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Abstract:

This paper presents and experimental and theoretical investigation of a novel nonlinear
aeroelastic system. It consists of a wing with pitch and flap degrees of freedom, suspended
from a leaf spring secured in a nonlinear clamp. Both the structural and the aerodynamic
forces acting on the wing can be nonlinear, depending on the amplitude of oscillations.
Wind tunnel experiments show that the system undergoes a supercritical Hopf bifurcation
that leads to small amplitude limit cycle oscillations. At a particular airspeed, the pitch
amplitude jumps to a much higher value and dynamic stall starts to occur.

Three mathematical models of the system are formulated, one based on linear aerody-
namics and two based on the Leishman-Beddoes dynamic stall model. The objective of
the modelling is to determine whether the jump in pitch oscillation amplitude is due to
dynamic stall. The predictions for amplitude, frequency and mean angle of the limit cycle
oscillations are compared to the experimental observations. All three models predict the
small amplitude oscillations with satisfactory accuracy. The complete Leishman-Beddoes
model predicts the occurrence of a jump in pitch amplitude but the magnitude of this jump
is significantly overestimated. The other two models completely fail to model the jump.
The failure of the Leishman-Beddoes model to predict the correct post-jump oscillation
amplitude may be due to the values selected for the model parameters.

1 INTRODUCTION

Aeroelasticity is the result of mutual interactions between the vibrating modes of a flexible
structure and aerodynamic loads. It can lead to linear flutter or, in the nonlinear case,
to limit cycle oscillations (LCOs) such as store-induced LCOs, transonic buzz and stall
flutter. Such phenomena limit the performance or even the flight envelope of aircraft and
have therefore been widely studied by the scientific community during the last 30 years.
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Several authors have carried out experimental investigations of nonlinear aeroelastic phe-
nomena. O’Neil et al.[1] built the Nonlinear Aeroelastic Testbed Apparatus (NATA),
Conner et al.[2] investigated a typical aeroelastic section with pitch, plunge and control
degrees of freedom (DOF) featuring freeplay, while Mukhopadhvay V.[3] developed the
Pitch And Plunge Apparatus (PAPA) to investigate transonic aeroelasticity. More recent
efforts include the works by Abdelkefi et al.[4] and Tang et al.[5]. Most of these inves-
tigations concentrated on structural nonlinear; aerodynamic nonlinearities such as stall
flutter were investigated by several authors, including Dimitriadis and Li [6], Poirel et
al.[7], Abdul Razak et al.[8] and Amandolese et al.[9].

Several of the experimental setups mentioned above use ball bearings, which also introduce
nonlinear damping due to friction and hysteresis. The PAPA and the Poirel experiments
avoid this problem by making use of flexible spring elements to suspend the wings. In
this paper, a specially designed leaf spring and clamp assembly inspired by the work of
Platten et al.[10] is used in order to provide nonlinear stiffness without bearings. The
apparatus is referred to as the Nonlinear Pitch and Flap Wing (NLPFW). It is a flat plate
with pitch and flap DOFs inspired by the Hancock wing [11]. Separation of the airflow
occurs at high oscillation amplitudes, which also leads to aerodynamic nonlinearity.

This paper presents the NLPFW and provides an experimental and numerical investiga-
tion of its dynamic behaviour at both wind-off and wind-on conditions; particular em-
phasis is given to the appearance of stall flutter. Both linear and nonlinear aerodynamic
models are used to predict the phenomena observed in the wind tunnel. The former is
based on Wagner function aerodynamics while the latter is based on a modified version
of the Leishman-Beddoes model [12] proposed by Sheng et. al. [13].

2 EXPERIMENTAL SETUP

The experimental apparatus is installed in the large low-speed wind tunnel of the Univer-
sity of Liège. It is designed to achieve very low damping (≈ 0.3% at wind-off conditions)
and flutter at an airspeed of around 12m/s. To achieve such a low structural damping,
the setup does not use any bearings or rotational springs. The pitch and flap restoring
torques are provided by a specially designed leaf spring and nonlinear clamp assembly.
The complete NLPFW is shown in Fig. 1. It is a stiff thin rectangular unswept flat plate
with span s = 800 mm, chord c = 200 mm, thickness t = 4 mm and an aspect ratio of
4. It is hinged at its root at 0.3c from the leading edge. As a result it features two rigid
DOFs: a pitch rotation θ and a flap rotation γ, as shown in Fig. 2. The flexural axis, es,
is parallel to the leading edge and passes by the hinge while the axis ec is the root of the
wing.

The stiffness in both pitch and flap is provided by a thin C75S leaf spring. It is 100 mm
long, 70 mm large and 0.7 mm thick. It is clamped linearly to the flat plate and nonlinearly
to the roof of the test section of the wind tunnel. Fig. 3(a) draws the geometry of the
nonlinear roof clamps and Fig. 3(b) plots the nonlinear restoring torque of the pitch DOF.
On the other hand, the flap stiffness is linear in the displacement range considered.

Finally, a 500 mm × 50 mm × 15 mm beam is bolted at the junction between the flat
plate and the leaf spring (see Fig. 1(a) and 1(b)). It increases the rotational inertia of
the system and consequently decreases its flutter speed to the target speed range: [10-15]
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(a) Photo of the setup in the wind tunnel
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Figure 1: Experimental setup showing wing, support and transducers
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Figure 2: Schematic of the Hancock Wing

m/s. Table 1 summarises the wind-off characteristics of the NLPF.

The displacements are measured by the means of 3 Sick OD2-P300W200I0 laser sensors
with a sensitivity of 9.6 mV/mm and a range of 100 − 500 mm. The accelerations are
measured using 3 MEMS DC accelerometers with a sensitivity of 100mV/g and a range of
± 30g. The sampling frequency of these two instruments is set to 1000Hz. The position
of the sensors is shown in Fig. 1(b). The accelerometers A2 & A3 and the lasers D2 & D3

are placed at the root of the wing, where the torsion of the flat plate can be neglected.

3 EXPERIMENTAL RESULTS

3.1 Wind-off modal analysis of the system

A roving hammer test was carried out to identify the first few modes of the wind-off
system. The wing was impacted five times in 24 different locations using a hammer

3



IFASD-2015-12

Caracteristic Symbol value Unit

Dimensions of the wing:
Span s 800 [mm]

distance (flap axis - wing root) s1 65 [mm]
distance (flap axis - wing tip) s2 865 [mm]

Chord c 200 [mm]
Half Chord b 100 [mm]
Thickness t 4 [mm]

Position of the center of mass xcg 1/2c [mm]

Flap properties
Linear stiffness Kγ ≈ 5 [Nm/rad]

Inertia Iγ 0.42 [kg m2]
Damping ζγ ≈ 1 [%]
Frequency fγ 0.85 [Hz]

Pitch properties
Inertia Iθ 0.029 [kg m2]

Flexural axis position xf 0.3c [mm]

Relative position of xf and xcg a
xf−xcg

b
[-]

Linear stiffness coefficient Kθ 10.1 [Nm/rad]
Quadratic stiffness coefficient Kθ,2 ≈ 0 [Nm/rad2]

Cubic stiffness coefficient Kθ,3 858 [Nm/rad3]
Damping ζθ ≈ 0.3 [%]
Frequency fθ 3.1 [Hz]

Position of the sensors
Distance between A1 and A2 ∆sacc 200 [mm]
Distance between A2 and A3 ∆cacc 180 [mm]
Distance between D1 and D2 ∆slas 205.5 [mm]
Distance between D2 and D3 ∆cacc 168.5 [mm]

Table 1: Wind-off characteristics of the NLPF
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(b) Experimental restoring torque curve of the pitch DOF

Figure 3: Characteristics of the nonlinear clamps

instrumented with a load cell. The response was measured with a single accelerometer
placed on the trailing edge at the tip of the wing. Since it is very difficult to excite
the leaf spring with the hammer its deflections are extracted from a model with shell
finite elements of the whole structure computed by means of the Finite Element package
SAMCEF. The first six modes are plotted in Fig. 4 and can be described as:

1. first flexural mode of the leaf spring and no deformation of the flat plate. It is
equivalent to γ, the flap DOF of the Hancock wing.

2. first torsional mode of the leaf spring and no deformation of the flat plate. It is
equivalent to θ, the pitch DOF of the Hancock Wing.

3. second flexural mode of the leaf spring and first flexural mode of the flat plate.

4. second flexural mode of the leaf spring and second flexural mode of the flat plate.

5. first torsional mode of the flat plate.

6. second flexural mode of the leaf spring and third flexural mode of the flat plate.

Shaker tests were also conducted but they did not provide any reliable results due to the
absence of a suitable shaker support inside the wind tunnel. Moreover the NLPFW is
designed to experience high displacements compared to the stroke of most electromagnetic
shakers.

3.2 Wind-on study of the system

Fig. 5 displays the time response of the pitch rotation of the system at different airspeeds.
Airspeeds of 0, 5.5 and 8.7 m/s lead to decaying response, as shown in Fig. 5(a). At
airspeeds of 12.4, 13.3 and 14.8 m/s, Fig. 5(a) shows that the system undergoes Limit
Cycle Oscillations.
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Mode n° 1: F = 0.9 Hz Mode n° 2: F = 3.1 Hz Mode n° 3: F = 9.6 Hz

Mode n° 4: F = 27.3 Hz Mode n° 5: F = 45.1 Hz Mode n° 6: F = 78.5 Hz

Figure 4: First six mode shapes of the NLPF.
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Figure 5: Time series of the pitch rotation at sub and super critical airspeeds

3.2.1 Variation of subcritical modal parameters with airspeed

At each stabilised subcritical airspeed, the system was given an initial pitch and flap angle
then was released. Assuming a de-coupled linear decaying response, the time variation
of the degrees of freedom can be written as a complex exponential whose imaginary part
ω
√

1− ζ2 is the damped frequency of the motion and whose real part ζω is the effective
damping:

γ(t) = eλγt = e−ζγωγ±iωγ
√

1−ζ2γ

θ(t) = eλθt = e−ζθωθ±iωθ
√

1−ζ2θ
(1)

The imaginary part of λ was computed from these free decays using both Fast Fourier
Transform (FFT) and Wavelet Analysis. The real part was extracted using an exponential
curve fit of the Hilbert Transform of the responses. The variation of these real and
imaginary parts with airspeed are typical of aeroelastic setups as displayed in Fig. 6: the
pitch real part increases, is maximum at 9m/s then decreases until it reaches zero and
flutter occurs. The flap real part increases strongly all the time. The flap frequency is
approximately constant while the pitch frequency decreases until the modes can interact
to cause flutter. The flap frequency resolution is very low and that the flap effective
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damping measurements are very scattered because the aerodynamic damping was so high
that the system could only undergo one or two oscillations before going back to rest.
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Figure 6: Variation of the modal parameters of the pitch and flap DOFs with the airspeed
before the flutter

3.2.2 Post-critical aeroelastic behaviour

The post-critical bifurcation diagram is displayed in Fig. 7, which plots limit cycle am-
plitude, frequency and mean angle in both pitch and flap. The black marks indicate
increasing airspeed tests while they grey ones correspond to decreasing airspeed tests.
There is no significant difference between the two sets of test points, which suggests that
there is no hysteresis in the system.

Figs.7(a) & 7(c) respectively show the variation of pitch and flap LCO amplitude -defined
as the half of the peak-to-peak amplitude- with airspeed, where the errorbars indicate the
standard deviation around these averages. The bifurcation at 11.5 m/s is a supercritical
Hopf: the LCOs were self-excited and manually exciting the system did not lead to a jump
on a branch of higher amplitude. The flap amplitude increases smoothly with airspeed
but the pitch amplitude features a jump around 13.5 m/s followed by a plateau. The
pitch amplitude is roughly five times larger than that of the flap. This pitch domination
of the motion was expected since section 3.2.1 highlighted that it is the pitch mode whose
damping drops towards zero at flutter.

The variation of the LCO frequency with airspeed is displayed in Fig. 7(b). The frequency
start at 2.5 Hz, increases steadily to approximately 3 Hz and then jumps to around 4.1
Hz and becomes stabilised. Finally the pitch and flap mean angles, depicted in Fig. 7(d),
indicate the asymmetry of the LCOs. The pitch mean angle is negligible but that of the
flap is not. Consequently, the flap oscillations are highly asymmetrical and the mean flap
angle increases stadily with airspeed. This phenomenon is due to the asymmetry in the
system: a small pitch displacement leads to a large flap moment which in turn causes a
flap deflection that increases quadratically with airspeed.
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Figure 7: Bifurcation diagram of the system. The black marks indicate increase airspeeds
and the grey ones show decreasing airspeeds

A test with wool tufts demonstated that separation of the airflow occurs after the jump
to pitch amplitudes of around 8◦. Figs. 8(b) to 8(e) show 4 pictures of the wool tufts
placed as displayed in Fig. 8(a) at four time instances of the same half cycle. The top
row of tufts, which corresponds to the red one in Fig. 8(a), lies near the leading edge of
the wing while the bottom row, which corresponds to the green one, lies near the trailing
edge. The following phenomena occur:

• t1: the pitch angle is small and increasing, the tufts stick to the wing because the
airflow is attached.

• t2: the pitch angle is large and the front line of tufts (top) is detached from the wing
which indicates separation of the airflow near the leading edge. The second line of
tufts is much less affected by separation than the first line.

• t3: the pitch angle is larger than at t2. The airflow is now separated on both the
leading and trailing edges.

• t4: the pitch angle is small and the airflow is re-attached on the wing.
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Figure 8: Pictures of wool tufts on the wing during a cycle of half period of stall flutter
at 14.9 m/s. The air flows from the top to the bottom on pictures (b) to (e).

3.2.3 Response frequency content variation with airspeed

The frequency content of the LCO responses at different airspeeds is represented in the
waterfall plots of Fig. 9. Fig. 9(left) plots the pitch frequencies and features the following
peaks:

• The fundamental frequency, f0, lies at 2.9Hz at 11.5 m/s and reaches 4.1 Hz at 15.5
m/s. Its variation with airspeed was displayed in Fig. 7(b).

• A small third harmonic, 3f0, lies at 11.5m/s and its strength does not grow with
airspeed compared to that of f0.

• The fourth and sixth harmonics, 4f0 and 6f0 emerge after the jump (13.5 m/s) and
their strengths do not grow with airspeed either.

• The fifth harmonic, 5f0 appears after the jump and its amplitude increases slightly
with airspeed.

Fig. 9(right) displays the variation of the frequency content with airspeed, as measured
from accelerometers A1 & A2. It features the following peaks:

• The fundamental frequency, f0 lies at 2.9 Hz at 11.5 m/s and reaches 4.1 Hz at 15.5
m/s.

• The second harmonic, 2f0 contributes to the motion from 11.5m/s but its strength
increases drastically after the jump.
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Figure 9: Waterfall plot of the pitch acceleration θ̈ (left) and of the accelerations A1 &
A2 (right)

• The fourth and sixth harmonics, 4f0 and 6f0 start at small amplitude right before
the jump (13.4 m/s) and their strengths become similar to the strength of the
fundamental harmonic after the jump (13.5 m/s). It is interesting to notice that the
fourth harmonic is strong on both A1 and A2 while the sixth one is only measurable
in A1.

• The third and fifth harmonics and a few other small peaks emerge as the airspeed
increases but their strength is very small and they to not contribute greatly to the
dynamics of the system.

4 AEROELASTIC MODEL WITH LINEAR AERODYNAMICS

This section aims to model the low amplitude behaviour of the system: the subcritical
response, investigated in section 3.2.1 and the low amplitude (before the jump) supercrit-
ical response investigated in section 3.2.2. It is carried out by means of a two-DOF model
with a cubic hardening nonlinearity and linear aerodynamics obtained from strip theory
and Wagner function aerodynamics.

The nonlinear pitch and flap wing is modeled as a two-DOF system, assuming that the
flexible modes of the plate do not participate significantly in the observed aeroelastic
phenomena. The structural nonlinear equations of motion are(
Iγ S
S Iθ

) (
γ̈

θ̈

)
+

(
cγ cγθ
cγθ cθ

)(
γ̇

θ̇

)
+

(
kγ kγθ
kγθ kθ

)(
γ
θ

)
+

(
Mγ,NL(γ)
Mθ,NL(θ)

)
=

(
Mγ,ext(t)
Mθ,ext(t)

)
(2)

Mγ,NL = 0

Mθ,NL = knl,3θ
3 (3)

where the parameter values are given in table 1. A nonlinear torque is only applied to
the pitch DOF and is a cubic function of pitch.
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The flap and pitch aerodynamic moments are computed using strip theory (see for instance
Bisplinghoff & al.[14]). It states that the total aerodynamic moments Mγ and Mθ acting
on a finite wing are equal to the sum of the loads dL and dM acting on small spanwise
strips of width dy. These infinitesimal forces and moments are computed assuming 2D
aerodynamics. The strip theory assumption leads to the following formulation for the flap
and pitch aerodynamic moments

Mγ = −
∫ s2

s1

y dL(t) (4)

Mθ =

∫ s2

s1

dMθ(t) (5)

s1 being the distance between the flap axis and the root of the wing and s2 the distance
between the flap axis and the tip of the wing. The lift force dL and pitch moment dMθ of
a strip can be computed using any unsteady aerodynamic formulation. Unsteady aerody-
namics based on Wagner’s function [15] was chosen here because the reduced frequency
of oscillation k = ωb

U
≈ 1.5 >> 0.02 is too large to use quasi-steady aerodynamics and

Theodorsen is defined in frequency domain which makes it difficult to use on a nonlinear
system. The growth of circulation around a flat un-cambered airfoil after a step change
of incidence is approximated by Wagner’s function

Φ(t) = 1− ψ1e
− ε1Ut

b − ψ2e
− ε2Ut

b (6)

Integrating equations 4 and 5 with Fung’s lift and moment expressions [15] and applying
Lee & al.[16]’s transformation to replace the wake integrals by aerodynamic state variables
yields the complete equations of motion[(

Iγ S
S Iθ

)
+ ρπb2

(
Λ3/3 −abΛ2/2
− abΛ2/2 b2Λ(a2 + 1/8)

)](
γ̈

θ̈

)
+[(

cγ cγθ
cγθ cθ

)
+ ρπUb

(
2
3
Φ(0)Λ3 bΛ2[1/2− Φ(0)(1− a/2)]

−bΛ2Φ(0)(a+ 1/2) −Λb2(a− 1/2)[1 + 2Φ(0)(a+ 1/2)]

)](
γ̇

θ̇

)
+[(

kγ kγθ
kγθ kθ

)
+ ρπU2

(
2
3
Λ3[ bΦ̇(0)

U
] bΛ2[Φ(0) + bΦ̇(0)

U
(1/2− a)]

−bΛ2[ bΦ̇(0)
U

(a+ 1/2)] −2Λ3(a+ 1/2)[Φ(0)− bΦ̇(0)
U

(a− 1/2)]

)](
γ
θ

)
+πρU3


−2ε21ψ1Λ3/3b ε21ψ1Λ2(2a+ 1)/2
−2ε22ψ2Λ3/3b ε22ψ2Λ2(2a+ 1)/2

Λ2(ε1ψ1 − ε21ψ1/2 + aε21ψ1) −2bε1ψ1Λ(a+ 1/2)(ε1(a− 1/2) + 1)
Λ2(ε2ψ2 − ε22ψ2/2 + aε22ψ2) −2bε2ψ2Λ(a+ 1/2)(ε2(a− 1/2) + 1)


T

w1

w2

w3

w4

 =

[(
Mγ,ext(t)
Mθ,ext(t)

)
+ 2πρUbΦ̇(t)

(
Λ3γ(0)/3 + (3b

2
− xf )Λ2θ(0)/2

− (a+ 1/2)b[Λ2γ(0)/2 + (3b
2
− xf )Λθ(0)]

)
−
(

0
knl,3θ

3

)]
(7)

with Λj = sj2−sj1. They feature structural and aerodynamic inertia, damping and stiffness
matrices and an aerodynamic state matrix on the left hand side. The right hand side
comprises three terms, one of which is the nonlinear pitch restoring torque. The external
loads are set to zero because the system is self-excited. The second term is set to zero
because it decays quickly in time and only the steady-state response is of interest. The
nonlinear equations of motion are solved using a numerical continuation algorithm based
on a finit difference formulation.
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5 AEROELASTIC MODEL WITH MODIFIED LEISHMAN-BEDDOES MODEL

The model with linear aerodynamics from section 4 is unable to represent the amplitude
jump observed experimentally. A nonlinear aerodynamic model was created in order to
investigate if the jump is caused by dynamic stall. This alternate aerodynamic model is
based on a modified version of the Leishman-Beddoes model [12] proposed by Sheng et.
al. [13] (LB). The complete nonlinear aeroelastic system can be written as :

G(u ,q , q̇, )

u̇
q̇
q̈

 = f(u ,q , q̇)

Mq̈ + Cq̇ + Kq +

[
Mγ,NL(γ)
Mθ,NL(θ)

]
= M(u ,q , q̇) (8)

where u are seven aerodynamic state variables for a given airfoil 2D section, q are the
degrees of freedom in flap (γ) and pitch (θ) and the structural equations those given in
equation 3.

5.1 Over view of the Leishman-Beddoes Model

The modified Leishman-Beddoes model can be split into three different modules as shown
in figure 10. These modules are :

• Attached flow module : This module, based on Wagner unsteady aerodynamics,
aims to compute the circulatory and impulsive normal loads acting on the airfoil.
It will take as inputs:

– The rigid airfoil section’s flapping (γ) and pitching (θ) motion;

– The airfoil’s geometry.

This module works under the assumption of unsteady incompressible conditions,
which are defined by Leishman [17] as Mk � 1, where M is the Mach number and
k is the reduced frequency.

• Trailing edge separation module : This module aims to compute the effect of
trailing edge separation on the circulatory normal loads. It will take as inputs :

– The airfoil’s steady lift, drag and moment curves, in order to compute the
functions f(α) and g(f), representing the position of the separation point on
the airfoil and the variation of the moment with separation point position,
respectively;

– A lag parameter (Ta);

– The viscous lag parameter (Tf ).

• Vortex module : This module aims to compute the normal load and moment
induced by the vortex generated on the leading edge of the airfoil and the overshoot
it can cause. It will take as inputs :

– The vortex dissipation parameter (Tv);

– The vortex shedding starting conditions;

– The non-dimensional time taken by the vortex to travel over the airfoil (Tvl).
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Figure 10: Leishman-Beddoes model flowchart

5.2 Modified trailing edge separation flow module

5.2.1 Computation of f(α)

In order to compute the non linear behaviour of the lift generated by an airfoil, Leishman
and Beddoes used the Kirchhoff-Helmholtz theory which approximates the normal lift
coefficient by

Cn = Cna (α− α0)

(
1+
√
f(α)

2

)2

⇔ f(α) =
(

2
√

Cn
Cna(α−α0)

− 1
)2

(9)

where Cna is the normal lift slope, α is the angle of attack, α0 is the zero lift angle and f
is the non-dimensional position of the separation point on the airfoil.

It is possible to compute discrete values of f(α) from steady aerodynamic data and equa-
tion 9. These discrete values can be curve-fitted by a chosen function. Leishman and
Beddoes used a discontinuous exponential function, which lacks flexibility for asymmet-
rical airfoils. In the present work, cubic splines are used to fit f(α). Figure 11 plots the
results of this curve-fit.
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Figure 11: Cubic splines fitting of function g(f) and corresponding CN(α) for a flat plate

5.2.2 Computation of g(f)

In order to compute the aerodynamic moment, g(f), generated by an airfoil as a function
of the position of the separation point f , Beddoes used the following empirical relation

g(f) ≡
Cm1/4

− Cm0

Cn
(10)

where Cm1/4
is the moment coefficient at the quarter chord and Cm0 is the zero lift moment

coefficient.

As with f(α), g(f) can be curve fitted from experimental data. Once again, a series
of cubic splines is used to carry out this curve-fit. However, g(f) is not a single-valued
function so two curve fits are performed: one for positive and one for negative values of
α

′
.
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Figure 12: Cubic spline fitting of function g(f) and corresponding CN(α) for a flat plate
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Figure 13: Comparison of the variation of the modal parameters of the pitch and the flap
obtained from experiments and from the linear aerodynamics model

6 COMPARISON OF THE EXPERIMENTAL RESULTS AND THE MOD-
ELS

This section aims to compare three aeroelastic models of the NLPFW. The structural
equations are the same in all three models, the difference lying in the aerodynamic mod-
elling:

• Linear aerodynamics

• Full LB model

• LB model with the leading edge vortex module turned off.

6.1 Subcritical airspeeds

The variation of the system’s effective damping and frequency with airspeed obtained
from the experiments and from the linear aerodynamic model is plotted in Fig. 13. The
frequency is predicted well for both modes (Fig.13(a)) but the damping (Fig.13(b)) is
over-estimated by the model; it is about twice as large as the measured damping for both
the pitch and the flap. The method used to compute the damping from the experimental
results (Hilbert transform + exponential fitting) is subject to four problems that might
artificially reduce the damping estimate. Firstly, since there is a coupling between the
pitch and the flap, the signal used to compute the flap damping does not decay to zero
because it is excited by the pitch, which is lightly damped. Secondly, the setup is subject
to wind turbulence which means that its response never really decays to zero. Thirdly,
the flap is so highly damped that it undergoes only one or two oscillations before it
decays. Fourthly, in order to measure several oscillation cycles, the initial angle from
which the setup was released was higher than the stall angle, which means that the linear
aerodynamics model is too simple.
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6.2 Supercritical airspeeds

The comparison of the pitch LCO amplitude variation with airspeed obtained from the
experiments and the models is depicted in Fig.14. All three models predict the low
amplitude oscillations with a satisfying accuracy up to the jump, then they fail. The
linear and LB without vortex models do not predict an amplitude jump at all. The
full LB model predicts a huge jump in amplitude, much bigger than the one observed
experimentally. It must be stressed that the parameter values of the full LB model were
chosen in order to obtain an amplitude jump at the right airspeed. It is possible that
these values can be better tuned in order to obtain the right amplitude values after the
jump.

The flap amplitude is slightly over estimated by the linear model and behaves strangely
after the jump for both version of the LB model, as seen in Fig.14(c). This strange
behaviour is probably due to the large pitch amplitude and to the coupling between the
pitch and the flap on the full LB model; it may vanish if the pitch amplitude is predicted
with more accuracy.

The conclusions drawn on the pitch results also apply to the frequency predictions, as
shown in Fig.14(b). Once again, all three models are reasonably accurate up to the jump
and then fail for different reasons. The absolute accuracy of the pre-jump predictions is
around 0.2 Hz, which is adequate.

Finally all models fail to represent the variation of the mean pitch and flap angles, as shown
in Fig.14(d). The linear model predicts zero mean angular displacements at all airspeeds.
The two LB models predict zero displacements up to the jump. It should be stated that
the mean flap displacement measured experimentally may be due to inaccuracies in the
setting of the pitch angle. In that case, the model predictions are actually accurate.

These early results show that the linear model is good enough for low amplitude LCO
prediction and that a non-linear aerodynamic model can represent a jump similar to the
one observed experimentally. Further work must be carried out in order to improve the
post-jump predictions and to determine if the jump is caused by dynamic stall.

7 CONCLUSION

The NLPFW is a novel setup that features complex aerodynamic and structural nonlin-
ear effects, leading to interesting bifurcation behaviour. Modelling this setup remains a
challenge, although some encouraging results were obtained. Firstly, a simple nonlinear
structural model coupled to linear aerodynamics successfully predicted the low ampli-
tude bifurcation behaviour of the system with an absolute error smaller than 0.5m/s in
airspeed, 0.2 Hz in LCO frequency and 0.005 rad in Amplitude. Secondly, an improved
version of the Leishman-Beddoes model showed that the jump observed could be due to
dynamic stall, however the model is not accurate enough to predict the post-jump be-
haviour. Future work will aim at improving the stall model by adapting the parameter
values. Detailed static and dynamic measurements of the aerodynamic loads acting on
the wing will be collected and used to select the new parameter values.
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Figure 14: Comparison of the variation of the LCO frequency and amplitude with the
airspeed obtained from experiments and from the linear aerodynamics model.
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