Methane and nitrous oxide may contribute more to greenhouse effect than CO₂

emission from the South China Sea in summer

Hsiao-Chun Tseng¹, Chen-Tung Arthur Chen², Angel del Valls¹ and Alberto Vieira

Borges³

¹Erasmus Mundus Office, Puerto Real Campus, University of Cadiz, 11519, Puerto Real, Cadiz, Spain

²Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan

³Université de Liège, Unité d'Océanographie Chimique, Institut de Physique (B5), B-4000, Belgium

Abstract

The South China Sea (SCS) is the largest marginal sea in the world. It is now apparent that in summer tropical seas, such as the SCS, are either close to neutral or are a small source of CO_2 to the atmosphere. Methane (CH₄) and nitrous oxide (N₂O), however, are clearly much more supersaturated in the SCS. In the case of the SCS, the CH₄ and N₂O released from the surface waters contribute about three times as much to the greenhouse effect as CO₂ does.

In addition, abnormally high subsurface CH₄ concentrations were found on the continental slopes in the northern SCS, as CH₄ have been released from sediments

and/or may have originated in CH_4 gas hydrates. CH_4 gas hydrates might become an important source of energy in the future. However, will the buried CH_4 be released either due to the warming of the seawater, the internal waves, tropical storms or other disturbances? It may compound the severity of global warming.

Keywords: South China Sea, CH_4 , N_2O , CO_2 , greenhouse effect