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INTRODUCTION & 
MOTIVATION 
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MOTIVATION 

 TOPOLOGY OPTIMIZATION: 
a creative design tool 

 ADDITIVE MANUFACTURING 

new way of making things 
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INTRODUCTION 

 Topology optimization is mostly based on compliance design 
formulation 

 

 Many aerospace and mechanical components are designed with 
respect to strength or fatigue constraints 

 

 Need for efficient approaches to handle efficiently stress 
constrained problems 

 

 Extending the scope of stress constrained topology optimization 
to cope with: 

– Fatigue constraints 

– Industrial applications  Large scale problems 
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INTRODUCTION 

 This paper  

– Draws a state-of-the-art of topology optimization of 
continuum structures with stress constraints 

 

– Illustrates the specific character of maximum strength with 
respect to compliance design when considering 

 Several load cases 

 Different stress limits in tension and compression 

 

– Extends the scope of stress constrained topology 
optimization to unequal stress constraints, fatigue 
problems.. 

 

– Draws the challenges to tackle large scale optimization 
problems related to local constraints 
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TOPOLOGY OPTIMIZATION 
FORMULATION 
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TOPOLOGY OPTIMIZATION PROBLEM 

 Optimal material distribution 
within a given domain 

 

 Discretization of displacements 
and density distribution using FEM 

 

 Interpolation of material properties 
between void and solid and 
penalize intermediate densities 
(SIMP model) 

 

 

 Solve optimization problem using 
efficient MP optimizers with 
continuous variables 
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TOPOLOGY OPTIMIZATION 

 Density filter: 

 

 

 

 

 Implementation : Topology optimization tool in MATLAB based 
88-line code by Andreassen et al. (2011) 

 

 MMA solver by Svanberg (1987) 
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TOPOLOGY OPTIMIZATION PROBLEM 

 Compliance design  

– Usual approach 

– Unable to capture the 
specific character of 
stress constraints 

 

 

 Stress constrained design 

– Technical difficulties to be 
solved 

– Define appropriate failure 
criterion 

– Computational effort 
compared to compliance 
design 10 

[Duysinx et Bruggi (2012)] 



TOPOLOGY OPTIMIZATION 

 Challenges of stress constraints in topology optimization 

– Definition of relevant stress criteria at microscopic level 

 Microscopic stress should be considered 

 

 

– Stress singularity phenomenon: 

 e-relaxation (Chang and Guo, 1992) 

 q-p relaxation (Bruggi, 2008) 

 

 

– Large scale optimization problem 

 Local constraints  

 Aggregation of constraints: P-norm 
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SPECIFIC CHARACTER OF 
STRESS CONSTRAINTS 
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SPECIFIC CHARACTER OF STRESS CONSTRAINTS 

 Bound of integrated von Mises stress by compliance Bendsoe, Diaz 

and Kikuchi (1993) 

 

 

 

 

 

 For single load case and minimum compliance with volume constraint : 

– Minimizing strain energy bounds almost everywhere the von Mises 
stress 

– Relation between energy minimization and fully stressed design 
nearly every where in the material 

– Compliance design is efficient to predict optimal structural lay-out 
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SPECIFIC CHARACTER OF STRESS CONSTRAINTS 

 Local strain energy can be written as (Timoshenko and Goodier, 1970) 

 

 

– with 

 

 

 

 

 Minimizing von Mises stress does not control compressibility energy!!! 

 Tri-axiality is important. 

 Stiffness and strength designs can be different when 

– Several load cases 

– Several materials 

– Different stress limits in tension and compression 

– Geometrical constraints (perimeter, manufacturing constraints...) 
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NUMERICAL APPLICATIONS: 3-BAR TRUSS 

 Famous benchmark problem with 3 
independent load cases 

 F1 = 40 N 

 F2 = 30 N 

 F3 = 20 N 

 

 Material and geometrical data 

 L=1 m 

 W = 2.5 m 

 E = 100 N/m² 

  = 0.3 

 l = 150 N/m² 

 Vmax = 25%  

 

 Finite Element mesh 

 50 x 20 finite elements 

 15 

 Design variables: 1000 

 Load cases: 3 

 Stress constraints: 3000 



NUMERICAL APPLICATIONS: 3-BAR TRUSS 

 

 

 

 

 

 

 Minimum compliance design 

  

 Compliance (1,2,3) = 73.3 Nm 

  

 Max von Mises: 

 1) 229 N/m² 

 2) 571 N/m² 

 3) 555 N/m² 

 

 Volume = 25% 

 

 

 

 

 

 

 

 Stress constrained design 

 

 Compliance  

 1) 91.2 Nm 

 2) 45.6 Nm 

 3) 45.0 Nm 

 

 Max Von Mises (1,2,3)= 150N/m² 

 

 Volume = 26.4 % 
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Unequal stress limits in tension and compression 

 Extending Von Mises criterion to other failure criteria to cope 
with unequal stress limits behaviors (T  C, s=C/T) 

 

 Raghava criterion (parabolic criterion from Tsai-Wu criterion 
family) 

 

 

 

 

 Ishai criterion (hyperbolic criterion from Prager-Drucker family) 
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NUMERICAL APPLICATIONS: 3-BAR TRUSS 

 

 

 

 

 

 

 High compressive strength 
(s=C/T=3): 

 (C=450 N/m², T=150 N/m²) 

  

 Volume = 25.6 % 

 

 Compliance (1,2,3): 92.8, 47,3, 
46,0 N*m 

 

 

 

 

 

 

 High tensile strength 
(s=C/T=1/3): 

 (C=150 N/m², T=450 N/m²):  

  

 Volume = 12.4 % 
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FATIGUE (UNI AXILAL CASE) 

 Wöhler’s curve : fundamental work 

– Reduction of the amplitude of   

stress with the number of cycles 

 

 Goodman diagram:  

– Influence of mean and alternate stress components 

– Line of equal failure probability for a certain number of 
cycles 

 

 

 Amplitude  / mean stress 
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MULTI AXIAL FATIGUE CRITERIA 

 Like in 1-D problem let’s assume that the total stress is given by 
a certain amount of alternate component ca a and a given 
amount of mean component cm m : 

 

 

 

 

 

 

 

 

 In the following, let assume that alternate and mean 
components are defined by the same reference load case. 
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MULTI AXIAL FATIGUE CRITERIA: SINES 

 Sines fatigue criterion: 

 

 

– Where  

 

– With t-1, the fatigue limit in reverse torsion and f0 is the 
fatigue in repeated bending 

 

 For plane stress 
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MULTI AXIAL FATIGUE CRITERIA: CROSSLAND 

 Crossland fatigue criterion is very similar to Sines criterion: 

 

 

 

 Difference lies in the fact in Crossland the hydrostatic term is 
evaluated on the basis of the maximum stress (not only on the 
mean component): max = a + m: 
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MULTI AXIAL FATIGUE CRITERIA: SINES 

 Assuming a SIMP model, after Finite Element discretization: 

 

 

 

 

 Considering the micro stresses after applying the polarization 
factor  

 

 

 The expression Sines criterion for topology optimization reads 
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NUMERICAL APPLICATION: L-SHAPE 

 SIMP model  

– Penalization p=3  

– q-p relaxation: q=2.6  2.75 

 

 Load F=95 N 

– ca = 0.7 and cm = 0.3 

 

 Material : Steel with properties from Norton (2000) 

– E = 1 Mpa (normalized), =0.3 

–  f = 580 MPa, t-1= 160 MPa, f-1= 260 MPa 

 

 Compliance regularization constraint: ac=2 
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NUMERICAL APPLICATION: LSHAPE 
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Optimal design with Sines criterion Optimal design with Crossland criterion 



NUMERICAL APPLICATION: LSHAPE 
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Stress map for 
optimal design with Sines criterion 

Stress map for  
optimal design with Crossland criterion 



NUMERICAL APPLICATION: LSHAPE 

27 Evolution of the number of  
active constraints 

Evolution of the objective function 
volume 



SOLVING LARGE SCALE 
OPTIMIZATION PROBLEMS 
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SOLVING LARGE SCALE OPTIMIZATION 

 Classical strategy: solve optimization sequential convex 
programming 

– Generate first order approximation sub-problems: CONLIN 
(Fleury, 1985) or MMA (Svanberg, 1987) or GCMMA 
approximation (Bruyneel et al., 2002) 

– Dual solver (Lagrangian maximization) 

 

 When dealing with stress constrained design, one hits the 
limitation of currently available standard:  

– Number of active restrictions is more or less equal to the 
number of design variables 

– Sensitivity analysis become very expensive 

– Solution time of optimization algorithm becomes of the same 
order of magnitude as the FE computation. 
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Strategies to solve large scale problems 

 Improve the sensitivity analysis: 

– Selection of potentially active constraints 

– Adjoin vs direct sensitivity analysis 

 

 Introduction ‘dummy’ compliance constraint’ to control the 
convergence during first steps (Bruggi & Duysinx, 2013)  

 

 Use integrated stress constraints instead of a purely local 
approach 

– Lose of local control of stress constraints: results looks 
closer to compliance design (Duysinx & Sigmund, 1998) 

– Rather difficult to tackle with classical approximation 
(function not convex) 
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Sensitivity analysis 

 Direct approach: solve n (#dv) load cases 

 

 

 

 Adjoin method: solve m (#constraints) load cases 

 

 

 

– For one load case: m=#FE ~ n 

– For several load cases:  m=#FE *#load cases >n 
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Problem formulation: compliance constraint 

 Minimum volume with (fatigue stress) constraints and 
compliance constraint 

 

 

 

 

 

 

 

 

 

 Compliance constraints is introduced to provide a better stability 
and effectiveness to the convergence (Bruggi & Duysinx, 2012) 
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Integrated (aggregated) stress constraint 

 Use aggregate restriction of relaxed stress constraints (Duysinx & 

Sigmund, 1998) 

– q-norm 

 

 

– q-mean 

 

 

 

 

 Ordering relationship 
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NUMERICAL APPLICATIONS: 3-BAR TRUSS 

 

 

 

 

 

 

 Minimum compliance design 

  

 Compliance (1,2,3) = 73.3 Nm 

  

 Max von Mises: 

 1) 229 N/m² 

 2) 571 N/m² 

 3) 555 N/m² 

 

 Volume = 25% 

 

 

 

 

 

 

 

 Stress constrained design 

 

 Compliance  

 1) 91.2 Nm 

 2) 45.6 Nm 

 3) 45.0 Nm 

 

 Max Von Mises (1,2,3)= 150N/m² 

 

 Volume = 26.4 % 
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NUMERICAL APPLICATIONS: 3-BAR TRUSS 

 

 

 

 

 

 

 q-norm of stresses (q=4):  

  

 Bound: 500 N/m² 

 

 Compliance: 87.3, 59.3, 67.9 Nm 

  

 Max von Mises (local) for load case 
1,2, 3 : 

  230, 235, 231 N/m² 

 

 Volume = 24.8% 

 

 

 

 

 

 

 q-mean of stresses (q=4):  

  

 Bound: 92 N/m² 

 

 Compliance:  90.6, 50.3, 53.8 Nm 

  

 Max von Mises (local) for load case 
1,2, 3: 

  237, 215, 207 N/m² 

 

 Volume = 22.4% 

 
35 



Large scale optimization algorithms 

 Fleury (2006) pointed out that the computation time of solution 
algorithm growths dramatically with the number of active 
constraints 

 

 For dual maximization algorithms the explanation is rather easy. 
Let’s consider the problem: 
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dim x = n 
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Large scale optimization algorithms 

 Dual function maximization 

 

 

 

 Solution algorithms 

 

 

 

Iterative Newton scheme 

 

 

requires solving in various ways 
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Large scale optimization algorithms 

 Results based on numerical experiments by Fleury (2006) show 
that: 

– Computation time growths more or less linearly with the 
number n of design variables; 

– Computation time growths more or less like the power 3 of 
the number of active constraints. 

 

 There is an urgent need for new solvers able to tackle huge 
problems with simultaneously a large number of design 
variables and a high number of active constraints 
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CONCLUSIONS 
& PERSPECTIVES 
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CONCLUSIONS 

 Additive manufacturing have put forward a revived interest for solving 
efficiently topology optimization problems with local constraints (e.g. 
stress constraints) 

 

 Specific character of stress constraints  

– For several load cases 

– For unequal stress limits in tension and compression 

– Geometrical constraint  

– Several materials 

 

 Extension of stress constraints to important problems for engineering 
applications: 

– Various failure criteria like unequal stress criteria 

– Fatigue 
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PERSPECTIVES 

PENDING TOPICS: 

 

 Efficient treatment of large scale optimization problems including stress 
constraints 

– Novel class of solution algorithms 

 

 Accurate calculation of the stress constraints in the framework of 
material distribution problems: 

– Jagged / unclear boundaries 

– Stress intensity factors to take into account notches, etc. 

– Consider stress history i(t) instead of a single load case: 

 other criteria like Matake, Dang Van, Finley… 

– Consider cumulative damage Palmer Milgren 

 

 Manufacturing constraints in order to generate designs which can be 
fabricated using AM 
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PROBLEM FORMULATION 

 Homogenized failure criteria predicting failure in the 
microstructure from macroscopic point of view: 

 

 

 With consistency conditions requirements: p=q 
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Rank 2 layered material SIMP (isotropic) material 

*| ( ) || /| eq eq p
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e-relaxation: interpretation 

 Relaxation of stress constraints 

 

 

by 

 

 

 

 Solve a sequence of perturbated 
problems with a decreasing 
sequence of e going to zero 
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NUMERICAL APPLICATIONS: 4-BAR TRUSS 

E=100 N/m², =0.3, F =1 N, L =1 m 

Von Mises 

T=C=6 N/m² 

Ishai 

T=24 & C=6 N/m² 

Ishai 

T=6 & C=24 N/m² 

From Swan and Kosaka (1997) 
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MULTI AXIAL FATIGUE CRITERIA: CROSSLAND 
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MULTI AXIAL FATIGUE CRITERIA: SINES 

 Assuming a SIMP model, after Finite Element discretization, one 
can calculate the stresses at appropriate positions (e.g. the 
element centroïd) using the tension matrix Te

0 

 

 

 First and second invariants can be computed by introducing the 
hydrostatic stress matrix He

0 and the von Mises quadratic stress 
matrix Me

0:  

 

 

 It is easy to recover the value of the alternate and mean stress 
components 
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MULTI AXIAL FATIGUE CRITERIA: SINES 

 For topology optimization, as suggested by Duysinx & Bendsoe 
(1998), one should consider the micro stresses after applying 
the polarization factor 

 

 

 Sines criterion for topology optimization writes 

 

 

 

 The final expression Sines criterion for topology optimization 
reads 
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SENSITIVITY ANALYSIS 

 Sensitivity analysis of fatigue stress criteria requires the 
sensitivity analysis of the alternate, mean, and max 
components. 

 

 Deriving the expression of the criteria, it comes 
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SENSITIVITY ANALYSIS 

 Selecting the adjoin methods since we have less active stress 
constraints that the number of design variables, one has: 
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Sensitivity analysis 

 Discretized equilibrium 

 

 

 Sensitivity of displacement vector 

 

 

 

 Direct approach: solve for every design variables 

 

 Stress constraint 
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Sensitivity analysis 

 Sensitivity of unequal stress constraints: Ishai 

 

 

 

 Derivative of criteria 

 

 

 

 Adjoin approach (for every constraint) 
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