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Highlights 

 The influence of oxygen was incorporated in a multiscale model of fracture healing. 
 The results of the oxygen model were compared with experimental observations. 
 An extensive sensitivity analysis of the oxygen model indicated its robustness. 
 Adequate spatiotemporal oxygen patterns appear to be critical for bone healing. 
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Abstract 

A timely restoration of the ruptured blood vessel network in order to deliver oxygen and 

nutrients to the fracture zone is crucial for successful bone healing. Indeed, oxygen plays a 

key role in the aerobic metabolism of cells, in the activity of a myriad of enzymes as well as 

in the regulation of several (angiogenic) genes. In this paper, a previously developed model 

of bone fracture healing is further improved with a detailed description of the influence of 

oxygen on various cellular processes that occur during bone fracture healing. Oxygen ranges 

of the cell-specific oxygen-dependent processes were established based on the state-of-the 

art experimental knowledge through a rigorous literature study. The newly developed 

oxygen model is compared with previously published experimental and in silico results. An 

extensive sensitivity analysis was also performed on the newly introduced oxygen 

thresholds, indicating the robustness of the oxygen model. Finally, the oxygen model was 

applied to the challenging clinical case of a critical sized defect (3 mm) where it predicted the 

formation of a fracture non-union. Further model analyses showed that the harsh hypoxic 

conditions in the central region of the callus resulted in cell death and disrupted bone 

healing thereby indicating the importance of a timely vascularization for the successful 

healing of a large bone defect. In conclusion, this work demonstrates that the oxygen model 
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is a powerful tool to further unravel the complex spatiotemporal interplay of oxygen 

delivery, diffusion and consumption with the several healing steps, each occurring at 

distinct, optimal oxygen tensions during the bone repair process. 

 

1. Introduction 

1.1 Normal fracture healing 

When a bone fractures, the bone architecture distorts and blood vessels rupture, thereby 

filling the fracture site with blood which rapidly coagulates to form a blood clot or 

hematoma (Murao et al., 2013). Since the damaged vasculature fails to provide sufficient 

oxygen and nutrients, the injury site gradually becomes hypoxic and the surrounding tissues 

start to degrade (Cameron et al., 2013). This triggers the invasion of inflammatory cells, 

macrophages and leukocytes, marking the start of the inflammatory phase. Simultaneously, 

growth factors and cytokines produced by the cells in the hematoma and surrounding 

tissues attract fibroblasts, mesenchymal stem cells (MSCs) and endothelial cells to the 

trauma site (Taguchi et al., 2005). The fracture callus fills with granulation tissue, forming the 

soft callus, in which the MSCs start to differentiate. In the periosteal region, near the bone 

cortex where oxygen is available, the MSCs differentiate directly towards osteogenic cells. 

These newly formed osteoblasts produce a woven bone matrix (intramembranous 

ossification). In the hypoxic central fracture area, the mesenchymal stem cells will first 

differentiate into chondrocytes which produce a cartilaginous template that mechanically 

stabilizes the fracture zone. The hard callus formation stage starts with the invasion of blood 

vessels into this cartilaginous template. The new-sprung vasculature brings along osteoblasts 

that produce a hard tissue callus of mineralized woven bone matrix (endochondral bone 
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formation). When the bony callus bridges the fracture gap, a clinical union is reached. In the 

final remodeling phase, the hard callus is remodeled by osteoclasts and osteoblasts, 

gradually replacing the immature woven bone by lamellar bone and returning the bone to its 

original shape, size and strength (Einhorn, 1998).  

1.2 The role of oxygen in fracture healing 

Oxygen is essential for multiple cellular functions occurring during normal conditions as well 

as during repair processes like fracture healing. Firstly, it is required for the aerobic 

metabolism of cells, thereby producing ATP for normal cellular function (Lu et al., 

2013a;Maes et al., 2012). Secondly, oxygen is important for the activity of many enzymes (Lu 

et al., 2013a;Xie et al., 2009). Thirdly, a lack of oxygen induces the expression of several 

(angiogenic) genes through the hypoxia inducible factor (HIF)-pathway (Pugh and Ratcliffe, 

2003;Maes et al., 2012;Wan et al., 2008;Komatsu and Hadjiargyrou, 2004;Bouletreau et al., 

2002). Fourthly, through the molecular mechanisms mentioned above, oxygen has a 

profound effect on the differentiation and proliferation capacity of MSCs, chondrocytes and 

osteoblasts (Malladi et al., 2006;Xu et al., 2007;Grayson et al., 2007;Lennon et al., 

2001;Holzwarth et al., 2010;Wagegg et al., 2012;Zscharnack et al., 2009;Meyer et al., 

2010;Hirao et al., 2006;Ren et al., 2006;Merceron et al., 2010). Lennon et al. (Lennon et al., 

2001) observed for example that rat MSCs proliferated faster and formed more colonies in 

low oxygen (5% oxygen tension) than in control conditions (20% oxygen tension). Similar 

results were obtained by Grayson et al. (Grayson et al., 2007). They report a 30-fold higher 

expansion of the human MSCs under 2% oxygen tension with respect to 20% oxygen tension 

(Grayson et al., 2007). Finally, it was shown that prolonged hypoxic conditions lead to cell 
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death, delayed chondrogenic and osteogenic differentiation and impaired fracture healing 

(Lu et al., 2013b;Brinker and Bailey, 1997;Lu et al., 2007).  

1.3 Mathematical models of fracture healing including oxygen 

Since oxygen influences many critical processes of fracture healing, as was mentioned in the 

previous section, mathematical models of fracture healing should consider it explicitly, in 

this way providing additional opportunities to deepen the scientific understanding of the 

biological mechanisms at hand. In this section we will give a brief overview of the most 

recent mathematical models of fracture healing that include oxygen, as this is the focus of 

this study. For comprehensive reviews on mathematical models of fracture healing, we refer 

the reader to Geris et al. (Geris et al., 2009), Isaksson et al. (Isaksson, 2012) and Pivonka et 

al. (Pivonka and Dunstan, 2012).     

Simon et al. used fuzzy logic rules to describe the interaction between mechanical stability, 

revascularization and tissue differentiation during fracture healing with three main variables: 

vascular perfusion, cartilage concentration and bone concentration (Simon et al., 2011;Chen 

et al., 2009). They show that both mechanical stabilization as well as sufficient nutrient 

supply are essential for bone healing since a less stabilized osteotomy leads to slower 

revascularization and delayed bony bridging. An inadequate nutrient supply, resulting from 

an increased gap size, would also lead to the formation of a non-union. However, they 

model the dynamics of endothelial cells as well as the nutrient delivery by diffusion 

equations with constant diffusion coefficients, i.e. the vessel growth will continue until a 

uniform density is reached. As such, Chen et al. fail to capture the prolonged absence of 

healing resulting in a clinical non-union since their model, given enough time, will eventually 

result in complete bony bridging.  
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Burke et al. were able to predict all the major events of fracture repair by defining substrate 

stiffness and oxygen tension as key regulators of MSC differentiation (Burke and Kelly, 2012). 

However, they model angiogenesis as a diffusive process, thereby neglecting the discrete 

nature of the vascular tree (Burke and Kelly, 2012). Moreover, in their model only the 

differentiation of MSCs is made oxygen dependent (Burke and Kelly, 2012), whereas 

experimental evidence indicates that multiple cellular processes are regulated by oxygen.    

Geris et al. (Geris et al., 2008) developed a model that describes the bone regeneration 

process as a spatiotemporal variation in density of 12 continuous variables: mesenchymal 

stem cells, chondrocytes, osteoblasts, fibroblasts, endothelial cells, cartilage matrix, bone 

matrix, fibrous matrix, vascular matrix, osteogenic growth factors, chondrogenic growth 

factors and angiogenic growth factors. Peiffer et al. (Peiffer et al., 2011) extended the 

fracture healing model developed by Geris et al. (Geris et al., 2008) by including a discrete, 

lattice-free description of endothelial tip cell migration and angiogenesis instead of a 

continuum description of the vasculature (by means of a vascular density). This modification 

not only resulted in a more realistic description of angiogenesis, it also allowed to explicitly 

model oxygen as a variable influencing the fracture healing process through its release from 

the newly formed vessel network. As such, the model of Peiffer et al. correctly captured the 

different aspects of bone regeneration as well as some important aspects of angiogenesis 

like blood vessel growth, branching and anastomosis (Peiffer et al., 2011). The model of 

Peiffer et al. was further refined by Carlier et al. by introducing an intracellular level in every 

endothelial cell describing the Dll4-Notch signaling pathway (Carlier et al., 2012) thereby 

replacing the phenomenological rules of tip cell selection used by Peiffer et al. (Peiffer et al., 

2011). Due to its multiscale nature, the so called MOSAIC model (multiscale model of 

osteogenesis and sprouting angiogenesis with lateral inhibition of endothelical cells) of 
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Carlier et al. was able to simulate the bone regeneration process accurately, as well as to 

reproduce many experimentally observed aspects of tip cell selection: the salt and pepper 

pattern seen for endothelial cell fates, an increased tip cell density in heterozygous Dll4 

knockout cases and an excessive number of tip cells in high VEGF (vascular endothelial 

growth factor) environments.  

1.4 Objectives of this study 

As indicated above, oxygen clearly plays a key role in fracture healing. Indeed, it appears that 

many biological processes that take place during fracture healing (e.g. proliferation, 

differentiation, cell death) occur at cell-specific optimal oxygen tensions. Some of the most 

recent mathematical models of fracture healing have tried to incorporate the role of oxygen 

in fracture healing, however none of the aforementioned models (including our own) 

explicitly captures the influence of oxygen on cellular proliferation, differentiation, hypoxia 

signaling and cell death. We hypothesize that the spatiotemporal distribution of oxygen 

tension, influenced by amongst others cellular consumption as well as the timely 

revascularization of the callus, is an important determinant of fracture healing. Therefore, 

this study will establish a new computational model of fracture healing that is able to more 

accurately describe the regulatory properties of oxygen on cellular processes occurring 

during normal and impaired fracture healing. This goal is accomplished by combining the 

state-of-the-art knowledge on the influence of oxygen on the behavior of skeletal cells with 

a previously developed multiscale model of bone fracture healing (Carlier et al., 2012). The 

results of the newly developed oxygen model are compared with experimental data from 

literature (Harrison et al., 2003). Moreover, an extensive sensitivity analysis is performed on 

the newly introduced parameters. Finally, the model is applied to critically sized defects in 

order to explore possible causes of impaired bone healing. 
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2. Materials and Methods 

2.1 Mathematical model 

2.1.1 Model overview 

The new oxygen model builds upon a previously published multiscale model of bone fracture 

healing and consists of (1) a tissue level describing the various key processes of bone 

fracture healing with 10 continuous variables, (2) a cellular level representing the developing 

vasculature with discrete endothelial cells and (3) an intracellular level that defines the 

internal dynamics of the Dll4-Notch signaling pathway in every endothelial cell (Carlier et al., 

2012). The resulting hybrid framework, which combines PDEs at the tissue level with an 

agent-based description at the cellular level, is computationally efficient and suitable to 

answer the research question at hand, i.e. the investigation of the influence of oxygen on 

bone fracture healing. A schematic overview of the multiscale oxygen model is given in 

Figure 1.   
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Figure 1: (top) Scale separation map of the multiscale oxygen model indicating 
schematically the modeled processes at different spatial and temporal scales. The 
intracellular variables govern the endothelial cell (EC) behavior. At the tissue scale, cells 
(MSCs, chondrocytes, osteoblasts, fibroblasts) can migrate (only MSCs and fibroblasts), 
proliferate (circular arrows), differentiate (vertical arrows), produce growth factors (gbc: 
osteochondrogenic growth factor, gv: angiogenic growth factor) and extracellular matrix 
(mf: fibrous tissue density, mb: bone density, mc: cartilage density, m: total tissue density). 
Blood vessels are a source of oxygen (n: oxygen tension) which influences proliferation, 
differentiation and angiogenic growth factor production. Variables influencing a tissue 
level process are indicated next to the corresponding arrow. (bottom) Schematic 
representation of the different phases occurring during bone fracture healing. The 
processes that were made oxygen dependent in this study are indicated by circular arrows.  
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At the cellular level, the development of the discrete vascular tree is determined by 

sprouting, vascular growth and anastomosis. The sprouting process is modeled in great 

detail by including the Dll4-Notch1 signaling pathway. In short, every endothelial cell (EC) 

has an intracellular level of VEGFR-2, active VEGFR-2, effective active VEGFR-2, Notch1, 

active Notch1, effective active Notch1, Dll4 and actin. The rules that capture the lateral 

inhibition mechanism during tip cell selection were adapted from the agent-based model of 

Bentley et al. (Bentley et al., 2008) and have been described in detail in Carlier et al. (Carlier 

et al., 2012). The growth of a blood vessel is modeled by computing the movement of the 

corresponding tip cell where the tip cell speed depends on the active VEGFR-2 concentration 

and the tip cell direction is influenced by chemotactic (angiogenic growth factor) and 

haptotactic (collagen fibers in the extracellular matrix) signals (Carlier et al., 2012). Note that 

the vessel diameter is defined by the grid resolution and is always one endothelial cell wide, 

whereas the movement of the tip cell is grid independent and calculated in a lattice-free 

manner. When a tip cell encounters another blood vessel or when it migrates outside the 

geometrical domain (defined in Figure 2), an anastomosis is formed during which the leading 

EC loses its tip cell phenotype. The newly established connection between the vessels allows 

for blood flow and the delivery of oxygen and nutrients. As such, only the ECs that are part 

of a vascular loop are sources of oxygen. This represents an important improvement with 

respect to the MOSAIC model where all the vessels were instantaneously active. Remark 

that the current oxygen model does not account for metalloproteinases that can degrade 

the basement membrane of the existing vessels as well as the surrounding extracellular 

matrix in order to invade the tissues and migrate towards the source of VEGF.   

At the tissue level, the fracture healing process is described as a spatiotemporal variation of 

10 continuous variables: mesenchymal stem cell density (cm), fibroblast density (cf), 
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chondrocyte density (cc), osteoblast density (cb), fibrous matrix density (mf), cartilaginous 

matrix density (mc), bone matrix density (mb), generic osteochondrogenic growth factor 

concentration (gbc), vascular growth factor concentration (gv) and oxygen tension (n). 

Remark that the MOSAIC model has been simplified by including only one generic 

osteochondrogenic growth factor (gbc) whose influence on differentiation is steered to either 

chondrogenesis or osteogenesis depending on the local oxygen tensions. The following set 

of partial differential equations (PDEs) of the taxis-diffusion-reaction type describes the 

various key processes of bone regeneration: 
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where m (= mf + mc + mb) represents the total tissue density.  

After the inflammation phase, the fracture callus is filled with granulation tissue 

(contributing to mf), MSCs (cm), fibroblasts (cf) and osteochondrogenic growth factors (gbc). 

Close to the cortex and away from the fracture gap, the MSCs will then differentiate into 

osteoblasts (cb) (intramembranous ossification (mb)) whereas the central callus region will be 

filled with a cartilage template (mc) laid down by chondrocytes (cc). Subsequently the 

(hypertrophic) chondrocytes will express several angiogenic growth factors (gv), of which 

VEGF is the most important one, in order to attract blood vessels and osteoblasts. The 

cartilage template is gradually resorbed and replaced by woven bone (endochondral 

ossification (mb)). Finally, the newly formed bone is remodeled, a process that is, however, 

not included in the model.  

 

2.1.2 Oxygen dependent model terms 

The essence of the new oxygen model is an accurate description of the oxygen dependency 

of a number of cellular processes, namely osteogenic and chondrogenic differentiation, cell 

proliferation, cell death, oxygen consumption and the hypoxia-dependent production of an 
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angiogenic growth factor. An overview of the oxygen values at which the considered cell-

specific oxygen-dependent processes occur at maximal rate or at which their rate changes, is 

given in Table 1. Only the functional forms that were adapted (compared to (Carlier et al., 

2012)) in order to account for the influence of oxygen are discussed below, also providing 

adequate reference to the experimental work that forms the basis for the parameter values 

that appear in these forms. A description of the unaltered functional forms related to 

migration (Dm, CmCT, CmHT, Cf) as well as the complete set of equations, nondimensionalized 

parameters, boundary and initial conditions, parameter values and implementation details 

can be found in Carlier et al. (Carlier et al., 2012), Peiffer et al. (Peiffer et al., 2011) and Geris 

et al. (Geris et al., 2008) and are provided here as supplementary material. 

Table 1: Overview of the oxygen tensions at which the rate of distinct cellular processes is 
maximal or changes. The average initial oxygen tension is put in bold. Biological processes 
that preferentially take place in low oxygen tensions (upper part of Table 1) will occur in 
regions where the oxygen tensions will have dropped with respect to the initial value (e.g. 
the central fracture zone) while biological processes that preferentially take place in high 
oxygen tensions (lower part of Table 1) will occur in regions where the oxygen tensions 
will have increased with respect to the initial value (e.g. near the blood vessels of the 
periosteal layer).  
 

Process Oxygen  
tension 

Reference 

-chondrocyte cell death (F5,1) 
-MSC cell death (F7) 

0.5% (Henrotin et al., 2005;Grimshaw 
and Mason, 2000) 

-hypoxia-dependent angiogenic growth factor 
production by chondrocytes (Ehyp,c) 
-oxygen tension at half maximal 
oxygen consumption rate of chondrocytes (dnc) 

1.5% estimated 

- hypoxia-dependent angiogenic growth factor 
production by MSCs (Ehyp,m) 
-oxygen tension at half maximal 
oxygen consumption rate of MSCs (dnm) 
-osteoblast cell death (F6) 

2% (Fraisl et al., 2009;Chae et al., 
2001) 

-fibroblast cell death (F8) 2.25% estimated 

- chondrogenic differentiation (F2) 
- chondrocyte proliferation (Ac) 

3% (Hirao et al., 2006;Kanichai et 
al., 2008;Merceron et al., 2010) 

- MSC proliferation (Am) 
- average initial oxygen tension  
- hypoxia-dependent angiogenic growth factor 
production by osteoblasts (Ehyp,b) 

4% (Xu et al., 2007;Grayson et al., 
2007;Lennon et al., 2001;Ren et 

al., 2006;Brighton and Krebs, 
1972) 
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-oxygen tension at half maximal 
oxygen consumption rate of osteoblasts (dnb) 

estimated 

- hypoxia-dependent angiogenic growth factor 
production by fibroblasts (Ehyp,f) 
-oxygen tension at half maximal 
oxygen consumption rate of fibroblasts (dnf) 

4.5% estimated 

- osteoblast proliferation (Ab) 
- osteogenic differentiation (F1) 
- endochondral ossification (F3) 

8% (Hirao et al., 2006) 

- fibroblast proliferation (Af) 9% estimated 

-chondrocyte cell death (F5,2) 11% (Cheema et al., 2008) 

-maximal oxygen tension 12% (Brighton and Krebs, 1972) 

 

Cell differentiation 

The differentiation of MSCs towards osteoblasts is mediated by osteochondrogenic growth 

factors gbc (Gerstenfeld et al., 2003a;Cho et al., 2002) and oxygen n (Hirao et al., 2006) which 

is mathematically modeled by the following functional form: 

6
11 12

1 6 6
11

. .
.bc

bc v

Y g Y n
F

H g I n


            (11) 

A sixth-order Hill function is used to model a threshold (Bailon-Plaza and van der Meulen, 

2001;Geris et al., 2008), in this case indicating that intramembranous ossification can only 

take place when the tension of oxygen is sufficiently high (i.e. Iv is equal 8%) (Hirao et al., 

2006). Remark that the influence of the angiogenic growth factor (gv) (Street et al., 2002) on 

osteogenic differentiation has been omitted in this study since it has become obsolete due 

to the addition of the discrete blood vessels and oxygen.  

The differentiation of MSCs to chondrocytes is modeled as follows:  

2 2
2 6 6

2 2

= .bc n

bc n

Y g Y n
F

H g K n           (12) 

where the optimal oxygen tension is 3%. This value was chosen in accordance to 

experimental values found in literature. In low oxygen environments (2% oxygen tension) 
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Malladi et al. observed a decrease in chondrogenesis (Malladi et al., 2006) whereas a more 

recent study by Kanichai et al. reports that a low oxygen environment (2% oxygen tension) 

has a beneficial effect on chondrogenesis, measured by a significant increase in collagen II 

expression and proteoglycan deposition with respect to normoxic (20% oxygen) conditions 

(Kanichai et al., 2008). Hirao et al. showed that 5% oxygen tension promoted chondrogenic 

commitment rather than osteoblastic differentiation (Hirao et al., 2006). Also the data of 

Merceron et al. strongly suggest that hypoxia (5% oxygen tension) favors the chondrogenic 

differentiation of human adipose tissue-derived stem cells (Merceron et al., 2010). Hence, an 

intermediate value for the optimal oxygen tension for chondrogenic differentiation was 

chosen.  

 

Endochondral ossification 

The functional form of the endochondral ossification term (F3) is taken from Carlier et al. 

(Carlier et al., 2012). Remark that its parameter values have changed (i.e. oxygen switch Bv is 

set at 8%) so that they correspond to the optimal oxygen tension for osteoblast proliferation 

(see below) and (osteogenic) differentiation.    

6 6
3

3 6 6 6 6
3

= . .c bc

bcec c v

m Y g n
F

H gB m B n         (13) 

 

Cell proliferation 

In this work the proliferation of all cell types (i.e. cm, cf, cb and cc) is modeled similar to Carlier 

et al. (Carlier et al., 2012) except that the influence of oxygen is taken into account explicitly:  

0

2 2 3 3
= .i in

i

i in

A m A n
A

K m K n            (14) 
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with i = m for MSCs (cm) and  

0

2 2 2 2
= .i in

i

i in

A m A n
A

K m K n            (15) 

with i = f for fibroblasts (cf) and 

0

2 2 6 6
= .i in

i

i in

A m A n
A

K m K n           (16) 

with i = c, b for chondrocytes (cc) and osteoblasts (cb). The optimal oxygen tension for MSC 

proliferation (Am) is set at 4%, based on experimental values in the literature. Grayson et al. 

report a 9-fold increase in the amount of human bone marrow derived MSCs obtained after 

culture at 2% oxygen with respect to a 5-fold increase at 20% oxygen (Grayson et al., 2007). 

These results are similar to the findings of Ren et al. who report a 2.8-fold increase in the 

proliferation of murine bone marrow cells under 8% oxygen in comparison to their 

expansion under 21% oxygen (Ren et al., 2006). Also, Lennon et al. report 50% more cell 

yield of rat bone marrow derived MSCs in 5% oxygen compared to 20% oxygen (Lennon et 

al., 2001). Moreover, murine adipose derived MSCs are reported to yield a significantly 

higher cell number due to a reduction in doubling time at 2% oxygen (Xu et al., 2007). The 

optimal oxygen tension for fibroblast proliferation (Af) is set at 9% since Fermor et al. found 

that human anterior cruciate ligament-derived fibroblasts proliferated maximally at 10% 

oxygen, moderately at 21% and much slower at 0% (Fermor et al., 1998). The third  and 

second order denominator in Am and Af was used to describe a broad distribution, indicating 

that the proliferative capacity of MSCs and fibroblasts is only moderately oxygen dependent 

(compared to the sixth order denominator for osteoblasts and chondrocytes, see below). 

The optimal oxygen tension for chondrocyte proliferation (Ac) is set at 3%, corresponding to 

the optimal oxygen tension for chondrocyte differentiation (F2). Similarly, the optimal 
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oxygen tension for osteoblast proliferation (Ab) is set at 8%, corresponding to the optimal 

oxygen tension for osteoblast differentiation and endochondral ossification (F1 and F3). A 

switch-like behavior was introduced in the functional forms of Ab and Ac by using a sixth-

order denominator (Bailon-Plaza and van der Meulen, 2001;Geris et al., 2008). Remark that 

the chosen oxygen parameter values for cellular proliferation are all within the experimental 

range of oxygen tensions measured in rabbit fibular fractures: 0.8% in the hematoma, 9% in 

fibrous tissue, 4.5% in cartilage, 4-12% in fibrous bone and 12.2-14% in diaphysal bone  

(Brighton et al., 1991). 

 

Oxygen consumption 

In order to perform the multiple basic cellular processes required e.g. for fracture healing, 

cells need oxygen (Lu et al., 2013a). In this study we have replaced the general oxygen decay 

term of the MOSAIC model with a cell-specific description of cellular oxygen consumption. 

Similar to Demol et al., the cellular consumption of oxygen was described using a Michaelis-

Menten kinetic law (Demol et al., 2011): 

= ni
ni

ni

Q n
d

K n            (17) 

with i = m, f, b, c for MSCs, fibroblasts, osteoblasts and chondrocytes respectively. The 

oxygen tension at half maximal-consumption rate (Kni) was chosen half-way between the 

oxygen value for optimal proliferation and cell death (see below). Moreover, this oxygen 

tension was taken equal to the lower oxygen limit at which hypoxia signaling is activated, 

resulting in hypoxia-dependent production of angiogenic growth factor (gv) (see also below). 

In order to determine the parameter values of the maximal oxygen consumption rate (Qni), 

the non-dimensionalized parameter values were fitted so that the correspondence with the 
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experimentally observed aspects of fracture healing, i.e. the spatial patterns of cells and 

tissues, was improved thereby keeping in mind the following relative order of oxygen 

consumption: Qnc < Qnm < Qnb < Qnf (Table 2). 

Table 2: Comparison between the consumption rates used in the oxygen model and the 
experimentally measured values. 
 

 
Consumption rate used in 
oxygen model (mol/cell.s) 

 
oxygen model 

Experimentally measured  
consumption rate (mol/cell.s) 

chondrocytes (Qnc) 0.5 x 10-18 0.2-4 x 10-18 (Malda et al., 2004a) 

MSCs (Qnm) 23.2 x 10-18 38 x 10-18 (Cochran et al., 2006) 

osteoblasts (Qnb) 25.5 x 10-18 11.1 x 10-18 (Komarova et al., 2000) 

fibroblasts (Qnf) 29 x 10-18 
 

370 x 10-18 (Papandreou et al., 2006) 

 

Remark that the endothelial cells are not included in Table 2 since they mostly rely on 

anaerobic metabolism for energy production thus consuming very little oxygen (Peters et al., 

2009;Mertens et al., 1990;De Bock et al., 2013).   

 

Hypoxia-dependent production of angiogenic growth factor 

In low oxygen environments, the transcription factor HIF-1α is stabilized and translocates to 

the nucleus where it forms a complex with the HIF-1β subunit in order to promote the 

transcription of genes with a hypoxia responsive element (HRE), such as the angiogenic 

growth factor VEGF (Pugh and Ratcliffe, 2003;Maes et al., 2012). In the oxygen model we 

make a distinction between hypoxia-independent production of the angiogenic growth 

factor (gv) (by hypertrophic chondrocytes and osteoblasts) and hypoxia-dependent 

production (by MSCs, osteoblasts, fibroblasts and chondrocytes), the latter being modeled 

as follows:  

6
, ,

, 6 6
,

=
hyp i hyp i

hyp i

hyp i

Q K
E

K n           (18) 
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with i = m, f, b, c for MSCs, fibroblasts, osteoblasts and chondrocytes respectively. A 

threshold-like behavior was introduced in the functional form of Ehyp,i by using a sixth-order 

formulation (Bailon-Plaza and van der Meulen, 2001;Geris et al., 2008). Due to the lack of 

quantitative data on the hypoxia-dependent angiogenic growth factor production rate (Qhyp) 

of distinct skeletal cell types, the parameter value was chosen equal for all cell types and set 

at 0.1 pg/day.cell. Although this parameter value is higher than reported in literature (16-33 

x 10-3 pg/day.cell for fibroblasts (Zelzer et al., 2001) and 750 x 10-6 pg/day.cell for muscle 

cells (Kubo et al., 2009)), it represents the maximal production rate which is modulated by 

the local oxygen tension, thereby increasing the correspondence with the experimentally 

reported values. The oxygen threshold at which the cells switch on their HIF-signaling 

pathway (Khyp) was chosen equal to the oxygen tension at half maximal-consumption rate 

(Kni). 

 

Cell death 

On the one hand, in pathologically low oxygen environments, cellular metabolism is 

compromised resulting in cell death (Cheema et al., 2008). A new functional form describing 

the oxygen-dependent cell death of chondrocytes (F5), osteoblasts (F6), MSCs (F7) and 

fibroblasts (F8) is introduced:  

6 6
5 1 5 1 5 2

5 5,1 5,2 6 6 6 6
5 1 5 2

n n n

n n

A H A n
F F F

H n H n
   

 
        (19) 

for chondrocytes and 

6

6,7,8 6 6
= in in

in

A H
F

H n
          (20) 
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with i = 6, 7, 8 for osteoblasts, MSCs and fibroblasts respectively. Although chondrocytes are 

well adapted to low oxygen tensions, they do require a minimal oxygen level for their basal 

metabolic functions (Henrotin et al., 2005). Indeed, Grimshaw et al. show that oxygen 

tensions below 1% inhibited glucose uptake and lactate production as well as cellular 

ribonucleic acid synthesis in bovine articular chondrocytes (Grimshaw and Mason, 2000). 

Consequently, a sharp switch at 0.5% oxygen tension was used to model chondrocyte death. 

The same threshold was used for mesenchymal stem cells, since experiments have 

evidenced their ability to survive long periods of nutrient and oxygen deprivation 

(Deschepper et al., 2011;Potier et al., 2007). Osteoblasts, in contrast to mesenchymal stem 

cells, are reported to produce less collagen and mineralized matrix in hypoxic conditions (2% 

oxygen tension)(Nicolaije et al., 2012). Moreover, an increase in osteoblast death is seen 

starting from 2% oxygen tension (Nicolaije et al., 2012;Chae et al., 2001), justifying the 

model threshold of 2% oxygen tension for osteoblast death. As no data exist on the oxygen 

tension at which fibroblasts die, this was chosen comparable to that of osteoblasts (2.25% 

oxygen tension). 

In pathologically high oxygen environments, on the other hand, very high oxygen tensions 

induce oxidative stress due to mitochondrial respiration (Cheema et al., 2008), whereby 

chondrocytes are less protected against reactive oxygen species (ROS). This was shown by 

Brandl et al. who investigated the (stress) response of human osteoarthritic chondrocytes 

subjected to acute or prolonged oxidant challenge with hydrogen peroxide (Brandl et al., 

2011). Consequently, the death term of chondrocytes consists of two contributions: 

increased cell death both in very low (0.5% oxygen tension) and high oxygen tensions (11% 

oxygen tension) (Henrotin et al., 2005). Remark that the other cell types only have one term, 
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i.e. they can survive in well oxygenated environments (bearing in mind that in the model 

simulations oxygen tension is not exceeding 12%).   

2.1.3 Growth factor dependent model terms 

In the oxygen model the chondrogenic growth factor (gc) and osteogenic growth factor (gb) 

that influenced chondrogenic and osteogenic differentiation respectively in the MOSAIC 

model are merged into one generic osteochondrogenic growth factor (gbc) whose influence 

on differentiation is steered to either chondrogenesis or osteogenesis by oxygen. This 

simplification was inspired by the recent experimental findings that several growth factors 

(i.e. BMP-2 and BMP-6) have both osteogenic as well as chondrogenic properties (Kwon et 

al., 2013;Hojo et al., 2013) . The chondrogenic and osteogenic growth factors gc and gb were 

replaced by gbc in all the functional forms containing them (i.e. F1, F2, F3, Egb, Egc, CmCT, Cf), 

maintaining the mathematical formulation but changing some of the parameter values in 

order to match the predicted and reported dynamics of bone regeneration (Equations 11-13, 

21-24 and Table S1 in the supplementary material). The boundary conditions are also kept 

the same and an initial condition (gbc,init = 100 ng/ml) was introduced.  

=
gb bc

gb

gb bc

G g
E

H g            (21)
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2.2 Implementation details 

The set of partial differential equations (Equations 1-10) is numerically solved by the method 

of lines (MOL). Firstly, a finite volume method is used to spatially discretize the PDEs, 

assuring mass conservation and non-negativity of the continuous variables (Gerisch and 

Chaplain, 2006). Secondly, the resulting set of ODEs is integrated in time using ROWMAP, a 

ROW-code of order four with Krylov techniques for large stiff ODEs (Weiner et al., 1997). 

After each time step for the continuous variables, the positions of the discrete ECs as well as 

their intracellular levels are updated (see (Peiffer et al., 2011) and (Carlier et al., 2012) for 

details). The PDE model is solved on a 2D grid with a grid cell size of 25 µm, equal to the 

width of a discrete endothelial cell. The fiber orientation, which accounts for the haptotactic 

guidance of tip cell movement, is randomly initialized. For the same initial settings of fiber 

orientation, the model is deterministic. However, some stochasticity in the movement of the 

ECs can be easily introduced by altering the random orientation of the fibers (Qutub and 

Popel, 2009). The oxygen model is implemented in Matlab (The MathWorks, Natick, MA).  

 

2.3 Simulation details 

The simulations were performed on a quad-core Intel® Xeon® CPU with 12 GB RAM memory.  

2.3.1 Normal fracture healing 

The geometrical domain is deduced from the real callus geometry at three weeks post 

fracture in a standardized femoral rat fracture model (Harrison et al., 2003). Due to reasons 

of symmetry, only one-fourth of the domain is simulated. Initially the callus domain is filled 

with granulation tissue, which is, since it is not explicitly modeled as a separate phase, 

represented here by a small initial amount of fibrous tissue (mf,init = 10 mg/ml), 

osteochondrogenic growth factors (gbc,init = 100 ng/ml), mesenchymal stem cells (cm,init = 
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2.104 cells/ml) and fibroblasts (cf,init = 1.104 cells/ml). Due to the rupturing of the blood 

vessels during the fracture, the oxygen tension in the fracture callus will gradually decrease. 

We consider an initial gradient of oxygen tension ninit = 3.7 [%] +2.33 [
%

mm
] . X [mm] with X 

representing the coordinate on the horizontal axis in Figure 2. This gradient was chosen so 

that the oxygen tension is lowest in the fracture gap (3.7% oxygen tension) and highest near 

the bone ends (5.8% oxygen tension) since the latter region is close to blood vessels 

supplying it with oxygen. The average initial oxygen tension is 4%, similar to what is 

measured for cartilage and bone marrow (Brighton and Krebs, 1972;Epari et al., 2008;Fraisl 

et al., 2009). The influence of this initial gradient was investigated in a sensitivity analysis 

(see further). The boundary conditions are chosen similar to the MOSAIC model (Carlier et 

al., 2012), except that both the chondrogenic (gc) and osteogenic (gb) growth factors are 

replaced by one general osteochondrogenic growth factor (gbc). The geometry of the 

fracture callus, as well as the boundary conditions and initial positions of the endothelial 

cells are represented in Figure 2.  

 

 

Figure 2: (left) The geometrical domain models one-fourth of the real fracture callus 
geometry (Harrison et al., 2003) due to reasons of symmetry; 1 periosteal callus; 2 
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intercortical callus; 3 endosteal callus; 4 cortical bone ends. (right) No-flux boundary 
conditions are assumed for all variables, except for the mesenchymal stem cells (cm) and 
fibroblasts (cf) which are released from the periosteum, surrounding soft tissues and bone 
marrow (Gerstenfeld et al., 2003b); and the osteochondrogenic growth factor (gbc) which is 
released from the degrading bone ends and the cortex (Barnes et al., 1999;Dimitriou et al., 
2005). The origin of the coordinate system is placed in the left bottom corner of the 
geometrical domain.    
 

2.3.2 Sensitivity analysis 

Peiffer et al. (Peiffer et al., 2011) previously performed an extensive convergence analysis on 

the time step size and grid cell size as well as a sensitivity analysis on the orientation of the 

matrix fibers, the initial tip cell density and ratio of chemotaxis to haptotaxis influencing tip 

cell speed. Consequently, in this study the additional sensitivity analyses focused on the 

influence on the simulation outcome of the initial conditions ( ,f initm , ,bc initg , ,m initc , ,f initc , 

ñinit), boundary conditions ( ,bc BCg , ,m BCc , ,f BCc ) and the oxygen thresholds in the newly 

defined functional forms (Am, Af, Ac, Ab, F1, F2, F3, dnm, dnc, dnb, dnf, Ehyp,m, Ehyp,c, Ehyp,b, Ehyp,f, F5, 

F6, F7, F8). The values of the initial conditions and boundary conditions were varied between 

50% and 150% of the original parameter values. In order to test the sensitivity of the model 

outcome to the oxygen parameter values listed in Table 1, these values were varied with 1% 

oxygen tension, at the same time maintaining the correct order of oxygen tension values at 

which distinct cellular processes occur within one cell type (e.g. the oxygen tension for 

proliferation should not be below the oxygen tension for cell death for a specific cell type) 

and maintaining the overall value for the respective functional form so that only the effect of 

the threshold is tested.  
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2.3.3 Impaired fracture healing 

The gap size of the newly developed oxygen model was enlarged from 0.5 mm to 3 mm in 

order to simulate and investigate critically sized defects. This gap size was chosen in 

accordance with the experimental observations of Harrison et al. who report the formation 

of a pseudarthrosis in a 3 mm distracted mid-diaphysal rat femoral osteotomy (Harrison et 

al., 2003). This value is also in the same range as other rat femoral critical defect sizes 

reported in literature: 1 cm (Vogelin et al., 2005), 8 mm (Tolli et al., 2011), 6 mm (Drosse et 

al., 2008).  
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3. Results 
 
3.1 Normal fracture healing 

 

Figure 3: The spatiotemporal evolution of (A) fibrous tissue matrix density (MD) (x 0.1 
g/ml), (B) cartilage matrix density (x 0.1 g/ml), (C) bone matrix density (x 0.1 g/ml), (D) 
oxygen tension (x 1%), (E) vasculature, (F) active vasculature and (G) VEGFR-2 levels on the 
EC during normal fracture healing in a small defect (0.5 mm) as predicted by the oxygen 
model.    
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The oxygen model captures the essential features of the fracture healing process (Figure 3) 

starting with osteoprogenitor cells (cm) entering the callus from the periosteal layer and 

differentiating into osteoblasts (cb) near the cortex and chondrocytes (cc) in the intercortical 

callus. This leads to intramembranous ossification near the bony ends and endochondral 

ossification in the rest of the fracture zone. The evolution of the fracture healing process as 

predicted by the oxygen model is very similar to the evolution predicted by the previously 

published MOSAIC model (figure S.2), except for the fibrous tissue density and the cartilage 

density. For the first, a quicker resorption is seen in the oxygen model and specifically in the 

endosteal callus (Figure 3A). For the latter, a more homogeneous distribution is predicted by 

the oxygen model (Figure 3B). In the current oxygen model only the ECs that are part of a 

vascular loop are sources of oxygen. This implementation results in an active vasculature, i.e. 

the functional vessels that deliver oxygen, that is characterized by a density that is much 

lower than the overall vascular density (Figure 3E-F), resembling more the final, remodeled 

vascular tree.  
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Figure 4: Temporal evolution of the average oxygen tension in the endosteal (--), 
intercortical (―) and periosteal (...) callus as predicted by the oxygen model. * indicates 
the experimentally measured oxygen tensions in an ovine tibial osteotomy (Epari et al., 
2008). Since Epari et al. start to measure at post fracture day (PFD) 0 and the oxygen 
model neglects the inflammation phase, the experimental measurements were shifted 
with three days, i.e. the experimental point measured at day 3 is depicted here at day 0.   
 
The complex interplay between oxygen delivery, oxygen diffusion and oxygen consumption 

during the bone regeneration process gives rise to interesting oxygen patterns (Figure 4). 

The initial average oxygen tension of around 4% quickly drops due to cellular consumption, 

comparable to the experimental temporal dynamics observed by Epari et al. (indicated by * 

in Figure 4) (Epari et al., 2008). Epari et al. measured the oxygen tensions in an ovine tibial 

osteotomy model continuously for 10 days post fracture, reporting an initial oxygen tension 

of 110 mmHg (~14.6%) and a final oxygen tension of 12.5 mmHg (~1.65%). Since the oxygen 

model does not include the inflammation phase, the initial oxygen tension in the oxygen 

model represents the oxygen tension after three days. Epari et al. measured an oxygen 
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tension of 28 mmHg after 3 days (~3.7 %) which is in accordance with the value used in the 

oxygen model (~4%, Table 1). Remark that the first three data points (PFD 0, 1, 2) of Epari et 

al. are not indicated in order to facilitate the interpretation of Figure 4.  

As the newly formed vessels grow into the fracture site, the oxygen tension gradually 

increases from PFD 7 on. After 35 days the average oxygen tension is between 5% and 7%. 

Remark that these are average values over the respective calluses. Indeed, the maximal 

oxygen tensions attained in the periosteal, endosteal and intercortical callus are 11%, 9% 

and 7% respectively. The average oxygen profiles in Figure 4 are not smooth and show a lot 

of temporal variation. This is due to the discontinuous process of vascular loop formation. In 

some locations an anastomosis will be formed, resulting in the local delivery of oxygen by 

that vascular loop. This might, however, boost the local proliferation of cells, resulting in a 

lowering of the oxygen tension due to the increased oxygen consumption. Remark that the 

lowest oxygen values are found in the intercortical callus, since this part is furthest away 

from the ingrowing blood vessels.   
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Figure 5. In silico and in vivo evolution of normal fracture healing in a small defect (0.5 
mm). Temporal evolution of the bone, cartilage and fibrous tissue fractions (%) in the 
periosteal, intercortical and endosteal callus as predicted using the MOSAIC model of 
Carlier et al. (Carlier et al., 2012) and the newly developed multiscale oxygen model and as 
measured by Harrison et al (Harrison et al., 2003). In order to calculate the tissue fractions, 
the spatial images (Figure 3) are first binarized using tissue-specific thresholds (0 means 
that the tissue is not present, 1 means that the tissue is present in a grid cell). 
Subsequently, an equal weight is assigned to the different tissues, i.e. if a grid cell contains 
three tissues, the area of that grid cell is divided by three in the final calculations of the 
tissue (area) fractions. 
 

The predictions of the MOSAIC model and the new oxygen model agree with the 

experimental data of Harrison et al. (Harrison et al., 2003) who determined histologically the 

distribution of fibrous tissue, bone and cartilage for three different zones in the fracture 

callus (i.e. intercortical, endosteal and periosteal) of a standardized rat femoral model 

(Figure 5). Both the MOSAIC model as well as the oxygen model predict the general trends in 

the experimental data of Harrison et al. (Harrison et al., 2003): as the healing process 
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continues the bone tissue fraction and fibrous tissue fraction monotonically increase and 

decrease respectively whereas the cartilage tissue fraction is first produced during the soft 

callus phase and later replaced by bone during endochondral ossification. The amount of 

cartilage predicted by the MOSAIC model is different from that predicted by the oxygen 

model, i.e. in the endosteal and intercortical callus the oxygen model predicts more 

cartilage. Since the proliferation and differentiation rates are oxygen dependent in the 

oxygen model, also the dynamics of the MOSAIC and oxygen model are slightly different. In 

the latter, the chondrocytes survive better, reaching their maximal cell density which leads 

to an increased amount of cartilage production. Moreover, endochondral ossification starts 

a bit closer to the bony ends in the endosteal callus resulting in higher bone tissue fractions 

at earlier time points. The oxygen model does not only capture the correct dynamics of the 

fracture healing process at the tissue scale, it also correctly simulates the intracellular 

dynamics of the Dll4-Notch signaling pathway which in turn determines the ingrowth of the 

vascular tree in the fracture callus (Figure 3G).  

 

3.2 Sensitivity analysis 

The results of the sensitivity analyses that were performed are summarized in Tables 4 and 

5. The initial positions of the endothelial cells, provided as a figure in the supplementary 

material, have a small influence on the final tissue fractions (+/- 5%). This difference is due to 

a different spatial filling of the blood vessels in the 2D simulated fracture callus and is in the 

same range as the influence of the random fibers on the simulation outcome (+/- 3% (Peiffer 

et al., 2011)). Both the initial conditions and the boundary conditions have little influence on 

the final outcome of the oxygen model (Table 3). All the variations lie in the same range as 

the variations due to small changes in endothelial cell position or fiber orientation. Due to 
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the importance of the osteoprogenitor cells in fracture healing, we investigated the 

influence of a gradient or random distribution of these cells on the simulation outcome, but 

also these are insignificant. Similarly, the initial distribution (uniform, gradient or random) of 

oxygen in the fracture callus does not influence the simulation outcome.  

Table 3: Overview of results of the sensitivity analysis on the initial position of the 
endothelial cells, the initial conditions and the boundary conditions. The tissue fractions 
are measured at post fracture day 35. The non-dimensionalized parameter values 

corresponding to the standard condition are ,f initm  = 0.1, ,bc initg   = 1, ,m initc = 0.02, ,f initc  = 

0.01, ñinit = 0.037+0.0825 x , ,bc BCg  = 20 , ,m BCc  = 0.02 and ,f BCc = 0.02. x  represents the 

non-dimensionalized coordinate on the horizontal axis in Figure 2. Rand represents a 
randomly chosen number between 0 and 1. A graphical representation of the initial 
positions of the ECs as well as the non-dimensionalized parameter values can be found in 
the supplementary material. The standard condition is indicated in bold.   
 

Condition Bone Fibrous matrix Cartilage 

matrix 
standard  100.00% 0.00% 0.00% 

EC position 1  100.00% 0.00% 0.00% 

EC position 2  99.10% 0.00% 0.90% 

EC position 3  100.00% 0.00% 0.00% 

EC position 4  95.12% 0.00% 4.88% 

EC position 5  86.35% 0.00% 13.55% 

,f initm  0.05 100.00% 0.00% 0.00% 

 0.15 100.00% 0.00% 0.00% 

,bc initg  0.5 100.00% 0.00% 0.00% 

 1.5 100.00% 0.00% 0.00% 

,m initc  0.01 100.00% 0.00% 0.00% 

 0.03 98.44% 0.00% 1.56% 

 0.015+0.007 x  100.00% 0.00% 0.00% 

 0.015+0.01rand 100.00% 0.00% 0.00% 

,f initc  0.005 99.61% 0.00% 0.39% 

 0.015 100.00% 0.00% 0.00% 

ñinit 0.037+0.0625 x  100.00% 0.00% 0.00% 

 0.037+0.125 x  100.00% 0.00% 0.00% 

 0.027+0.0825 x  92.07% 0.00% 7.93% 

 0.047+0.0625 x  100.00% 0.00% 0.00% 

 0.04 uniform 100.00% 0.00% 0.00% 

 0.037+0.005rand 100.00% 0.00% 0.00% 

,bc BCg  10 100.00% 0.00% 0.00% 
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 30 99.69% 0.00% 0.31% 

,m BCc  0.01 100.00% 0.00% 0.00% 

 0.03 100.00% 0.00% 0.00% 

,f BCc  0.01 100.00% 0.00% 0.00% 

 0.03 99.29% 0.08% 0% 

 
Table 4: Overview of results of the sensitivity analysis on the oxygen model parameters. 
The tissue fractions are measured at post fracture day 35. The oxygen model parameters 
corresponding to the standard condition are F5,1 0.5%, F5,2 11%, F6 2%, F7 0.5%, F8 2.25%, 
Ehyp,m 2%, Ehyp,c 1.5%, Ehyp,b 4%, Ehyp,f 4.5%, dnm 2%, dnc 1.5%, dnb 4%, dnf 4.5%, Am 4%, Ac 3%,  
Ab 8%,  Af 9%, F1 8%, F2 3%, F3 8% (Table 1). The non-dimensionalized parameter values can 
be found in the supplementary material.  The standard condition is indicated in bold.   
 

Condition Functional 
form 

Oxygen 
threshold 

Bone Fibrous 
matrix 

Cartilage 
matrix 

standard   100.00

% 

0.00% 0.00% 

chondrocyte cell death 

F5,1 0% 100.00% 0.00% 0.00% 

1.5% 64.92% 18.64% 16.44% 

F5,2 10% 100.00% 0.00% 0.00% 

12% 100.00% 0.00% 0.00% 

osteoblast cell death 
F6 1% 99.92% 0.00% 0.08% 

3% 100.00% 0.00% 0.00% 

MSC cell death 
F7 0% 100.00% 0.00% 0.00% 

1.5% 100.00% 0.00% 0.00% 

fibroblast cell death 
F8 1.25% 100.00% 0.00% 0.00% 

3.25% 

 

99.84% 0.00% 0.16% 

hypoxia-dependent gv production 
by MSCs 

Ehyp,m 1% 100.00% 0.00% 0.00% 

3% 100.00% 0.00% 0.00% 

hypoxia-dependent gv production 
by chondrocytes 

Ehyp,c 0.5% 100.00% 0.00% 0.00% 

2.5% 100.00% 0.00% 0.00% 

hypoxia-dependent gv production 
by osteoblasts 

Ehyp,b 3% 100.00% 0.00% 0.00% 

5% 100.00% 0.00% 0.00% 

hypoxia-dependent gv production 
by fibroblasts 

Ehyp,f 3.5% 100.00% 0.00% 0.00% 

5.5% 98.63% 0.00% 1.37% 

half maximal oxygen consumption 
rate of MSCs 

dnm 1% 100.00% 0.00% 0.00% 

3% 100.00% 0.00% 0.00% 

half maximal oxygen consumption 
rate of chondrocytes 

dnc 0.5% 98.44% 0.00% 1.56% 

2.5% 100.00% 0.00% 0.00% 

half maximal oxygen 
consumption rate of osteoblasts 

dnb 3% 100.00% 0.00% 0.00% 

5% 98.67% 0.00% 1.33% 

half maximal oxygen 
consumption rate of fibroblasts 

dnf 

f 

3.5% 100.00% 0.00% 0.00% 

5.5% 100.00% 0.00% 0.00% 
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MSC proliferation 
Am 3% 100.00% 0.00% 0.00% 

5% 100.00% 0.00% 0.00% 

chondrocyte proliferation 
Ac 2% 82.34% 11.41% 6.25% 

4% 98.48% 0.00% 1.52% 

osteoblast proliferation 
Ab 7% 100.00% 0.00% 0.00% 

9% 100.00% 0.00% 0.00% 

fibroblast proliferation 
Af 8% 100.00% 0.00% 0.00% 

10% 100.00% 0.00% 0.00% 

osteogenic differentiation 
F1 7% 100.00% 0.00% 0.00% 

9% 100.00% 0.00% 0.00% 

chondrogenic differentiation 
F2 2% 99.96% 0.04% 0.00% 

4% 100.00% 0.00% 0.00% 

endochondral ossification 
F3 7% 100.00% 0.00% 0.00% 

9% 97.58% 0.00% 2.42% 

 
Also the parameters of the different oxygen dependent processes in the fracture healing 

model have little influence on the final outcome (Table 4); except for the functional forms Ac 

and F5,1 which will be discussed below (Table 4).  Again all the variations in model outcome 

lie in the same range as the variations due to small changes in endothelial cell position or 

fiber orientation. 
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3.3 Impaired fracture healing 

 

Figure 6: The spatiotemporal evolution of (A) fibrous tissue matrix density (MD) (x 0.1 
g/ml), (B) cartilage matrix density (x 0.1 g/ml), (C) bone matrix density (x 0.1 g/ml), (D) 
chondrocyte density (x 106 cells/ml), (E) angiogenic growth factor concentration (GF) (x 
100 ng/ml), (F) oxygen tension (x 1%), (G) vasculature and (H) active vasculature during 
impaired fracture healing in a large defect (3 mm) as predicted by the oxygen model.    
 

After corroboration, the oxygen model was used to predict the spatiotemporal evolution of 

the fracture healing process in a 3 mm defect (Figure 6). Similar to normal bone healing, 

osteoprogenitor cells initially populate the fracture callus. Around the bony ends some direct 

bone formation can be found and further away from the bony ends a cartilage template is 
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formed by the chondrocytes (Figure 6B-D). As the chondrocytes become hypertrophic and 

produce the angiogenic growth factor (gv) (Figure 6E), the blood vessels grow into the 

cartilage callus leading to the gradual replacement of the cartilage template by bone (Figure 

6B-C). In the central region of the fracture callus, however, all the cells die due to the harsh 

hypoxic conditions (Figure 6D-F, day 30). Consequently, the angiogenic growth factor (gv), 

which is the major stimulus for vascular growth and as such endochondral ossification, is no 

longer produced and the bone healing process stops (Figure 6E). Remark that in the oxygen 

model, although all the cells have died in the central fracture zone, the blood vessels 

continue to deliver oxygen which is no longer consumed and eventually floods the entire 

callus (Figure 6F). Between 58 and 90 days all signs of the healing process are completely 

absent, classifying this fracture as a non-union (Roberts and Rosenbaum, 2012;Marsh, 1998).  

 
Figure 7. In silico and in vivo evolution of impaired fracture healing in a large defect (3 
mm). Temporal evolution of the bone, cartilage and fibrous tissue fractions (%) in the 
periosteal, intercortical and endosteal callus as predicted using the MOSAIC model of 
Carlier et al. (Carlier et al., 2012) and the newly developed multiscale oxygen model and as 
measured by Harrison et al (Harrison et al., 2003). 
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Figure 7 compares the predicted and measured tissue fractions for the standardized rat 

femoral fracture with a 3 mm gap size. Firstly, it can be seen that both models capture the 

cartilage dynamics where the cartilage template is first produced and later replaced by bone. 

Secondly, both the simulation results of the oxygen model as well as the experimental data 

predict abundant fibrous tissue in the fracture callus after 90 days, clearly indicating a clinical 

non-union. In the MOSAIC model, however, the endochondral ossification process continues 

resulting in a union after 90 days (Figure 8C). Remark that the MOSAIC model predicts much 

more cartilage formation than the oxygen model (Figure 8B) and a very heterogeneous 

pattern of fibrous tissue formation (Figure 8A, day 60). The former can be explained by the 

absence of cell death in the MOSAIC model whereas the latter is a result of the combined 

removal and production of fibrous tissue (Equation 5). In the MOSAIC model, the fibroblasts 

continue to survive and to produce fibrous tissue resulting in a bony union with a large 

fibrous component. 

 

A closer comparison of results of the oxygen model and experimentally measured data 

shows that cartilage is formed later in the experimental model than predicted by the oxygen 

model. In all the fracture regions and for all the time points the latter also predicts more 

cartilage except for day 21 in the endosteal callus. There is more bone present in the 

experimental model at day 7 and 21 and this additional bone is gradually being resorbed and 

remodeled to form a rounded osseous cap over the medullary cavities (Harrison et al., 2003). 

The latter is not included in the oxygen model, explaining why after a continued formation of 

bone up to 58 days the bone tissue fraction stays constant (Figures 6C, 7). From the above 

results we might conclude that even though the timing of the oxygen model does not 

entirely correspond to the experimentally observed dynamics, and the simulation results 
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overestimate the amount of bone formation, the oxygen model it is able to correctly predict 

whether the bone fracture will result in a clinical union or non-union.  

 

 

 
 
Figure 8: The spatiotemporal evolution of (A) fibrous tissue matrix density (MD) (x 0.1 
g/ml), (B) cartilage matrix density (x 0.1 g/ml), (C) bone matrix density (x 0.1 g/ml) and (D) 
vasculature during impaired fracture healing in a large defect (3 mm) as predicted by the 
MOSAIC model.    

  



39 
 

4. Discussion 
 
This study has presented a novel multiscale model of bone fracture healing including a 

detailed description of the regulatory properties of oxygen on the behavior of skeletal cells 

occurring during normal and impaired fracture healing. A rigorous literature screening was 

performed in order to ensure that the oxygen dependency of a number of cellular processes, 

i.e. osteogenic and chondrogenic differentiation, cell proliferation, cell death, oxygen 

consumption and the hypoxia-dependent production of angiogenic growth factors, was 

informed by state-of-the-art experimental knowledge. Furthermore, an extensive sensitivity 

analysis on the newly introduced oxygen thresholds demonstrated the robustness of the 

oxygen model with respect to changes in the oxygen related parameter values. Not only is 

the novel oxygen model able to simulate the spatiotemporal evolution of the bone 

regeneration process in both normal as well as impaired healing cases, it captures the 

intracellular (in terms of Dll4-Notch) and cellular dynamics of the developing vascular 

structures as well. We have also shown that the results of the oxygen model are in 

accordance with experimental reports for small and large defect sizes. Indeed, when the 

oxygen model was applied to a critical size defect, it correctly predicted the establishment of 

a clinical non-union which could be explained by the imbalance between the rate of 

ingrowth of new blood vessels (and thus oxygen delivery) and the oxygen consumption of 

the cells, leading to hypoxic conditions and cell death in the central region of the fracture 

callus. As such, the accurate description of the oxygen dependent behavior of skeletal cells, 

which is the essence of the novel oxygen model, allows us to investigate the spatiotemporal 

oxygen patterns that are an important determinant of fracture healing. 
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Except for some interesting cases (EC position 5, ñinit, Ac, F5,1) that will be discussed below, 

the results of the extensive sensitivity analysis show that the oxygen model is robust to 

variations in initial and boundary conditions, as well as to the newly defined parameters that 

capture oxygen-dependent cellular processes. Based on Table 4 we can also state that 

chondrocyte death in pathologically high oxygen environments (F5,2) has no influence on the 

model outcome. Even more, bearing in mind that the oxygen tensions do not exceed 12% in 

the model simulations and that we are mainly interested in the lack of oxygen due to a 

mismatch of oxygen diffusion, delivery and consumption, the oxygen model could be 

simplified in the future by removing the term F5,2. 

Since the initial position of the ECs influences the final bone tissue fraction with +/- 5%, 

deviations of more than 5% with respect to the results of the standard case can be 

considered significant. Significantly different results were obtained for four cases: EC 

position 5, initial oxygen distribution (ñinit), chondrocyte proliferation (Ac) and chondrocyte 

death in low oxygen (F5,1) (Tables 4 and 5).  In order to gain more understanding in the 

complex non-linear dynamics of the oxygen model, the mechanisms underlying these 

significant deviations were investigated further and are discussed in more detail below.  

In the first two cases (EC position 5, ñinit) we noticed that the tip cells would migrate slower 

or would not migrate at all into the fracture callus although favorable gradients for hapto- 

and chemotaxis were available. This resulted in a delay of the process without affecting the 

main mechanisms underlying the events of fracture healing. Consequently, given more time 

for vessel ingrowth, these cases would yield similar tissue fractions as the standard case. The 

slower ingrowth of the tip cells appeared to be attributed to the strong neighboring Dll4-

Notch signaling. In order to investigate this further we tested whether an increase in the 

distance over which the ECs can sense the angiogenic growth factor (e.g. through filopodia) 
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would overcome this local artifact. Indeed, using an average angiogenic growth factor 

concentration surrounding the EC instead of the localized angiogenic growth factor 

concentration as an input for the intracellular module resulted in normal tip cell movement 

and formation of the vasculature (results not shown). Future work should focus on a more 

detailed description of filopodia and the way by which these cellular protrusions sense and 

interact with their environment in order to improve the link between the tissue scale and 

the intracellular scale.  

In the third case, where the optimal oxygen tension for chondrocyte proliferation is set at 

2% (Ac, Table 4), the chondrocytes preferentially grow further away from the bony ends than 

in the standard case (where the optimal oxygen tension for chondrocyte proliferation is 3%). 

This results in a lower cell density mainly in the endosteal callus which consequently leads to 

a flooding of the endosteal callus with oxygen. Indeed, in the oxygen model the newly 

formed vasculature continuously acts as a source of oxygen, independently of the presence 

of surrounding cells. Hence, oxygen starts to accumulate and diffuse from the regions where 

due to lower cell density also the oxygen consumption is reduced. The flooding of the 

endosteal callus pushes the chondrocytes even further away since they preferentially 

proliferate in low oxygen environments resulting in the absence of endochondral ossification 

and a limited amount of bone formation in the endosteal callus and consequently also an 

overall lower bone tissue fraction (Ac, oxygen threshold 2%, Table 4). The fourth case can be 

explained by the same mechanism since also an increase in the oxygen parameter value 

describing chondrocyte cell death (F5,1, Table 4) will result in a lower cell density, eventually 

leading to the flooding of the callus and a lower amount of bone formation. Clearly, the two 

cases discussed above pinpoint a limitation of the current oxygen model, i.e. the delivery of 
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oxygen is independent of the surrounding cell density leading to unexpected results in cases 

of low cell density. This model limitation is discussed in more detail below. 

 

Figures 3, S2 and 5 illustrate that both the MOSAIC model as well as the oxygen model 

capture equally well the spatiotemporal dynamics of the fracture healing process. However, 

a more in depth comparison between the models and the in vivo observations reveals some 

interesting differences. In the oxygen model a quicker resorption of the fibrous tissue matrix 

is seen than in the MOSAIC model. This is due to the larger extent of endochondral 

ossification (especially in the endosteal callus) in the oxygen model. Remark that only 

endochondral ossification leads to resorption of the fibrous tissue matrix in contrast to 

intramembranous bone formation (equations 5-7). The increase in the amount of 

endochondral ossification in the oxygen model is linked to a second difference with the 

MOSAIC model, i.e. a more homogeneous distribution of cartilage throughout the fracture 

callus. This discrepancy can be explained by the way differentiation is captured in the two 

models. In the MOSAIC model, an osteogenic and chondrogenic growth factor determine the 

lineage to which the MSCs will differentiate whereas in the oxygen model the local oxygen 

tension will steer the differentiation process by mediating the effect of the 

osteochondrogenic growth factor. Consequently, in the MOSAIC model the spatial 

distribution of the cartilage template is mainly determined by the location of the boundary 

conditions (applied periosteally) resulting in less cartilage formation in the endosteal callus. 

In the oxygen model, however, the local oxygen tensions will determine the spatiotemporal 

cartilage distribution, allowing cartilage formation in the entire fracture callus. As such the 

MOSAIC model predicts better the in vivo data for fibrous tissue and cartilage than the 

oxygen model. Note that in the oxygen model the inner part of the external callus is first 



43 
 

resorbed and replaced by bone and then the upper left corner is calcified (Figure 3, day 21) 

(a similar pattern is predicted by the MOSAIC model, see additional Figure S2). This atypical 

resorption pattern is predicted by the models due to the specific pattern of (active) 

vasculature formation leading to locally high oxygen tensions and endochondral ossification. 

A limitation of both the MOSAIC and the oxygen model is that all the progenitor cells can 

differentiate towards both the chondrogenic and osteogenic lineage. In reality, however, it 

was shown that the progenitors from the endosteal callus can only differentiate towards the 

osteogenic lineage, resulting in the absence of cartilage in the endosteal callus (Colnot, 

2009). Progenitor cells from the periosteum do have the capability to differentiate in both 

lineages, explaining why endochondral ossification mainly occurs in the periosteal callus 

(Colnot, 2009). Consequently, the current simplification of the models leads to an 

overestimation of the amount and the location of the cartilage matrix (see Figure 5). In 

future versions of the model, an additional variable can be introduced to discriminate 

between periosteum-derived and bone marrow-derived progenitor cells. In conclusion, we 

can state that the new oxygen model performs better for the prediction of bone tissue 

fractions (in particular in the endosteal callus) when comparing the two models to the in vivo 

data of Harrison et al. (Harrison et al., 2003). Given the fact that in terms of functional 

outcome bone density is the most important variable, this is an improvement of the new 

model with respect to the previous one. At the same time, future work should focus on 

implementing additional variables to discriminate between periosteum-derived and bone 

marrow-derived progenitor cells so that also the fibrous tissue fractions and cartilage 

fractions are correctly captured. However, the main goal of extending the MOSAIC model 

with an accurate description of the influence of oxygen on fracture healing was to increase 

its application possibilities and not to improve its predictive capacities. Indeed, the oxygen 
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model is able to capture the formation of a non-union, an application which is clinically very 

relevant (see below). 

 

Figures 6 and 7 show that the oxygen model is able to predict the formation of a non-union. 

The predicted bone tissue fractions are however larger than the experimentally observed 

ones by Harrison et al. (Harrison et al., 2003) (Figure 7). This could amongst others be due to 

the fact that the same (favorable) initial conditions as for normal fracture healing (gap size 

0.5 mm) were kept in the entire callus area of the critically sized defect. Experimental 

evidence indicates that the biological potential (e.g. the amount of cells and growth factors 

present) might be greatly reduced in critically sized defects (Stevens, 2008;Bruder and Fox, 

1999). Moreover, no data exist on the exact value of the oxygen tension in the central region 

of large defects. In the simulation of the critically sized defect the oxygen tension was kept 

uniform and equal to 3.7% in the central callus area, while the same gradient as for the 

standard case was applied near the bony ends (Figure 6)). In reality the oxygen tension in the 

central region of large defects may be even lower than 3.7%. The MOSAIC model, which 

does not model the oxygen dependency of the fracture healing processes, fails to predict a 

non-union in the case of a large defect (Figure 8C). Indeed, due to the absence of amongst 

others oxygen consumption and cell death, the chondrocytes continue to survive and 

populate the entire fracture callus (Figures 6D, 8D). Consequently, a cartilage template is laid 

down in the entire callus, and not only close to the bony ends as is the case in the oxygen 

model (Figures 6B, 8B), allowing the endochondral ossification process to proceed until a 

clinical union is reached (Figure 8C). Moreover, due to the absence of (fibroblastic) cell 

death, the fibroblasts continue to survive and proliferate, finally resulting in a bony union 

containing a large fibrous component as well. This can be seen in Figures 7 and 8A where the 
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fibrous tissue fraction starts to increase after 60 days, explaining why the bone tissue 

fraction does not reach 100% after 90 days although a bony union is reached. The 

comparison of the results of the MOSAIC model and oxygen model in large defect sizes 

nicely illustrates the importance of a rigorous description of the influence of oxygen: due to 

the imbalance between oxygen consumption and oxygen delivery through (active) 

revascularization and (passive) diffusion hypoxic conditions arise in the central fracture zone 

leading to cell death and eventually the formation of a non-union. It appears that a timely 

delivery of oxygen is a key factor in successfully bridging the critical size defect. Moreover, 

simple passive diffusion is not sufficient to supply the entire fracture callus with oxygen due 

to the consumption of oxygen by cells. Consequently, a timely vascularization of the fracture 

callus is a prerequisite for successful fracture healing. Therefore we suggest that treatments 

should not only focus on the injection of stem cells (Patterson et al., 2008) or growth factors 

(Dimitriou et al., 2011;Lissenberg-Thunnissen et al., 2011) but also, and more importantly, 

on a timely vascularization of the critical defect. Remark that the current boundary 

conditions of the endothelial cells (Figure 2) neglect the contribution of the overlying soft 

tissues to the revascularization of the fracture callus. Experimental studies have shown, 

however, that blood vessels can originate from the overlying muscle (Masquelet, 2003;Harry 

et al., 2009). In the future we will use the presented oxygen model for a more in depth 

investigation of the influence of the initial conditions, boundary conditions and oxygen 

patterns on the amount of bone formation in critically sized defects and possible therapies 

thereof. 

 

This study has addressed some, but not all of the limitations of the previously published 

MOSAIC model. A first limitation is that the current oxygen model allows “self-anastomosis”, 
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meaning that the tip cell of a newly forming branch can fuse with this branch resulting in an 

active “loop”. This is for example apparent on day 28 in Figure 3F where an active branch 

appears, extending into the cortical callus, which did not anastomose with another branch or 

the borders of the geometrical domain. This implementation was chosen over a more 

phenomenological one where an arbitrary number of endothelial cells should be contained 

in a vascular loop or where only connections with other vascular branches can be made in 

order to render it functional. Remark as well that in Figure 3E some endothelial cells seem to 

be connected, implying a vascular loop that is not represented in Figure 3F. This is a 

limitation of the graphical representation of the endothelial cells, which resolution is defined 

by the grid cell size (25 µm). Tip cell movement is however implemented in a lattice free-

way, meaning also that the actual position of the endothelial cells is not captured in figure 

3E and 3F. In order to have an anastomosis in the oxygen model the tip cell needs to move 

into the grid cell representing a neighboring endothelial cell but the graphical representation 

cannot capture this (Peiffer et al., 2011). As such, the endothelial cells seem to be touching 

whereas in reality they are not. Only the endothelial cells that are part of the active 

vasculature truly form an interconnected network that allows blood flow and the supply of 

nutrients and oxygen. 

 

A second limitation concerns the quantitative determination of the parameter values that 

describe the oxygen dependent processes. Although care was taken to choose the oxygen 

threshold values based on a rigorous literature study, the reported values are not always the 

same from one study to the other which may be related to differences in species or cell 

source (human MSCs (Holzwarth et al., 2010;Grayson et al., 2007), rat MSCs (Lennon et al., 

2001), porcine MSCs (Meyer et al., 2010), adipose derived MSCs (Malladi et al., 2006;Xu et 



47 
 

al., 2007)) and set-up (1% oxygen (Holzwarth et al., 2010), 2% (Xu et al., 2007;Malladi et al., 

2006), 5% (Hirao et al., 2006;Lennon et al., 2001;Meyer et al., 2010;Merceron et al., 2010)). 

Even so, all studies referenced above agree on the profound effects of oxygen on the 

behavior of skeletal cells, e.g. low oxygen tensions favor chondrogenic differentiation over 

osteogenic differentiation. We have tried to determine the relative order of oxygen 

dependent processes as accurate as possible. Moreover, the sensitivity analysis shows that 

the oxygen model is robust with respect to most variations in oxygen parameter values.  

 

The value of the diffusion coefficient of oxygen in regenerating tissues, consisting of 

cartilage, fibrous matrix and bony matrix, is unknown. Values have been reported in 

literature for oxygen diffusion in the following media: 3 x 10-9 m2/s in water (Malda et al., 

2004b), 1.5 x 10-9 m2/s in cartilage (Malda et al., 2004b), 3.1 x 10-10m2/s in fibrin (Demol et 

al., 2011), 4 x 10-12m2/s in tissue (MACDOUGA.JD and Mccabe, 1967), and 3 x 10-10m2/s 

through cells (Rumsey et al., 1990). These values are clearly higher than the diffusion 

coefficient of oxygen used in the presented mathematical model, i.e. 2 x 10-12m2/s (Peiffer et 

al., 2011). With this value the predicted oxygen profile nicely matches the one measured by 

Epari et al. (Epari et al., 2008) (Figure 4). Even more, simulations with higher oxygen 

diffusion coefficients (x 10, x 100) failed to correctly capture one of the major events of 

fracture healing, namely the replacement of the cartilage template by bone through 

endochondral ossification since the abundance of oxygen results in direct bone formation in 

the entire callus (results not shown). Clearly, these findings of the oxygen model raise some 

interesting questions regarding the mass transport properties of the fracture callus and 

encourage the development of new measuring techniques to accurately measure the actual 
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in vivo diffusion coefficient of oxygen in different tissues arising during the bone fracture 

healing process.  

A third limitation of the presented oxygen model was pinpointed by the sensitivity analysis, 

namely the mathematical treatment of oxygen release by blood vessels. In the current 

model, every endothelial cell that is part of a loop will start to deliver oxygen at a constant 

rate, regardless of the oxygen demand from the surrounding cells. In other words, in our 

model only changes in the vascular network (morphological adjustments) allow for 

alterations in the nutrient delivery since the model does not consider functional adaptations 

of the vasculature (i.e. the oxygen delivery is constant). This simplification results in the 

somewhat unexpected flooding of oxygen in regions characterized by low cell density. In 

reality other mechanisms, not accounted for in the model, may regulate vessel functionality 

such as vessel diameter and blood flow rate. Indeed, Hansen-Algenstaedt et al. used 

intravital microscopic techniques to visualize and quantify the process of vessel formation 

and microvascular function during bone repair (Hansen-Algenstaedt et al., 2006). They 

report that the development of the hematoma is accompanied by a significant increase in 

microvascular permeability and blood flow rate (Hansen-Algenstaedt et al., 2006). As the 

healing proceeds, the permeability (functional adaptation) decreases while the vascular 

density (morphological adaptation) increases (Hansen-Algenstaedt et al., 2006). More 

detailed computational models of blood flow in developing capillary structures have been 

reported (McDougall et al., 2002;Ji et al., 2006;Liu et al., 2011). In the future these models 

could be coupled to the oxygen model in order to get a more comprehensive understanding 

of the biological processes at hand.   
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In the oxygen model, the biological cues in the fracture callus (i.e. growth factors and 

oxygen) will determine the course of the differentiation process of the MSCs. We assume 

implicitly that the mechanical environment of the fracture callus is permissive, meaning 

among others that the fracture is sufficiently stabilized to allow bone formation (either 

through intramembranous or endochondral ossification). As such, we do not consider any 

mechanoregulatory signals in the presented oxygen model. Previous work has shown that 

various models, based on very distinct (such as mechanical) cues can capture the gross tissue 

formation patterns of normal fracture healing, such as intramembranous ossification near 

the bony ends and endochondral ossification throughout the rest of the fracture callus (for a 

review see e.g. (Geris et al., 2009)). Prendergast et al. proposed for example a 

mechanoregulation model where maximal distortional strain and relative fluid velocity 

constitute the differentiation stimulus (Prendergast et al., 1997). Burke et al. formulated a 

model where MSC differentiation is regulated by substrate stiffness and oxygen tension 

(Burke and Kelly, 2012). Both models were able to capture the spatiotemporal evolution of 

the cartilage matrix, fibrous tissue and bone during normal fracture healing (Lacroix and 

Prendergast, 2002;Burke and Kelly, 2012;Isaksson et al., 2006). The formation of a non-union 

in a large defect was correctly predicted by Chen et al. who used a fuzzy logic algorithm to 

show that even in suitable mechanical conditions, inadequate nutrient supply would lead to 

the formation of a non-union (Chen et al., 2009). Another type of non-union, i.e. an atrophic 

non-union, was correctly captured by the bioregulatory model of Geris et al. (Geris et al., 

2010). They further conclude that a combined presence of blood vessels, growth factors and 

precursor cells is crucial for successful healing of these problematic fractures.  

Clearly, the type of mechanisms incorporated in a mathematical model of fracture healing 

will be determined by the scientific question at hand and/or by the in vivo model that is 
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being studied. In the current study we wanted to explore the complex interplay of oxygen, 

angiogenesis and fracture healing in a mechanistic and experimentally-informed manner 

since we believe that (the absence of) oxygen is an important determinant for the 

occurrence of fracture non-unions in critical size defects. For the standardized femoral rat 

fracture model of Harrison et al. (Harrison et al., 2003) that was used here for validation we 

believe that oxygen is likely to be a more important determinant  for the formation of non-

union in case of a 3 mm gap size than e.g. (excessive) mechanical loading. Although a 

numerical model (such as a finite element model) would be needed to calculate in detail the 

distribution of mechanical cues within the callus, we used a simple spring model to estimate 

the interfragmentary strains and conclude that for this animal model excessive loading did 

not play a role in the formation of the non-union (see supplementary material for more 

details).  

 

5. Conclusion 
 
In this study we have incorporated a rigorous description of the influence of oxygen on the 

fracture healing process in a previously developed multiscale model of bone regeneration. 

We have shown that the improved oxygen model predicts the spatiotemporal fractions of 

bone, cartilage and fibrous tissue in accordance with previously published experimental and 

in silico results. An extensive sensitivity analysis on the newly introduced oxygen thresholds 

demonstrated the robustness of the oxygen model. Interestingly, when the oxygen model 

was applied to a critical size defect, it correctly predicted the establishment of a clinical non-

union which was due to the slow ingrowth of new blood vessels leading to hypoxic 

conditions and cell death in the central region of the fracture callus. As such, the oxygen 

model can be used to unravel the complex interplay of oxygen delivery, diffusion and 
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consumption with the several healing steps that all occur at specific oxygen tensions during 

bone fracture healing. Moreover, the spatiotemporal oxygen patterns that arise from this 

complex interplay potentially contribute to a more fundamental understanding of the 

occurrence of fracture non-unions and can lead to the design of possible therapies thereof. 
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