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INTRODUCTION 
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INTRODUCTION 

 For metallic materials, failure can happen at a much lower load 
level compared to the static application if the loading is the 
result of a cyclic application 

 

 In mechanical and aerospace engineering, fatigue is responsible 
for 80% of the structural failures 
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Versailles train accident, 1842 

Typical fatigue failure 



INTRODUCTION 

 To reduce the risk of failure, one can oversize the structure but 
increasing the weight is detrimental for: 

– Human manipulation 

– Fuel consumption 

– Cost of product… 

 

 Engineering design has to find the best compromise between 
weight and risk of failure 

 

 Replacing slow and inefficient trial-and-error approaches, one 
can resort to Topology Optimization to suggest new design 
concepts 
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TOPOLOGY OPTIMIZATION PROBLEM 

 Optimal material distribution 
within a given domain 

 

 Discretization of displacements 
and density distribution using FEM 

 

 Interpolation of material properties 
between void and solid and 
penalize intermediate densities 
(SIMP model) 

 

 

 Solve optimization problem using 
efficient MP optimizers with 
continuous variables (e.g. MMA) 

 

 

6 



TOPOLOGY OPTIMIZATION PROBLEM 

 Compliance design  

– Usual approach 

– Unable to capture the 
specific character of 
stress constraints 

 

 

 Stress constrained design 

– Technical difficulties to be 
solved 

– Define appropriate failure 
criterion  extension to 
fatigue! 
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TOPOLOGY OPTIMIZATION 

 Challenges of of stress constraints in topology optimization 

– Definition of relevant stress criteria at microscopic level 

 Microscopic stress should be considered 

 

 

– Stress singularity phenomenon: 

 e-relaxation (Chang and Guo, 1992) 

 q-p relaxation (Bruggi, 2008) 

 

 

– Large scale optimization problem 

 Local constraints  

 Aggregation of constraints: P-norm 
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FATIGUE (UNI AXILAL CASE) 

 Wöhler’s curve : fundamental work 

– Reduction of the amplitude of   

stress with the number of cycles 

 

 Goodman diagram:  

– Influence of mean and alternate stress components 

– Line of equal failure probability for a certain number of 
cycles 

 

 

 Amplitude  / mean stress 
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MULTI AXIAL FATIGUE CRITERIA 

 Design against fatigue: some measure, the effective stress, of 
the stress tensor may never exceed some critical material 
dependent value. 

 

 Local models: fatigue strength depends only on the local value 
of the effective stress: 

– Sines, Crossland… 

 

– Matake, Dang-Van, Findley: the fatigue resistance is ruled by 
the stress acting on the specific plane exhibiting the worst 
fatigue loading 

 Stress vector acting on the plane of normal n 

 The effective stress to consider 
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MULTI AXIAL FATIGUE CRITERIA: CROSSLAND 
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MULTI AXIAL FATIGUE CRITERIA 

 Like in 1-D problem let’s assume that the total stress is given by 
a certain amount of alternate component ca sa and a given 
amount of mean component cm sm : 

 

 

 

 

 

 

 

 

 In the following, let assume that alternate and mean 
components are defined by the same reference load case. 
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MULTI AXIAL FATIGUE CRITERIA: SINES 

 Sines fatigue criterion reads 

 

 

– Where  

 

– With t-1, the fatigue limit in reverse torsion and f0 is the 
fatigue in repeated bending 

 

 For plane stress 
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MULTI AXIAL FATIGUE CRITERIA: SINES 

 Reminding also that 

 

 

 Sines criterion can be restated in term of the first and second 
stress invariants 

 

 

 

 Remarks:  

– Similar expression to Prager Drucker and Ishai criteria 
considered for unequal stress constraints 

– Alternate and mean components are computed from the 
same reference load case, each one accounting for the 
fraction ca and cm of the reference load case 
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MULTI AXIAL FATIGUE CRITERIA: SINES 

 Assuming a SIMP model, after Finite Element discretization, one 
can calculate the stresses at appropriate positions (e.g. the 
element centroïd) using the tension matrix Te

0 

 

 

 First and second invariants can be computed by introducing the 
hydrostatic stress matrix He

0 and the von Mises quadratic stress 
matrix Me

0:  

 

 

 It is easy to recover the value of the alternate and mean stress 
components 
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MULTI AXIAL FATIGUE CRITERIA: SINES 

 For topology optimization, as suggested by Duysinx & Bendsoe 
(1998), one should consider the micro stresses after applying 
the polarization factor 

 

 

 Sines criterion for topology optimization writes 

 

 

 

 The final expression Sines criterion for topology optimization 
reads 
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MULTI AXIAL FATIGUE CRITERIA: CROSSLAND 

 Crossland fatigue criterion is very similar to Sines citerion 

 

 

 

 Difference lies in the fact in Crossland the hydrostatic term is 
evaluated on the basis of the maximum stress (not only on the 
mean component): smax = sa + sm: 

 

 

 The criterion writes 
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MULTI AXIAL FATIGUE CRITERIA: CROSSLAND 

 Evaluating the quantities using a finite element method, one has 

 

 

 

 

 Within the topology optimization framework, it comes 
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FATIGUE: GOODMAN APPROACH 

 Goodman diagram: Influence of mean and alternate 
components 

 

 

 

 

 

 

 

 

 

 Sy: yield stress in tension, Syc: yield stress in compression, Se: 
fatigue stress (infinite life) and Sut: ultimate stress. 
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PROBLEM FORMULATION: SINES & CROSSLAND 

 Minimum volume with fatigue stress constraints  

 

 

 

 

 

 

 

 

 

 Compliance constraints is introduced to provide a better stability 
and effectiveness to the convergence (Bruggi & Duysinx, 2012) 
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PROBLEM FORMULATION: GOODMAN APPROACH 

 Problem formulation for Goodman criterion 
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SENSITIVITY ANALYSIS 

 Sensitivity analysis of compliance 

 

 

 

 Sensitivity analysis of fatigue stress criteria requires the 
sensitivity analysis of the alternate, mean, and max 
components. 

 Deriving the expression of the criteria, it comes 
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SENSITIVITY ANALYSIS 

 Selecting the adjoin methods since we have less active stress 
constraints that the number of design variables, one has: 
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NUMERICAL APPLICATION 

 Implementation : Topology optimization tool in MATLAB based 
88-line code by Andreassen et al. (2011) 

 

 Density filter: 

 

 

 

 

 MMA solver by Svanberg (1987) 
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NUMERICAL APPLICATION: L-SHAPE 

 SIMP model  

– Penalization p=3  

– q-p relaxation: q=2.6  2.75 

 

 Load F=95 N 

– ca = 0.7 and cm = 0.3 

 

 Material : Steel with properties from Norton (2000) 

– E = 1 Mpa (normalized), n=0.3 

–  sf = 580 MPa, t-1= 160 MPa, f-1= 260 MPa 

 

 Compliance regularization constraint: ac=2 
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NUMERICAL APPLICATION: LSHAPE 
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Optimal design with Sines criterion Optimal design with Crossland criterion 



NUMERICAL APPLICATION: LSHAPE 
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Stress map for 
optimal design with Sines criterion 

Stress map for  
optimal design with Crossland criterion 



NUMERICAL APPLICATION: LSHAPE 

28 Evolution of the global  
compliance constraint 

Evolution of the number of  
active constraints 



NUMERICAL APPLICATION: LSHAPE 

29 Evolution of the objective function 
volume 

Evolution of the cumulative  
CPU time 



FATIGUE: GOODMAN APPROACH 
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Min volume  
s.t. compliance constraint 

Min volume  
s.t. Goodman stress constraint 



FATIGUE: GOODMAN APPROACH 
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Min volume  
s.t. Goodman stress constraint 
(same max stress in tension  

and compression) 

Min volume  
s.t. Goodman stress constraint 

(lower max stress in compression  
than tension) 

 



CONCLUSIONS 
& PERSPECTIVES 
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CONCLUSIONS 

 (First) investigation of fatigue stress criteria that can be used in 
topology optimization  

 

 Sines and Crossland are classic fatigue criteria: 

– Introduces a dependence in J1 (hydrostatic pressure) and in 
J2 ( distortional energy – von Mises) stress invariants like in 
unequal stress failure criteria 

– Sines and Crossland are similar to Dang Van for a single 
reference load case 

– Are naturally compliant to be integrated in stress 
constrained topology optimization 

– Sensitivity analysis can be carried out using  

– Crossland is more restrictive and leads to heavier designs 
after topology optimization 
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PERSPECTIVES 

 Practical applications calls for further developments extending 
the method to : 

– Consider stress history si(t) instead of a single load case: 

 other criteria like Matake, Dang Van, Finley… 

– Consider cumulative damage Palmer Milgren 

 

 Increase the efficiency of the solution of the optimization 
problem 

 

 Consider additive manufacturing constraints 
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