University of Liège Applied Science faculty Mechanical & Aerospatiale Department

Deterministic Manufacturing constraints for Optimal Distribution in the Case of Additive Manufacturing

Simon Bauduin¹,

Maxime Collet¹, Didier Garray², Denis² Gravet, Pierre Duysinx¹

¹ LTAS-Automotive Engineering Research Group-University of Liège ² Sirris Rue du Bois Saint-Jean 12 BE 4102 Serraing

- Introduction
- Metallic additive manufacturing technologies (LBM, EBM)
- Manufacturing constraints in ADM
- Ulg Eco-Shell motor support example
- Existing solutions and investigation using 88line Matlab code of topology optimization
- Perspectives and Conclusions



Increasing interest in additive manufacturing

- Solution to economical and ecological constraints
- Production time is reduced (idea→fabrication)
- Customization of the product (medical usefulness)
- Geometrical flexibility
- Material flexibility
- Optimization of the functions of the product

https://www.luxexcel.com/3d-printing/medical-3d-printing/

https://www.luxexcel.com/3d-printing/ medical-3d-printing/

http://www.eos.info/ eos_airbusgroupinnovationteam_aerospace_su stainability_study

Reminder

Metallic additive manufacturing technologies

Two studied technologies:

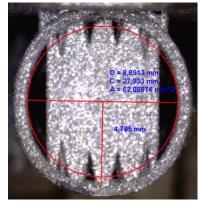
 Laser Beam Melting (LBM) and Electron Beam Melting (EBM)

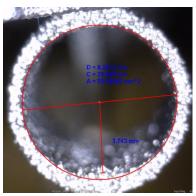
<u>Advantages:</u>

- Large choice of materials (Steel, Aluminum, Titanium...)
- Various widths of layer deposition (20-100µm)
- Good precision
- High geometry complexities achievable

5

de Liège

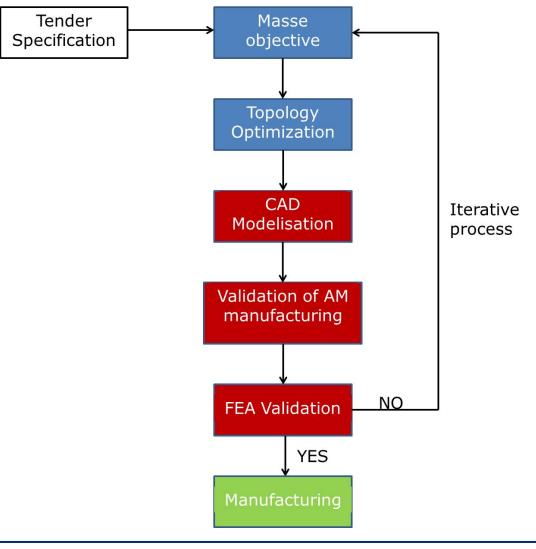

Manufacturing Constraints in ADM



Manufacturing Constraints in ADM

- Constraints caused by metallic additive manufacturing (LBM, EBM):
 - Minimum and maximum width of walls
 - Surface state
 - Post machining of working surfaces and screw thread
 - Overhanging angle
 - Part orientation
 - Dimensions precision
 - Minimum size of canals (powder evacuation)
 - No closed cavities
 - Thermal constraints
 - Support structure needed and removed

Re: Meunier



Ref: Meunier

Manufacturing Constraints in ADM

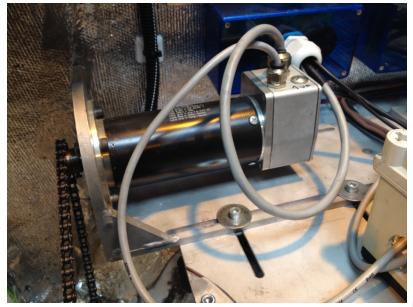
Design process \rightarrow too much manual work versus automation

Université 🔰 🧕

de Liège

8

process


Ulg Eco-Shell motor support example

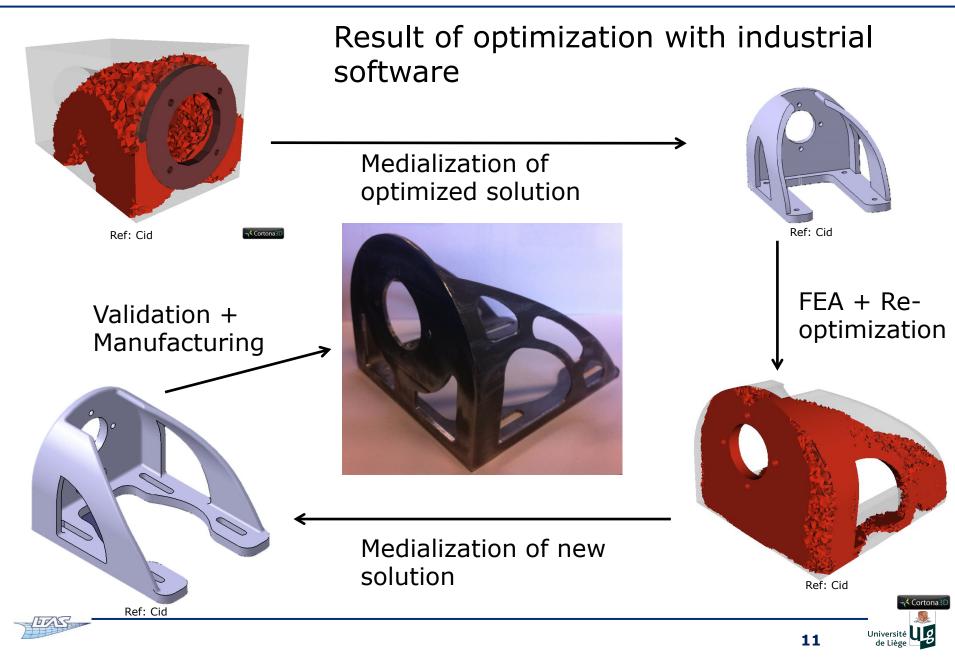
Ulg Eco-Shell motor support example

Design process on Ulg Eco-Shell motor support optimization (Ref: Cid)

Ref: Cid

Definition of:

- The usable volume
- Non optimizable parts
- Boundary conditions
- Applied load (forces, torques)


- Too massive
- Too heavy

Ref: Cid

• Room for optimization

Ref: Cid

Ulg Eco-Shell motor support example

Existing solutions and investigation using 88line Matlab code of topology optimization

Investigation using 88line Matlab code of topology optimization

Reminder Topology Optimization Problem:

 $\begin{array}{ll} \min_{\boldsymbol{\rho}} & : & \Phi(\boldsymbol{\rho}, \boldsymbol{U}) \\ s.t. & : & V(\boldsymbol{\rho}) \leq V^* \end{array}$

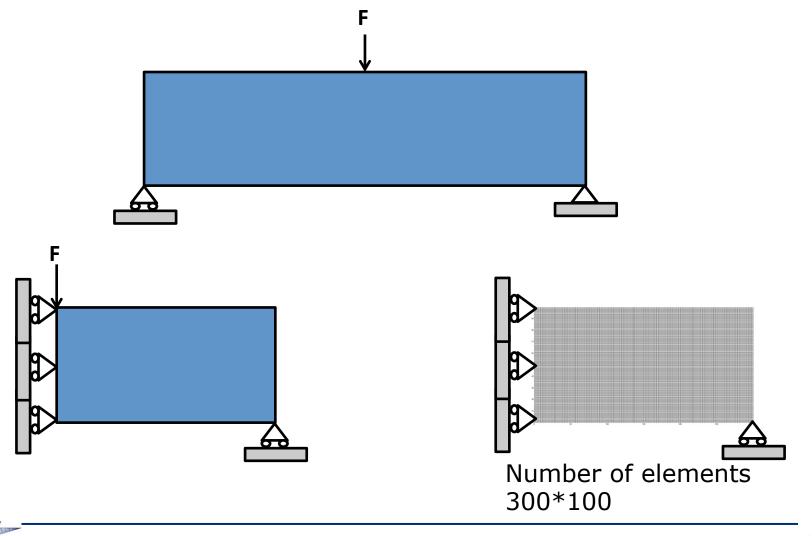
:
$$g_i(\rho, U) \le g_i^* \ i = 1, ..., M$$

:
$$oldsymbol{
ho}_{min} \leq oldsymbol{
ho} \leq oldsymbol{
ho}_{max}$$

 $K(\boldsymbol{\rho})\boldsymbol{U}=F$

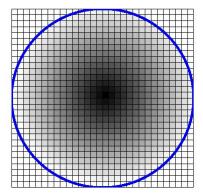
Compliance problem:

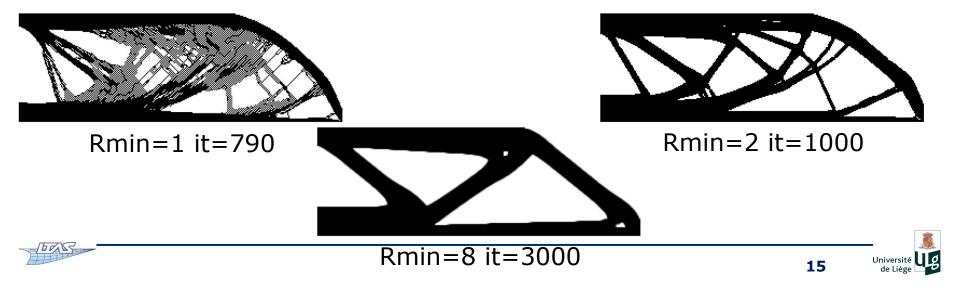
 $\Phi(\boldsymbol{\rho}, \boldsymbol{U}(\boldsymbol{\rho})) = F^T \boldsymbol{U}$



Investigation using 88line Matlab code of topology optimization

Test on MBB-beam exemple




Existing solutions and Investigations

Minimum width of walls:

 "Achieving minimum length scale in topology optimization using nodal design variables and projection functions", J.K. Guest, J.H. Prévost, T. Belitschko, Int. J. Numer. Meth. Engng 2004

$$\rho^{e} = \frac{\sum_{j \in S_{e}} \rho_{j} \omega(x_{j} - \overline{x}^{e})}{\sum_{j \in S_{e}} \omega(x_{j} - \overline{x}^{e})}$$
$$\omega(x_{j} - \overline{x}^{e}) = \begin{cases} \frac{r_{min} - r}{r_{min}} & \text{if} \quad x \in \Omega_{\omega}^{e} \\ 0 & \text{else} \end{cases}$$
$$x \in \Omega_{\omega}^{e} \text{ if } r \equiv ||x - x^{e}|| \leq r_{min}$$
$$\rho_{e}^{d} = 1 - e^{-\beta \widetilde{\rho_{e}}} + \widetilde{\rho_{e}} e^{-\beta}$$

Existing solutions

Maximum width control:

- "A Penalty for Enforcing Maximum Length Scale Criterion in Topology Optimization", J.K. Guest, J.H. Prévost, Mult. Anal. and Optimization Conference 2006
- " Imposing maximum length scale in topology optimization ", J.K. Guest, Struct Multidisc Optim 2009 37:463-473

$$V_{v}^{e}(\rho^{e}) \geq V_{min}^{e}$$

$$V_{v}^{e}(\rho^{e}) = \sum_{i \in \mathbb{R}^{e}} v^{i} (1 - \rho^{i} + \rho_{min}^{e})^{\eta}$$

$$S_{rx} = ((1 + cv_{min} - \alpha_{1}) * (1 - cv^{e}(\rho)))^{\alpha_{2}}$$

$$f_{obj} = Compliance + S_{rx}$$

$$V_{min}^{e} = \psi \sum_{i \in \mathbb{R}^{e}} v^{i}$$

Université 🔰 🧕

de Liège

Existing solutions

Surface state:

- "Manufacturing tolerant topology optimization », Ole Sigmund", Acta Mech Sin 2009
- "Robust topology optimization accounting for spatially varying manufacturing errors", M. Schevenels, B.S. Lazarov, O. Sigmund, Comput. Methods Appl. Mech. Engrg. 200 (2011)

Uniform under- and over-etching performed with morphologybased filter

Filter Radius :	$N_e = \{i x_i - x_e \le R\}$
Density Filtering:	$\begin{split} \widetilde{\rho_e} = \frac{\sum_{i \in N_e} \omega(x_i) \upsilon_i \rho_i}{\sum_{i \in N_e} \omega(x_i) \upsilon_i} \\ \rho_e^d = 1 - e^{-\beta \widetilde{\rho_e}} + \widetilde{\rho_e} e^{-\beta} \end{split}$
Delate: Erode:	$\rho_e^d = 1 - e^{-\beta \widetilde{\rho_e}} + \widetilde{\rho_e} e^{-\beta}$ $\rho_e^e = e^{-\beta (1 - \widetilde{\rho_e})} - (1 - \widetilde{\rho_e}) e^{-\beta}$

Investigation using 88line Matlab code of topology optimization

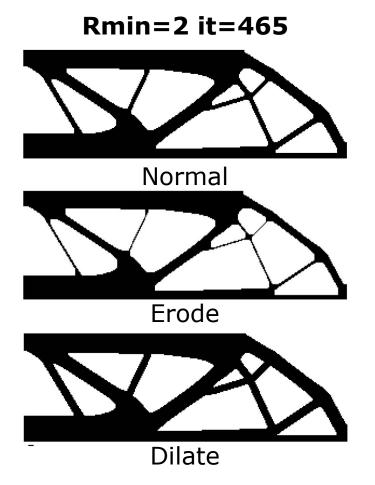
Implementation of the uniform uncertainties by Sigmund

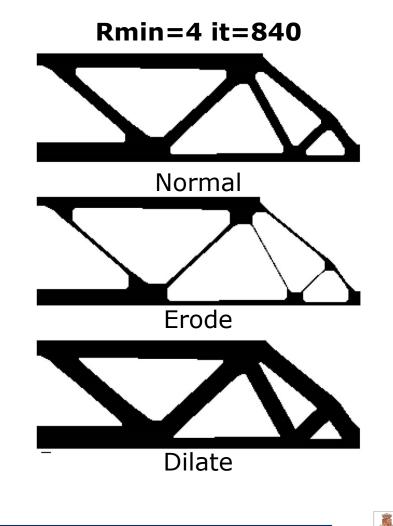
R=1

Dilate

Erode

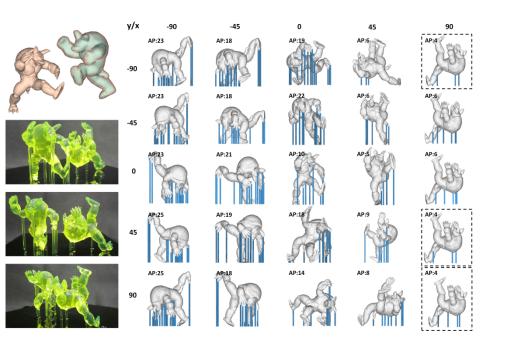
 $\rho_e^d = 1 - e^{-\beta \widetilde{\rho_e}} + \widetilde{\rho_e} e^{-\beta}$


$$\rho_e^e = e^{-\beta(1-\widetilde{\rho_e})} - (1-\widetilde{\rho_e})e^{-\beta}$$



Investigation using 88line Matlab code of topology optimization

Implementation of the uniform uncertainties by Sigmund


Université

Existing solutions

Part orientation and structure support:

- "Support slimming for single material based additive manufacturing", K. Hu, S. Jin, C.C.L. Wang, Computer-Aided Design 65 (2015) 1-10
- Propose a solution to form optimization issues with support structure and part orientation

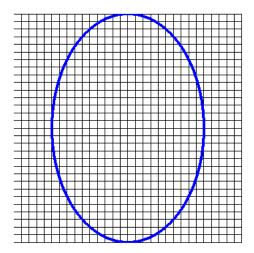
Downsizing:

- Not suited for topology optimization
- Thermal issues not taken into account

Existing solutions

No closed cavities:

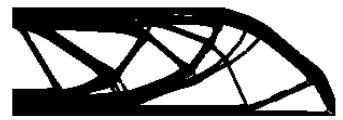
- "Morphology-based black and white filters for topology optimization", O. Sigmund, Struct Multidisc Optim (2007) 33:401-421
- Interesting filtering method could solve metallic additive manufacturing constraints. Further investigation must be done in this direction

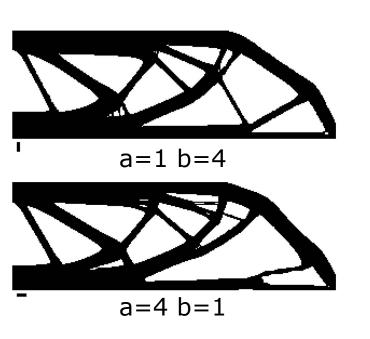


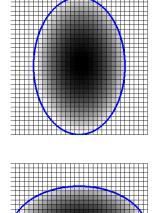
Investigation using 88line Matlab code of topology optimization

Variation of Rmin solution of Guest with ellipse function

$$\rho^{e} = \frac{\sum_{j \in S_{e}} \rho_{j} \omega(x_{j} - \overline{x}^{e})}{\sum_{j \in S_{e}} \omega(x_{j} - \overline{x}^{e})}$$
$$\omega(x_{j} - \overline{x}^{e}) = \begin{cases} 1 - \left(\left(\frac{|(x_{jx} - \overline{x}_{ex})|}{a}\right)^{2} + \left(\frac{|(x_{jy} - \overline{x}_{ey})|}{b}\right)^{2} & \text{if} \quad x \in \Omega_{\omega}^{e} \\ 0 & \text{else} \end{cases}$$

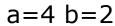

Parameters a,b to change the geometry



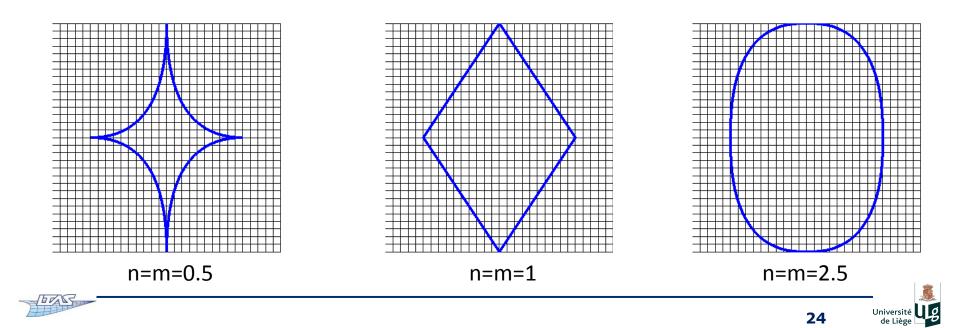


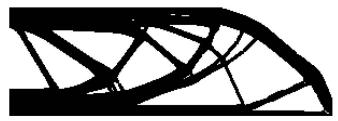

Variation of Rmin solution of Guest with ellipse function

Rmin=2 it=1000



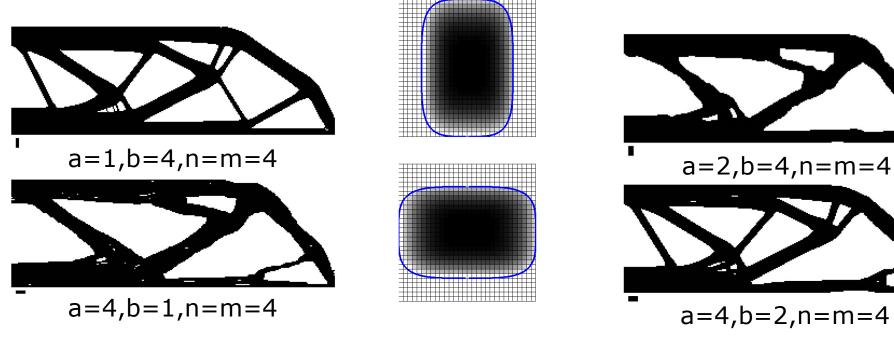
a=2 b=4



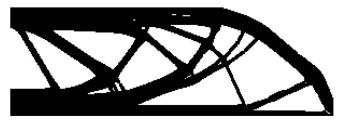

Variation of Rmin solution of Guest with super-ellipse function $\sum a_{i}w(x_{i} - \overline{x}^{e})$

$$\rho^{e} = \frac{\sum_{j \in S_{e}} \rho_{j} \omega(x_{j} - \overline{x}^{e})}{\sum_{j \in S_{e}} \omega(x_{j} - \overline{x}^{e})}$$
$$\omega(x_{j} - \overline{x}^{e}) = \begin{cases} 1 - \left(\left(\frac{|(x_{jx} - \overline{x}_{ex})|}{a}\right)^{n} + \left(\frac{|(x_{jy} - \overline{x}_{ey})|}{b}\right)^{m} & \text{if } x \in \Omega_{\omega}^{e} \\ 0 & \text{else} \end{cases}$$

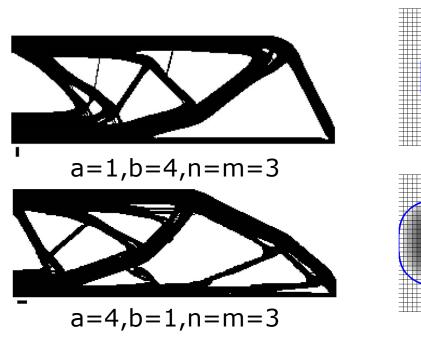
Parameters a,b,n,m to change the geometry

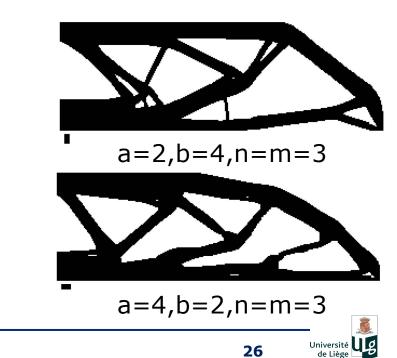


Variation of Rmin solution of Guest with super-ellipse function


Rmin=2 it=1000

Université de Liège



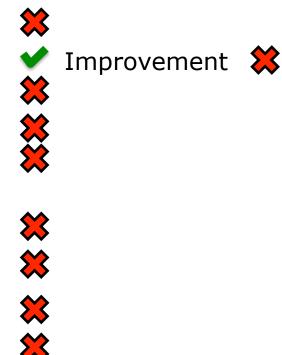


Variation of Rmin solution of Guest with super-ellipse function

Rmin=2 it=1000

Perspectives and Conclusions

- Maximum width constraints → Guest solution must be implemented
- Overhanging angle → Modified Guest
- Surface state → Dilate and erode solution of Sigmund but non uniform approach characterized to metallic additive manufacturing should be find and implemented


Perspectives and Conclusions

Still lots of issues to be solved:

- Post machining of working surfaces and screw thread
- Overhanging angle
- Part orientation
- Dimensions precision
- Minimum size of canals (powder evacuation)
- No closed cavities
- Thermal constraints
- Support structure needed and removed
- Optimum member of thermal supports

Although thanks to this work hints of solutions can be insight

I would like to acknowledge Xavier Cid and Bertrand Meunier for their work during their master thesis

Thank you for your attention

The author, Simon Bauduin, would like to acknowledge the University of Liège for its support

Question ?

