = P( S ERT,obs): P(S¢ | Dear = Dinr ops) = ——1- *ERT, bs | OG
> (Deer 1S6) RSO
i=1

(equation 2)

The scenarios for which this probability is verwlare falsified by the data.

The main idea of this method is to reduce dimenbesed on a distance defined between
multiple geophysical inversions and the actuabifighta. Then, we calculate scenario
probability. Note that at no point does the metballifor matching modeld\|) to data

Dert obs At this point, some scenari@g with a very low probability can be rejected due to
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their inconsistency with available subsurface dtate that this step does not require the

simulation of dynamical data, which leads to a gigant gain of computing time.

For some geophysical methods, step 4 can be avaitthe distance calculation can be
made directly on the geophysical data. HoweverERI, the voltages or apparent
resistivities are highly dependent on the resistigf the very-shallow subsurface.
Consequently, two identical models differing onlythe “first” layer resistivity would have a
large distance in the apparent resistivity evehefr true resistivity distribution is relatively

close.

2.5. Sampling with the Probability Perturbation Method

We now focus on the pre-posterior telRfM |SG,Dert,Dread) in €quation 1. At this stage one
could opt for sampling methods [e.5y and Gomez-Hernande2009;Mariethoz et al.
2010;Hansen et a).2012;Vrugt et al, 2013] but given the subjective nature of the piitas
our opinion that accurately sampling from a postedistribution which itself relies on
considerable (subjective) geological prior intetatien is not desirable. In addition, sampling
requires the evaluation of 1000s of forward modebkrwhich is impossible when the forward

models takes hours of computing time.

Instead, we opt for a stochastic search methode@pnobability perturbation method (PPM)
[Caers 2003]. The aim is not for a rigorous sampling fouta broad search of the prior space
for realizations that match the hydraulic head datahort PPM, much like gradual
deformation Caers 2007], allows for perturbation of an initial mddé into a new model

M’ , without destroying the prior geological scenahioother words, the perturbation is a
sample of the prior. What is ignored in PPM istita@sition probability associated with this

perturbation, hence the less rigorous sampling.
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At this stage, samples of the prior are generaitid MPS sequential simulations with ERT

probability maps used as soft data.

PPM is an iterative process which stops when thectibe functiong reaches the targeted

levele:

K
z (hEbs _ hlfalc) 2
k=1

Q= " <& (equation 3)

where K is the number of observation point§°tis the K" observed hydraulic head ahg®"®
is the K" calculated hydraulic head. We performed groundwfides modeling with

HydroGeoSphereTlherrien et al. 2010].
3. Synthetic study

In this section, we propose 4 synthetic experimgrdse 1 to case 4 below) to assess the
falsification/updating procedure in controlled s@is. In contrasts witRark et al.[2014] and
Scheidt et alfin press] who validated their procedure with tegction sampler, we propose
here to analyze the performance considering a langgber of reference truths (true Earth
models). The aim is to analyze the sensitivityhaf inethod to identify the training image
belonging to the reference truth as well evalulageupdated probabilities as calculated from

our method.

Within this synthetic study, we will consider 8fdifent training images representing alluvial
deposits (Figure 1). They are all based on a backgf facies made of sand and a
combination of gravel channels and/or clay lobdse® sizes of channels (small (SC),
medium (MC) and big (BC)) and two sizes of lobaadl (SL) and big (BL)) are considered.
For example, the scenario with small channels a¥gls and small clay lobes will be

identified as SC/SL. If not specified, the propomns of gravel and clay facies in the training

15
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image are respectively 20% and 22%. The facies assigned a value of logarithm of
resistivity (in Ohm.m) equal to 1.95 for the clagies, 2.2 for the sand facies and 2.65 for the

gravel facies for calculating their ERT response.

The set-up of the synthetic case mimics the fialskeqsee sections 4 and 5): a 10 m thick
alluvial aquifer with cells 0.5m thick and 1m wideRT data are simulated using profiles of
64 electrodes with 2m spacing (126 m length) adgbale-dipole configuration. Noise was
added on the resistance data to a level simildre@ne encountered on the field (0.25%)

before inversion.

100 different models are considered for each tngimnage/geological scenario. For each
experiment, all the models are subsequently usedeference truth model and the updated
probabilities are computed. We assess the abilitfjeomethod by computing a Bayesian
confusion matrix. This matrix states how many med#lSg are classified aSg. An identity
matrix would correspond to a perfect classificati&milarly, we compute the mean of the

updated probabilities over models from the sam Bissess the performance of the method.

3.1.Case 1: Prior containing distinctive geologicacenarios

For this case, we consider 4 different trainingges one with three facies and three with two
facies: SC/SL, BC, BL1 (proportion of 30%) and B{p2oportion of 50%). The 4 considered
scenarios are clearly different in terms of fagieemetry and resistivity distribution; hence
we use this case to test how well the proceduradsntify the true scenario. The
corresponding 2D MDS map (Figure 2A) shows thatdifferent scenarios are clearly
identified in as few as two dimensions (representimore than 95 % of the variance). Table 1

summarizes the Bayesian confusion matrix and thenraedated probability.

The confusion matrix for this case illustrates timatre than 90% of the models are correctly

classified using the updating procedure, with amygabability over 75%. It also illustrates
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that scenarios with very differencing facies geamst(channels vs. lobes) can be falsified
using the procedure. This shows how the falsifozatvith geophysical data is able to indicate

which scenarios should be rejected.

3.2.Case 2: Prior containing geological scenarios witkimilarities

For this case, we consider 4 different traininggesmwith three facies and similar
proportions: SC/SL, SC/BL, MC/SL, MC/BL. The diftarce between these 4 scenarios lies
only in the geometry of the facies. Because ofdtssilarities, this represents a more
challenging case for the falsification proceduree Torresponding 2D MDS plot (Figure 2B,
the crosses are used later in Case 4) represdyptd ¥ of the total variance. Considerable
overlap between scenarios with the MDS plot can hewbserved. Table 2 shows the

confusion matrix and the probabilities for 5 dimens (73 % of the variance).

In this case, the methodology, on average idestd@rectly the training image used to
generate the reference model. However, given théasities among the training images, the
misclassification is more abundant. The mean prtibab are around 60% when calculated
in 5D. When the scenarios are more alike, to afltana good discrimination, it is necessary
to consider higher dimensions for calculating updairobabilities. In this specific case,
calculating in 10 dimensions (90% of the variarad&ws to discriminate the scenarios as

well as in Case 1.

Geophysical data is not always able to identifydbeect training image because of spatial
uncertainty. Due to the particular arrangementeafiggical bodies in space, one scenario
may look like another based on the limited resolutieophysical data. This justifies the idea
of considering several scenarios since retainisigpgle scenario may yield too small

uncertainty in the modeling and hence later indasting.

3.3. Case 3: Prior containing geological scenarigamilar to the reference Tl
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For this case, we consider the seven training imafji€ases 1 and 2 and an additional
training image with small channels (SC). We onlpgider as reference scenario the scenario
SC/SL. The idea is to test the behavior of the wathogy when the reference scenario is not
included in the prior, but consistent ones are MIDS map (Figure 2C) shows that some
scenarios are clearly falsified while others seemststent. Table 3 summarizes the
classification performance and mean probability mvtiee reference Tl (SC/SL) is included,

or not, for five dimensions (94% of the variand&)r the latter case, models from SC/SL

were taken out of the prior for MDS map and updatexbability calculation.

The methodology correctly identifies the referetraning image if it is included in the prior.
When this is not the case, the highest probalslaie assigned to those training images
sharing at least one element in common with theregice training image: SC, MC/SL and to
a lesser extent SC/BL. The methodology is thus tbidentify geological scenarios
consistent with the reference truth model. In lxatbes, the falsification procedure rejects

inconsistent training images.

3.4.Case 4 :Prior containing geological scenarios distinct fronthe reference Tl

The last case considers the four training imagas f€ase 2 as part of the prior but uses
models from the training image BL2 as reference @imdVe test here what happens when
the geological scenarios of the prior are all irgistent with the reference truth model. Figure
2B shows an example of the resulting 2D MDS maputting 2 reference truth models
(crosses). One of the models lies outside theiloigion of the prior, this is an indication that
the prior is not consistent with geophysical d&tar. the second model, the inconsistency only
appears in 3D (Figure 2D). It is now up to the med® decide whether such training images
should be excluded. In such a case, calculatingtepdorobabilities is worthless. A new prior

should be drawn with consistent geological scesario
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4. Field site

Field data used in this study are from an expertaiesite of University of Liege located in
the alluvial aquifer of the Meuse River, in Herneadlous-Argenteau (Belgium) near the

Dutch-Belgian boarder (Figure 3A and B), betweanNhteuse River and the Albert Canal.

4.1. Building prior geological scenarios

According to geological and hydrogeological invgations Haddouchj 1987;Rentier 2003;
Battle-Aguilar, 2007], the deposits of the Meuse River are masfhyesentative of braided
systems but structures characteristics of meanglsgistems are also possible. Deposition is
mostly composed of sandy gravel. Heterogeneithéndeposits is characterized by zones of
clean gravel (and pebble) having a higher hydradieductivity and zones composed of
loam, clay and clayey gravel of lower hydraulic doativity. The latter are remaining of old

and eroded floodplain deposits, crevasse splagidarhannels filled with fine sediments.

A facies description is available for 23 borehaleshe site (Figure 3C). Alluvial deposits are
10 m thick and lie on a bedrock composed of Visamah Houiller shales and schists. The

boreholes were drilled down to the bedrock.

Globally, the deposits are divided in three maiitsuflayers). The first unit is 0.5 to 5 m thick
and is composed of fluvial loams. The second @ntoimposed of sandy gravel and the third
unit is mainly made of clean gravel with large deeiric pebbles (Figure 3D). According to
borehole logs, one of the two last units may nadteand their thickness varies with their
location. However, previous studies made on theevgith solute tracer testBijouyére 2001]
and heat tracing experimentdgrmans et aJ.2015;Wildemeersch et al2014] have shown
that heterogeneity exists inside these predefimits and that a simple model with three
horizontal layer is not sufficient to catch hetexngity realistically. Therefore, we used

training image-based scenarios to model the prior.
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Three facies are defined: a clay/loam facies cpmeding to low hydraulic conductivity
deposits, a sand/sandy gravel facies having amieiiate hydraulic conductivity and a
gravel facies with high hydraulic conductivity. Theralysis of borehole shows that the

proportions of these facies in Hermalle-sous-Argauntare respectively 18, 40 and 42%.

From geological descriptions of the alluvial dep®sif the Meuse RiveHaddouchj 1987;
Rentier 2003;Battle-Aguilar, 2007] in the area of Liege (Belgium) and fronenpiretation of
the borehole data, several training images aregsegh Considering that the gravel facies,
with its higher hydraulic conductivity, has the rhogluence on groundwater flow, we
propose two types of training images: one withgreevel facies represented as long
continuous channels, the second one with gravethader, but elongated bars. For each type,
we considered two different sizes for the gravehednts, leading to a total of 4 different

training images (Figure 4). The clay/loam faciegepresented by lobes of various sizes.

4.2. Geophysical data

The geophysical data set is composed of 12 ERTlglgpeofiles (Figure 3C). The profiles

are 126 m long (except for the northern profile etthis shorter) and are separated in the
perpendicular direction by 4 m. They were collectgith 64 electrodes (2 m spacing between
electrodes) using a dipole-dipole configuratiorp@iié sizea < 9 and dipole separation< 7).
The noise level was estimated using reciprocal oreasents and a linear error model was
used to weight data during inversidslgter et al. 2000], which should avoid the creation of

artifacts in the inverted sections.

The profiles were inverted as explained in secBdh The model parameter covariance
matrix was computed based on a spherical variogveima vertical range of 4.4m
(determined using electromagnetic logs performetiénboreholes) and an anisotropy ratio of

2.5 [seeHermans et a).2012]. The reference model was divided in twazumtal zones. The
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first zone represents alluvial deposits (0 to 18apth) and has a resistivity value of 160
Ohm.m. The second zone corresponds to the bednackas a resistivity value of 300
Ohm.m. The two zones are disconnected during irverge. values of parameters lying in

different zones are not correlated.

Figure 5A shows one typical profile collected og #ite. In the north-eastern part of the
profile, a low electrical resistivity zone corresyis to thick, clayey and loamy deposits.
Below, the deposits are characterized by two lagedsfferent resistivity. The first one is
composed of sand, the second one is made of giaatekal heterogeneity is visible in both
layers showing that the division of the depositi@mogeneous layers is not satisfying.
Nevertheless, it is expected that the gravel fasipseferentially located at the bottom part of

the deposits.

4.3.Relationship between electrical resistivity andacies

By comparing electrical resistivity and faciesta position of borehole (Figure 5B) a
histogram of resistivity for each of the three &scwas constructed. Generally, a higher
resistivity is observed for gravel facies due te #ibsence, or smaller amount, of fine
sediments having a relatively high surface conditgt| Bersezio et al.2007;Doetsch et a).
2010]. In this case, the sand facies globally hiagler resistivity (240 Ohm.m) than the
gravel facies (140 Ohm.m). The reason lies in Hitene of the gravel facies, which is
composed of large pebbles and has much higher watéent than the sand facies whereas
the amount of fine sediments with non-negligiblgace conductivity is low for both of them.
The clay facies is the only one characterized Bistwity values below 90 Ohm.m. However,
due to the limited resolution of ERT, the clay &calso displays resistivity values in the

same range that the gravel facies.
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The histograms (Figure 5B) are then use to comiatéacies conditional probability as
function of electrical resistivity (Figure 5C). Tonstrain MPS simulations, resistivity
distributions in the subsurface (Figure 5A) ar@sfarmed in facies probability maps that can

be used as soft data.
4.4. Hydrogeological data

The hydrogeological data set consists in drawdaweasured in 9 of the boreholes (Old
piezometers in Figure 3C) screened on the whobtkrleiss of the aquifer after reaching
steady-state conditions during a pumping test.ddwendaries of the hydrogeological model
are drawn in Figure 3C. The model is 167 m x 93 b®xn. MPS simulations were drawn on
a grid size of 1 m x 1 m X 0.5 m (310620 cells)eThoundary conditions are imposed
hydraulic heads extracted from a regional flow m¢Beouyére 2001]. A recharge of 300
mm/year is considered. The hydraulic conductiviteach facies is chosen according to our
prior knowledge of the site and a sensitivity asaythey remain constant during PPM. The
hydraulic conductivity of the gravel facies is thest sensitive parameter. We imposed a
value of 5.1F m/s for the gravel facies, Tan/s for the sand facies and /s for the clay

facies.

5. Application of the workflow to the field case

5.1.Updating of training-image scenarios

The four training image scenarios proposed foffigld site (Figure 4) have the same prior
probability of 0.25. To compute the MDS plot andfpen kernel density estimation, we
simulated 24 sections for each training image,ifeatb a total of 96 simulated facies models
from the prior. The number of simulated models @@mpromise between the time to produce

the MDS map and its representativeness. The nuailmeodels must be sufficient to estimate
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the density distributiof(Dert|SG) in the chosen dimension. The larger the amountadels

used, the more precise the estimate is.

According to field observations (Figure 5B and &yalue of resistivity was assigned to each
facies: 100 Ohm.m for the clay facies, 140 Ohm.ntHe gravel facies and 240 Ohm.m for
the sand facies. Then, for each simulated resigtmodel, electrical resistances were
simulated. Noise was added to the data accorditigetéevel measured on the field with
reciprocal measurements. Simulated data sets weeetéd with the same procedure as field

data sets leading to 96 geophysical models.

Based on the distance matrix calculated with tlsgeophysical models, an MDS plot is
drawn in 2 dimensions (Figure 6). In this plot, tber scenarios are characterized by a color
code. Field models are represented by black squaréss 2D projection, the field cases fall
in the distribution of training images-based sceneases, hence none of training images can
be visually falsified with the ERT data. We obsettve effect of varying the training image:
models fromSg occupy the bottom part of the plot, whereas f@enare concentrated in the

right part.Sg andSg have a higher density in the middle of the plot.

The analysis of the eigen-values spectrum of te@dce matrix obtained with MDS enables
to select the dimensions in which kernel densityrestion will be performed. The higher the
dimensiond, the higher the considered variance is and theeslahe distance in tide
dimensions is to the real distance. The 2D prajactepresents slightly more than half the
total variance. More than 85% of the total variaisceeached at the fifth dimension. Then the
contributions of eigenvalues decrease significamlyte that we do not aim to reach 100% of
the variance, mainly because not only the geolbgmenario influences the results (what we

want to quantify) but also the methodology itselidesirable effect): the choice of the
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distance metrics, the noise on the data, the gesiqddyparameter values and the number of

simulated cases.

The probabilities of scenarios were calculated fi@mel density estimation. We aggregated
the contribution of individual profiles (each blasuare) to come up with a single probability
for each scenario. The results are summarizedlaheTa According to ERT data, the lowest
probability is assigned t8¢. However, its probability of 14% is not sufficigntow to falsify
this geological scenario. The three other scen&ave quite similar probabilities with 29, 27
and 30% foiSg, Sg andSg, respectively. Using the 2D map would have ledrno a

overestimation of the probability & andSg and an underestimation 8f.

Prior uncertainty is represented by generatingiplialtealizations from each scenario, but
taking into account the updated probabilities dbl€at. Figure 7 (top) shows the probability
of the gravel facies considering those updatedabities. It consists in 100 independent

realizations. The number of realizations per sdenarmiven byP(S¢|Dgg; )% N, with Ny

equals the number of desired realizations, 10@i;dase. This updated prior takes into
account the uncertainty related to training imaggelol scenarios and the facies observed in

boreholes on the field which are considered heezgain.

This updated prior is then constrained with sofadeom ERT Dgrt. This constitutes the
updated/constrained prior or pre-posterior distidouP(M |SGDert). Models going into PPM
for matching hydraulic heads are sampled fromdrsgibution. As can be seen from Figure 7
(bottom), adding spatially distributed informati@uch as geophysical data, reduces prior
uncertainty where boreholes are not available. Wherspecific data is available (hard or

soft), the probability of gravel is close to thepegted proportions (42%).

5.2.Matching hydrogeological data
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In matching the dynamic head data with PPM, thgetiaxd level of the objective function was
set to 0.015. This level is easily reached in aifevations through the PPM process for all

the scenarios (Figure 8).

Models drawn from the updated prior distributior anatching data belongs to the posterior
distribution. Individual realizations have diffetegeometrical characteristics depending on
the training image used for simulation (FigureF)r Sg andSg, there are continuous

channel-shaped gravel bodies crossing the m8deandSc have larger gravel zones.

The pre-posterior distributioR(M |S¢,Dert,Dhead Can be calculated by averaging the facies
indicators (0 or 1) over multiple realizations thatch the hydraulic head data (see Figure
10). These 3D probability cubes differ for eaclinirey image-based scenario. This shows
that the training image uncertainty is importard arfluences strongly the results. In this
case, we observe how scenarios with big elem&gs0dSa) lead to wider and more

continuous zones where the probability of gravéiigh.

5.3. Computing the posterior distribution

The posterior distribution is computed using equafi (Figure 11) considering a number of
realizations coherent with the valueR{5¢|Dert) from Table 4. Based on the posterior
probability distribution, a classification modelgsoposed just for visualization. The most
probable facies is assigned to each cell (FiguyeTHis result confirms that the proportion of
gravel tends to increase with depth whereas samwis abundant in the upper part of the
deposits, but that lateral heterogeneity existhiwithe deposits. Except near the surface,
where a large clay zone is observed, clay only afgpas small anomalies in the proposed
classification model. This is also an effect of imer proportion of clay compared to the two

other facies.

6. Discussion and Conclusion
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We propose a workflow in three steps to solve tiverise problem of matching hydraulic
heads and model the posterior distribution considgointly the uncertainty in the facies

model and in the geological scenarios:

1) Construction of a geologically informed spatialgorwith multiple scenarios
2) Validation/falsification of the prior with geophysil data
3) Matching dynamical data considering scenarios bitiias and geophysical data

using a stochastic search method

The originality of the method lies in the use obgkysical data both to validate/falsify
geological scenarios and to constrain geostatistedizations and to perform this in a
manageable computational time for practical fieddes. The method is sensitive to the
geophysical parameters used to produce simulatei@ison the falsification procedure. They
should be chosen carefully to avoid eliminatinggistent scenarios. We have successfully
assessed the validity of the method on 4 syntlesiccases and demonstrated its applicability
on a case study in an alluvial aquifer using MP&RRM. However, one of the workflow’s
strength is its adaptability. The workflow is nhited to training image-based scenarios, step

1 can be based on variogram-based scenarios athaygeostatistical methods.

The falsification procedure causes an additionalmatational cost, but it is relatively small
compared to the time required by the hydrogeoldgmeerse procedure. The additional cost
is related to the forward and inverse modelingyoitisetic geophysical data. As an example,
the falsification procedure for the field case riegd 96 synthetic models. It was run on a 3.07
GHz computer with 8 GB RAM in 8.5 hours without gléelization. The MDS procedure

only takes a few minutes. As a comparison, the tonzalibrate one model with PPM on the

same computer, given the size of the 3D modelstakeut 3 hours. The cost increases when
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more synthetic models are used and is highly degrgrmh the type of data used for

falsification. It can be easily estimated knowihg time needed for one synthetic model.

Similarly, the application of MDS mapping for thalculation of probability in step 2 is not
limited to the use of geophysical data. One mayliomboth geophysical and informative
hydrogeological data sets, to assess the probabflgécenario$(SADert,Dhydro) OF €VEN use
hydrogeological data alone. In this study, we ugsgphysical data only because there are
more informative on the spatial distribution ofiescthan head data. The fast calibration of
models from any scenario suggests that head dataoavery useful to discriminate the
considered scenarios in this case. Transient datddikely be more informative. Actually,
any method relevant to assess the pertinence tdgjeal scenarios could be applied.
Combining different data types would require thérdgon of a distance balancing between
several terms and should result in some refinenmethie falsification/updating procedure to
identify more precisely the most probable scenatitwavever, it would be at the cost of more
computations, hence be more time consuming. @fbephysical techniques, such as the
spectral induced polarization method could alsade, given its high potential for
discriminating facies based on their permeabiftiep 2 strongly depends on the definition of

the distance metrics, the latter could be adap¢peniding on the context.

The application of the falsification procedure @veral test cases highlights that the method
is suitable for the rejection of inconsistent tmgnimages because the reference or field
model lies outside the distribution of the prior.nhost cases, the methodology correctly
identifies the reference training image (highestatpd probability). However,
misclassification due to spatial uncertainty magusaesulting in an incorrect training image
being favored. This illustrates that the geophydieda is not always sufficient to reveal
geological scenarios and that a large prior (séweenarios) is needed to avoid

underestimating uncertainty. The number of simdla®dels should always be sufficient to
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estimate the density distribution in the MDS mathdédwise, updated probability could be

badly estimated.

In the last step of the workflow, any sampling teigue can be considered as long as it can
integrate the probability of geological scenaribsneans that McMC or any other techniques
can be used to sample the pre-posterior distribatamd then combine the results using

equation 1.

In many hydrogeological problems, the model retiegelatively sparse data generally

limited to observed borehole facies. Potential-dasethods such as electromagnetic or DC
resistivity methods are commonly used to charameaguifers but, they are rarely considered
directly in the modeling step. While the MPS franoekvproposes an established way to
integrate soft data, very few hydrogeological stgdiave considered the use of geophysics as
spatially distributed conditioning data in MPS slations [Trainor, 2010]. Our work shows
that the use of ERT as soft data is twofold. Faetstraining MPS simulations with
geophysical data reduces the number of possibleelmdldat are proposed to the PPM
algorithm. It reduces the variability in the primmd subsequently reduces the variability in the
posterior distribution, too. Second, the convergenicthe PPM is increased. This is a non-
negligible advantage regarding the high computatidemand for solving non-linear flow

and transport models.
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848 TABLE
Confusion matrix (%) Mean updated probability (%)
Scenario  SC/SL BL1 BL2 BC | P(SC/SL|ref) P(BL1|ref) P(BL2|ref) P(BCjref)
SC/SL 100 0 0 0 88.3 1.8 0.8 9.1
BL1 3 96 1 0 3 75.1 21.7 0.2
BL2 3 15 82 0 1.7 21.6 76.6 0.1
BC 14 0 0 86 14.5 0.1 0 85.4
849  Table 1. Confusion matrix and updated probability or Case 1 in 2 dimensions.
Confusion matrix (%) Mean updated probability (%)
Scenario SC/SL SC/BL MC/SL MC/BL | P(SC/SL|ref) P(SCLBL]|ref) P(MC/SL|ref) P(MC/BL|ref)
SC/SL 93 4 2 1 62.9 18.2 154 3.5
SC/BL 11 88 1 0 18.3 68.2 10.6 2.9
MC/SL 29 10 51 10 24.2 12 42.7 211
MC/BL 8 6 19 67 9.9 6.1 30 54
850 Table 2. Confusion matrix and updated probability or Case 2 in 5 dimensions.
Scenario SC/SL SC/BL MC/SL MC/BL BL1 BL2 BC SC
Classification
with SC/SL 70 2 4 1 0 0 0 23
without SC/SL 4 32 1 0 0 0 63
Mean updated probability
with SC/SL 46.2 7.7 14.7 7 08 04 22 21
without SC/SL 17 26.7 8.3 2 14 4 406
851 Table 3. Classification performance and updated prioability for Case 3 in 5 dimensions.
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852

Scenario Gravel geometry P(SG) P(Sg|Dert) — 2D P(Sg6|Dgrt) — 5D

Sa Small channels  0.25 0.2 0.29
So Medium channels 0.25 0.18 0.14

Sg Small bars 0.25 0.27 0.27
S Big bars 0.25 0.35 0.30

853 Table 4: Scenario and updated probability

854
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FIGURE CAPTIONS

Figure 1: The eight training images used for the synthetidgtare composed of gravel
channels and clay lobes of different sizes, SCdstémr small channels, MC for medium
channels, BC for big channels, SL for small loli&sfor big lobes. BL1 and BL2 have

respectively 30 and 50 % of clay instead of 22%.

Figure 2: 2D MDS maps for the synthetic cases 1 (A), 2 (B)¢cBand 3D MDS map for the
case 4 (D). Each color represents a specific ggenario (Tl). The percentages in
parenthesis quantify the part of the variance igreed by the dimension. When the
scenarios are relatively different (A and C), téocs are well differentiated, showing that the
methodology is able to falsify bad scenarios. Wéegnarios are more similar (B and D),

more dimensions are needed to discriminate relitd@dyscenarios.

Figure 3. Location of the field site in the Meuse Riveruaial aquifer (A and B), of the
boreholes on the site together with the positioBRf profiles and model boundaries (C) and

typical geological logs on the site (D).

Figure 4: The four training image scenarios considered atrid#e-sous-Argenteau. S&

small channels, $& medium channels, $& small bars, Sc= big bars.

Figure 5. (A) Inversion results of one typical profile cetted on the site. The global
structures are perpendicular to the profiles. Tis¢ograms of resistivity (B) show that the
sand facies is the most resistive and that lowstigdly values correspond to clay. The

histograms are used to compute the conditionalgimitity (C) of facies given the resistivity.

Figure 6. On the 2D MDS map, the field models fall inside tdistribution of simulated

models, showing that all training images are viguabnsistent with geophysical data
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Figure 7: The updated prior uncertainty was computed uMR$ simulations with borehole
data (hard data only) and the probabilities dedutedch the MDS map (top). Then, we
introduce ERT data as soft data to deduce the egdahd constrained prior uncertainty

(bottom). The latter is used for matching hydrabkads with PPM.

Figure 8: The data misfit is similar for all the scenargi®wing that on the hydrogeological

point of view, all scenarios can explain the obedrkiydraulic heads.

Figure 9: Individual realizations display various geomadticharacteristics corresponding to

their training image-based geological scenario.

Figure 10 The pre-posterior distributions obtained for ttoeir different training show

variations due to the architecture of facies reéato each training image

Figure 11 Posterior distribution (top) and classificatidoo{tom) of the facies considering the

use of geophysical data and the probability ohirej image scenarios.
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891 Figure 1: The eight training images used for the synthetidgtare composed of gravel
892 channels and clay lobes of different sizes, SCdstéor small channels, MC for medium
893 channels, BC for big channels, SL for small loli&sfor big lobes. BL1 and BL2 have

894  respectively 30 and 50 % of clay instead of 22%.
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898  parenthesis quantify the part of the variance reed by the dimension. When the
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901 more dimensions are needed to discriminate relidgddyscenarios.
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906 Figure 3: Location of the field site in the Meuse Riveruaibl aquifer (A and B), of the
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Figure 4: The four training image scenarios considered etrmdlle-sous-Argenteau
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Figure 5. (A) Inversion results of one typical profile cetted on the site. The global
structures are perpendicular to the profiles. Tistograms of resistivity (B) show that the
sand facies is the most resistive and that lowstiggly values correspond to clay. The

histograms are used to compute the conditionalgiitity (C) of facies given the resistivity.
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923  Figure 6: On the 2D MDS map, the field models fall insidee tdistribution of simulated

924  models, showing that all training images are viguabnsistent with geophysical data.
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(bottom). The latter is used for matching hydrabkads with PPM.
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933  Figure 8 The data misfit is similar for all the scenargi®owing that on the hydrogeological
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Figure 9: Individual realizations display various geomedticharacteristics corresponding to

their training image-based geological scenario.
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