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MOTIVATION

m TOPOLOGY OPTIMIZATION: m ADDITIVE MANUFACTURING
a creative deSign tool new way of making th|ngs

Courtesy of ALTAIR and AIRBUS
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INTRODUCTION

m Topology optimization is mostly based on compliance design
formulation

m Many aerospace and mechanical components are designed with
respect to strength or fatigue constraints

m Need for efficient approaches to handle efficiently stress
constrained problems

m Extending the scope of stress constrained topology optimization
to cope with:

— Fatigue constraints
— Industrial applications - Large scale problems



INTRODUCTION

m This paper

Draws a state-of-the-art of topology optimization of
continuum structures with stress constraints

Illustrates the specific character of maximum strength with
respect to compliance design when considering

= Several load cases
= Different stress limits in tension and compression

Extends the scope of stress constrained topology
optimization to unequal stress constraints, fatigue
problems..

Draws the challenges to tackle large scale optimization
problems related to local constraints



TOPOLOGY OPTIMIZATION
FORMULATION



TOPOLOGY OPTIMIZATION PROBLEM

m Optimal material distribution

within a given domain

Discretization of displacements
and density distribution using FEM

KU =F
Interpolation of material properties
between void and solid and

penalize intermediate densities
(SIMP model)

Ej[l‘j) — Emiﬂ + 2’? (Eﬂ — E’.rnin)
Solve optimization problem using

efficient MP optimizers with
continuous variables

NN N NN

Treillis de Michell avec filtrage (L.Adarn)




TOPOLOGY OPTIMIZATION

m Density filter:

1
ZN Hej ZN:

H.; = Z max (0, 7, — dist(e, 7)),
N

Heji":’--’j-

;]'.E p—

s

m Implementation : Topology optimization tool in MATLAB based
88-line code by Andreassen et al. (2011)

m MMA solver by Svanberg (1987)

min
S.t.:

fo(x) + 2+ 30 (cjy; + 3d47)
fi(x) —ajz —y; <0
x;, < w <7

z>0

1=1..
j=1
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TOPOLOGY OPTIMIZATION PROBLEM

-1 013321 F'U
m Compliance design st. V=) vz <V
— Usual approach
— Unable to capture the I
specific character of l

stress constraints

Inl

N\

m Stress constrained design Juin - max [|o.(@)]]
— Technical difficulties to be st. V=) va <V
solved
— Define appropriate failure

Icﬁ

criterion

— Computational effort
compared to compliance ‘("‘.
design

et Bruggi (2012)]
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TOPOLOGY OPTIMIZATION

m Challenges of stress constraints in topology optimization
— Definition of relevant stress criteria at microscopic level

= Microscopic stress should be considered
E!.._'FVI
\v

o : M a,;.;
Jz’j = Eijkf €L ‘ «c:ig'; P Uq

Le

— Stress singularity phenomenon:
» c-relaxation (Chang and Guo, 1992)
= J-p relaxation (Bruggi, 2008)
e Ty _
<0 = = ,EqES?Mvgz = xy qEE‘J‘k‘ g<p and ¢q p
— Large scale optimization problem
= Local constraints

= Aggregation of constraints: P-norm Z (<||oe||>)" M7
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SPECIFIC CHARACTER OF STRESS CONSTRAINTS

m Bound of integrated von Mises stress by compliance Bendsoe, Diaz
and Kikuchi (1993)

F'U

SE jG:CGd SE

0O<
4(1+v)

2, dQ < <
J ol 4(1+v)

Q Q

m For single load case and minimum compliance with volume constraint :

— Minimizing strain energy bounds almost everywhere the von Mises
stress

— Relation between energy minimization and fully stressed design
nearly every where in the material

— Compliance design is efficient to predict optimal structural lay-out

13
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SPECIFIC CHARACTER OF STRESS CONSTRAINTS

m Local strain energy can be written as (Timoshenko and Goodier, 1970)

1 O-OCt 3 TOCt
U=
2 V4 4 G
— with o,+0,+0, E
Ot = A=
t 3 3(1-v)
E
Toct 2.5\/((71—(72)2+((72—(73)2+(63—C71)2 = 201+ v)

m  Minimizing von Mises stress does not control compressibility energy!!!
m Tri-axiality is important.
m Stiffness and strength designs can be different when
— Several load cases
— Several materials
— Different stress limits in tension and compression
— Geometrical constraints (perimeter, manufacturing constraints...) 14
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NUMERICAL APPLICATIONS: 3-BAR TRUSS

NN N N NN NSNS N NSNS NN UNUNUNONONIANAYN
W=2.5m

m Famous benchmark problem with 3
independent load cases

F,=40N L=1m
F,=30N
F;=20N

m Material and geometrical data
L=1m F3=20N F1=40 N
W=25m F2=30 N
E =100 N/m?2
v=20.3
c; = 150 N/m?2
Vmax = 25%

Design variables: 1000
Load cases: 3
Stress constraints: 3000

m Finite Element mesh
50 x 20 finite elements

15
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NUMERICAL APPLICATIONS: 3-BAR TRUSS

m  Minimum compliance design m Stress constrained design
Compliance (1,2,3) = 73.3 Nm Compliance
1) 91.2 Nm
Max von Mises: 2) 45.6 Nm
1) 229 N/m2 3) 45.0 Nm
2) 571 N/m2
3) 555 N/m? Max Von Mises (1,2,3)= 150N/m?
Volume = 25% Volume = 26.4 %

16
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Unequal stress limits in tension and compression

m Extending Von Mises criterion to other failure criteria to cope
with unequal stress limits behaviors (T # C, s=C/T)

m Raghava criterion (parabolic criterion from Tsai-Wu criterion
family) 4o

eq  _ J1(3_1)+\/'J12(S_1)2+12J2DS <T \ O
Orac = 2g - /s?g—ﬁ

-—-——__-—-_._-.-—-

m Ishai criterion (hyperbolic criterion from Prager-Drucker family)

oq _ (S+1)1/3J2D +(s-1)J, <T
25 B

ISH

+1 .-‘-'“~.__
an
z 25T
L 365D

17

_ with J=0, Jp =O.55ijsij
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NUMERICAL APPLICATIONS: 3-BAR TRUSS

m High compressive strength m High tensile strength
(s=C/T=3): (s=C/T=1/3):
(C=450 N/m2, T=150 N/m?2) (C=150 N/m?2, T=450 N/m?2):
Volume = 25.6 % Volume = 12.4 %

Compliance (1,2,3): 92.8, 47,3,
46,0 N*m

18



FATIGUE (UNI AXILAL CASE)

- s
m \Wohler’s curve : fundamental work 9
— Reduction of the amplitude of
stress with the number of cycles
s Goodman diagram: L A

MNumber of cycles

— Influence of mean and alternate stress components
— Line of equal failure probability for a certain number of

cycles oo
{T(f) = T, —|— T, Eg,i]_]_(.f_,<_,.1 t) oca Safety region
s s
= Amplitude / mean stress o / o
Eria Y
Tmar — Tmin L Omaz T Tmin 4
T, = T —

2 2
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MULTI AXIAL FATIGUE CRITERIA

m Like in 1-D problem let's assume that the total stress is given by
a certain amount of alternate component c, ¢, and a given
amount of mean component ¢, o, :

. 1 cycle (N)
Jtot - Laga —i_ Cmf’rm

0<c,.cm <1 G
$‘ "

[ 5"
Ca + Cm = 1. S

m In the following, let assume that alternate and mean
components are defined by the same reference load case.

20



MULTI AXIAL FATIGUE CRITERIA: SINES

g
Se
¥

Sye

m Sines fatigue criterion:

AV JZ,& + K- Oh.m E A
— Where

6F _ .
/\ — t—l K = ;‘ﬂl T \/6

— With t,, the fatigue limit in reverse torsion and f; is the
fatigue in repeated bending

m For plane stress

Joq =

1 ;
6 [(Ull,a — Gzz,a)g + G%z,a + Ufm + 60%2,(1}
1 ,]1

Thm = _(011,??1 + (722,??1) — ? )1

3
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MULTI AXIAL FATIGUE CRITERIA: CROSSLAND

m Crossland fatigue criterion is very similar to Sines criterion:

V JQ,& + K- O h.mazx <_:: A

m Difference lies in the fact in Crossland the hydrostatic term is
evaluated on the basis of the maximum stress (not only on the
mean component): 6,., = 6, + G

Oh,mar — Oh,a + Th,m

22
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MULTI AXIAL FATIGUE CRITERIA: SINES

m Assuming a SIMP model, after Finite Element discretization:

o = €4 — i TN\O _ .peq
q \/3]‘) Oq EJ ga?e o ‘1}; (Cﬂ- \/Ue I\IEUE) o Igga,e
€eq __ eq — P 0 p—eq

O-m Jl O-m EJ) Hm.._e = 1 E{CmHe Ue) r.o,

m Considering the micro stresses after applying the polarization
factor

Tii.e
(Cije) = —o
Le

m The expression Sines criterion for topology optimization reads

. a%me| =
\/§ 3

23



NUMERICAL APPLICATION: L-SHAP

4 6
| . ¢ >j,
m SIMP model
— Penalization p=3
— g-p relaxation: g=2.6 > 2.75 0
m Load F=95 N |
- ¢,=0.7andc, =0.3 4

m Material : Steel with properties from Norton (2000)
— E = 1 Mpa (normalized), v=0.3
— oy = 580 MPa, t;= 160 MPa, f_,= 260 MPa

m Compliance regularization constraint: o.=2

24
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NUMERICAL APPLICATION: LSHAPE

Optimal design Optimal design

Optimal design with Sines criterion Optimal design with Crossland criterion

25
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NUMERICAL APPLICATION: LSHAPE

Ceq Positive (IQ)

Stress map for Stress map for
optimal design with Sines criterion optimal design with Crossland criterion
26
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NUMERICAL APPLICATION: LSHAPE

Problem N W/W, C/C, N/
MWS 4096 0.4553 2 299
MWC 4096 0.4991 1.97 332

Weigth ] .
s s s o s .S st . Kolive consiminis
e SN
- L R S
400 1Ci)0 260 360 460 560 52’0 %% 160 200 360 400 5(|)0 B(I)O
iterations iterations
Evolution of the objective function Evolution of the number of 27

volume active constraints



SOLVING LARGE SCALE
OPTIMIZATION PROBLEMS
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SOLVING LARGE SCALE OPTIMIZATION

m Classical strategy: solve optimization sequential convex
programming
— Generate first order approximation sub-problems: CONLIN
(Fleury, 1985) or MMA (Svanberg, 1987) or GCMMA
approximation (Bruyneel et al., 2002)

— Dual solver (Lagrangian maximization)

m When dealing with stress constrained design, one hits the
limitation of currently available standard:

— Number of active restrictions is more or less equal to the
number of design variables
— Sensitivity analysis become very expensive

— Solution time of optimization algorithm becomes of the same

order of magnitude as the FE computation.
29



s

Strategies to solve large scale problems

m Improve the sensitivity analysis:
— Selection of potentially active constraints
— Adjoin vs direct sensitivity analysis

m Introduction ‘dummy’ compliance constraint’ to control the
convergence during first steps (Bruggi & Duysinx, 2013)

m Use integrated stress constraints instead of a purely local
approach

— Lose of local control of stress constraints: results looks
closer to compliance design (Duysinx & Sigmund, 1998)

— Rather difficult to tackle with classical approximation
(function not convex)

30



Sensitivity analysis
.

m Direct approach: solve n (#dv) load cases
oy _ K -1 oF oK U
op; op;  Op,

m  Adjoin method: solve m (#constraints) load cases

Aokt STL o o SH L vou
25 25 \/UTVO U

— For one load case: m=#FE ~ n
— For several load cases: m=#FE *#load cases >n

31



Problem formulation: compliance constraint

m  Minimum volume with (fatigue stress) constraints and
compliance constraint

( .
xc]glggil W_;IEIE
S.1 K(x)U = F
< c/c <1
P—a) [+eq -
T A
A\ [\/ﬁ + BUUE 1
for e = N

m Compliance constraints is introduced to provide a better stability
and effectiveness to the convergence (Bruggi & Duysinx, 2012)

32
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Integrated (aggregated) stress constraint

m Use aggregate restriction of relaxed stress constraints (Duysinx &
Sigmund, 1998)
— —11/q

— g-norm . _— q
Z(max{ % (Gp)e _L +g}j <1

e=1 /Oe /Oe
— g-mean
— \ . q—llq
—Z max{ ,i (O-p) g+g} <1
e=1 T Le Le

m Ordering relationship

W

{Ep]

sax‘
N
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NUMERICAL APPLICATIONS: 3-BAR TRUSS

Minimum compliance design
Compliance (1,2,3) = 73.3 Nm
Max von Mises:

1) 229 N/m?2

2) 571 N/m?2

3) 555 N/m?2

Volume = 25%

Stress constrained design

Compliance
1) 91.2 Nm
2) 45.6 Nm
3) 45.0 Nm

Max Von Mises (1,2,3)= 150N/m?2

Volume = 26.4 %
34
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NUMERICAL APPLICATIONS: 3-BAR TRUSS

g-norm of stresses (q=4):

Bound: 500 N/m?2

Compliance: 87.3, 59.3, 67.9 Nm
I;fla;x ;/on Mises (local) for load case

230, 235, 231 N/m?2

Volume = 24.8%

g-mean of stresses (q=4):
Bound: 92 N/m?2
Compliance: 90.6, 50.3, 53.8 Nm

Max von Mises (local) for load case
1,2, 3:

237, 215, 207 N/m?

Volume = 22.4% 35
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Large scale optimization algorithms

m Fleury (2006) pointed out that the computation time of solution
algorithm growths dramatically with the number of active
constraints

m For dual maximization algorithms the explanation is rather easy.
Let’s consider the problem:

min  1/2 x'x dim x = n
st. C'x>d dim C = nxm

m Dual function
max -1/2A"(C'C)A+d'A
s.t. A>0

36
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Large scale optimization algorithms

m Dual function maximization
max ¢((1)=-1/2A"(C'C)A+d" A

s.t. A2>0
m Solution algorithms
Vi(A)=d-C'x
Vi(1)=-C'C

Iterative Newton scheme

A% = 2% 4 a(-CTC) *(d —CTAW)

requires solving in various ways
(C'C)™ dim CTC = (mxm)

37
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Large scale optimization algorithms
.

m Results based on numerical experiments by Fleury (2006) show
that:
— Computation time growths more or less linearly with the
number n of design variables;

— Computation time growths more or less like the power 3 of
the number of active constraints.

m There is an urgent need for new solvers able to tackle huge
problems with simultaneously a large number of design
variables and a high number of active constraints

38



CONCLUSIONS
& PERSPECTIVES
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CONCLUSIONS

m Additive manufacturing have put forward a revived interest for solving

efficiently topology optimization problems with local constraints (e.g.
stress constraints)

m Specific character of stress constraints
— For several load cases
— For unequal stress limits in tension and compression
— Geometrical constraint
— Several materials

m Extension of stress constraints to important problems for engineering
applications:

— Various failure criteria like unequal stress criteria
— Fatigue

40



PERSPECTIVES

PENDING TOPICS:

m Efficient treatment of large scale optimization problems including stress
constraints

— Novel class of solution algorithms

m Accurate calculation of the stress constraints in the framework of
material distribution problems:

— Jagged / unclear boundaries
— Stress intensity factors to take into account notches, etc.

— Consider stress history o(t) instead of a single load case:
=> other criteria like Matake, Dang Van, Finley...
— Consider cumulative damage Palmer Milgren

m Manufacturing constraints in order to generate designs which can be
fabricated using AM
41
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PROBLEM FORMULATION

m Homogenized failure criteria predicting failure in the
microstructure from macroscopic point of view:

o (p)II= "o*1p° <o

m  With consistency conditions requirements: p=q

b <al= ] <¢2>
v{ q .-. :’ . . -..-
. - -
i 7
f o
| N
= sammettiag T,
.55‘ M_g_,...—'- e MN\
Pl . ®
e | .. & p § S <6l>
p % l;' iF o - o - ,.-.t{? :
i e o 7
7 g‘i ¥ : __.L.-::": i
Q\-&z “Pene ,e \\“Wh\“’*‘“ﬂ:
5 i
9
#
%

Rank 2 layered material SIMP (isotropic) material %
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e-relaxation: interpretation

m Relaxation of stress constraints

2.4 ¢ \Relaxed sltrch1 limit (ll)uysinxhand Sigzrinund) —
- | R t imit (C Guo) ——
o(p)l| <oy if p>0 2| | CeiGanion
( eq
O E
by [l @I & _,

T O

g° < o,

m Solve a sequence of perturbated %3]

problems with a decreasing 06 . . . .
sequence of ¢ going to zero 0 0.2 04 0.6 0.8 1
min | V=] p00 ox
. .
¢ & o o (l-¢+—
. [lonlso sty N07PISoUer)
g2<p 44
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NUMERICAL APPLICATIONS: 4-BAR TRUSS

N\
Von Mises Ishai Ishai
T=C=6 N/m?2 T=6 & C=24 N/m?2 T=24 & C=6 N/m?2

E=100 N/m2, v=0.3, F=1 N,L=1m

From Swan and Kosaka (1997)
45
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MULTI AXIAL FATIGUE CRITERIA: CROSSLAND

SINES
—«——  DANG VAN
=—-——- CROSSLAND

46
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MULTI AXIAL FATIGUE CRITERIA: SINES

m Assuming a SIMP model, after Finite Element discretization, one
can calculate the stresses at appropriate positions (e.g. the
element centroid) using the tension matrix T_°

— P .
045 — & Eﬁjﬁlfuﬁ.f ‘ Te = J‘ETEU

m First and second invariants can be computed by introducing the
hydrostatic stress matrix H.° and the von Mises quadratic stress

matrix M_0: R
]15(0.5}) = ‘['EHEUE

3Japeloiy) = x?#UMIU,

m It is easy to recover the value of the alternate and mean stress
components

eq — P TNJO — P9
ogl = af (cﬂ_\/UE I\IEUE) = 170

(,e

eq _ P~ 0 _ p=eq
oo = x?(c,, H Ug) = alo . 47
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MULTI AXIAL FATIGUE CRITERIA: SINES

m For topology optimization, as suggested by Duysinx & Bendsoe
(1998), one should consider the micro stresses after applying
the polarization factor

(Gije) = :f
Log

m Sines criterion for topology optimization writes
Tae) , (Tmie)

.e m.e

<
V3 ,\ 3N T
m The final expression Sines criterion for topology optimization

reads
£ EP_q} Eiqe i _
4+ -7 | <1

}\ \/§ 3 m.e

1

48



SENSITIVITY ANALYSIS

m Sensitivity analysis of fatigue stress criteria requires the
sensitivity analysis of the alternate, mean, and max

components.

m Deriving the expression of the criteria, it comes

Nog
8;1.';;
d(ond,
0: S
Hon,e

C)J_. I

)
)
)

) . Jdo€
= Oek(p —q)ab™ " Tl +

c)

i’?lE’ -p q

— 69!1;(}}_{?) . 155;2’€+

— o — Qe o

a.e
IP q

1[ E’ jr_) q

s
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SENSITIVITY ANALYSIS

m Selecting the adjoin methods since we have less active stress
constraints that the number of design variables, one has:

()—eq ~ 1
o - gy wih KO = [(:G(UTMSU)‘ﬁMSU]
drp. dry. | |

Joed oK 7
me __ _UT U. vith KU = |¢ HO
- 50 U with [tm e}
J5° -
O-Ue _ _UT ()KU. with KU = |:C{1H£ + C‘?’HHE}
Ouxp. dxy, | |

50



Sensitivity analysis
.

m Discretized equilibrium
KU=F

m Sensitivity of displacement vector

U _ Kl(aF _aKUj

op ap,  Op,
m Direct approach: solve for every design variables
o=1TU

m Stress constraint ,
J =30, =w" o=Wq and J;, =13 (oy, ) =13 UVU
L 0
W = p"W V = p?PV°

o1
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Sensitivity analysis
.

m Sensitivity of unequal stress constraints: Ishai

. s—1 s+1
ol || = "ot = 27"WoU + 2T=JUTVU
| ISH | = ISH ,0 S S

m Derivative of criteria

)
Alow {s Lo . StL 1 q} au

op; 2s 25 JUTVU op,

m Adjoin approach (for every constraint)
1 s+1 1
A=K we 4 VO U
{ 25 2S ‘/qTVO q }
0l o | _ a7 ag —aKU
op; op; Op,

52



