

STRESS CONSTRAINED TOPOLOGY OPTIMIZATION FOR ADDITIVE MANUFACTURING: SPECIFIC CHARACTER AND SOLUTION ASPECTS

<u>Pierre DUYSINX</u>*, Maxime COLLET*, Simon BAUDUIN*, and Matteo BRUGGI+

* Aerospace and Mechanical Engineering Dept, University of Liege, Belgium
 + Dept of Civil and Environmental Engineering, Politecnico di Milano, Italy

ESMC2015 9th European Solid Mechanics Conference, Madrid, July 6-10, 2015

OUTLINE

- Introduction & Motivation
- Topology problem formulation
 - Problem statement
- Specific character of stress constrained design
 - Energy vs von Mises stress
 - Local stress constraints
 - Unequal stress limits
 - Fatigue constraints
- Large scale optimization
 - Sensitivity analysis
 - Dual optimization algorithms
- Conclusion & Perspectives

INTRODUCTION & MOTIVATION

MOTIVATION

 TOPOLOGY OPTIMIZATION: a creative design tool

ADDITIVE MANUFACTURING
 new way of making things

Courtesy of ALTAIR and AIRBUS

INTRODUCTION

- Topology optimization is mostly based on compliance design formulation
- Many aerospace and mechanical components are designed with respect to strength or fatigue constraints
- Need for efficient approaches to handle efficiently stress constrained problems
- Extending the scope of stress constrained topology optimization to cope with:
 - Fatigue constraints
 - Industrial applications \rightarrow Large scale problems

6763

INTRODUCTION

- This paper
 - Draws a state-of-the-art of topology optimization of continuum structures with stress constraints
 - Illustrates the specific character of maximum strength with respect to compliance design when considering
 - Several load cases
 - Different stress limits in tension and compression
 - Extends the scope of stress constrained topology optimization to unequal stress constraints, fatigue problems..
 - Draws the challenges to tackle large scale optimization problems related to local constraints

TOPOLOGY OPTIMIZATION FORMULATION

TOPOLOGY OPTIMIZATION PROBLEM

- Optimal material distribution within a given domain
- Discretization of displacements and density distribution using FEM

$$KU = F$$

 Interpolation of material properties between void and solid and penalize intermediate densities (SIMP model)

$$E_j(x_j) = E_{min} + x_j^p \left(E_0 - E_{min} \right)$$

 Solve optimization problem using efficient MP optimizers with continuous variables

TOPOLOGY OPTIMIZATION

Density filter:

$$\tilde{x}_e = \frac{1}{\sum_N H_{ej}} \sum_N H_{ej} x_j,$$
$$H_{ej} = \sum_N \max(0, r_{min} - \operatorname{dist}(e, j)),$$

- Implementation : Topology optimization tool in MATLAB based 88-line code by Andreassen et al. (2011)
- MMA solver by Svanberg (1987)

$$\begin{array}{ll} \min & f_0(\mathbf{x}) + z + \sum_{j=1}^m (c_j y_j + \frac{1}{2} d_j y_j^2) \\ \text{s.t.:} & f_j(\mathbf{x}) - a_j z - y_j \leq 0 & j = 1 \dots m \\ & \underline{x}_i \leq x_i \leq \overline{x}_i & i = 1 \dots n \\ & y_j \geq 0 & j = 1 \dots m \\ & z \geq 0 & \end{array}$$

TOPOLOGY OPTIMIZATION PROBLEM

- Compliance design
 - Usual approach
 - Unable to capture the specific character of stress constraints

- Stress constrained design
 - Technical difficulties to be solved
 - Define appropriate failure criterion
 - Computational effort compared to compliance design

[Duysinx et Bruggi (2012)]

TOPOLOGY OPTIMIZATION

- Challenges of stress constraints in topology optimization
 - Definition of relevant stress criteria at microscopic level
 - Microscopic stress should be considered

- Stress singularity phenomenon:
 - ε-relaxation (Chang and Guo, 1992)
 - q-p relaxation (Bruggi, 2008)

$$<\!\sigma^e_{ij}\!> = \frac{x^p_e}{x^q_e} E^0_{ijkl} \varepsilon^0_{kl} = x^{p-q}_e E^0_{ijkl} \varepsilon^0_{kl} \qquad q$$

- Large scale optimization problem
 - Local constraints
 - Aggregation of constraints: P-norm

$$\big[\sum_{e=1}^{N} (<\!||\sigma_e||\!>)^P\big]^{1/P}$$

SPECIFIC CHARACTER OF STRESS CONSTRAINTS

SPECIFIC CHARACTER OF STRESS CONSTRAINTS

 Bound of integrated von Mises stress by compliance Bendsoe, Diaz and Kikuchi (1993)

$$\int_{\Omega} \sigma_{VM}^2 d\Omega \leq \frac{3E}{4(1+\nu)} \int_{\Omega} \sigma : C\sigma d\Omega \leq \frac{3E}{4(1+\nu)} F^T U$$

- For single load case and minimum compliance with volume constraint :
 - Minimizing strain energy bounds almost everywhere the von Mises stress
 - Relation between energy minimization and fully stressed design nearly every where in the material
 - Compliance design is efficient to predict optimal structural lay-out

SPECIFIC CHARACTER OF STRESS CONSTRAINTS

Local strain energy can be written as (Timoshenko and Goodier, 1970)

$$u = \frac{1}{2} \frac{\sigma_{oct}^2}{\chi} + \frac{3}{4} \frac{\tau_{oct}^2}{G}$$

– with

$$\sigma_{oct} = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3} \qquad \qquad \chi = \frac{E}{3(1 - \nu)}$$

$$\tau_{oct} = \frac{1}{3}\sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2} \qquad G = \frac{E}{2(1 + \nu)}$$

- Minimizing von Mises stress does not control compressibility energy!!!
 - Tri-axiality is important.
- Stiffness and strength designs can be different when
 - Several load cases
 - Several materials
 - Different stress limits in tension and compression

 $\sigma - \frac{\sigma_1 + \sigma_2 + \sigma_3}{\sigma_1 + \sigma_2 + \sigma_3}$

- Geometrical constraints (perimeter, manufacturing constraints...) ¹⁴

NUMERICAL APPLICATIONS: 3-BAR TRUSS

 Famous benchmark problem with 3 independent load cases

$$F_1 = 40 N$$

$$F_2 = 30 \text{ N}$$

 $F_3 = 20 \text{ N}$

- Material and geometrical data
 L=1 m
 W = 2.5 m
 E = 100 N/m²
 - v = 0.3
 - $\sigma_{\rm l}$ = 150 N/m²
 - Vmax = 25%
- Finite Element mesh
 50 x 20 finite elements

- Design variables: 1000
- Load cases: 3
- Stress constraints: 3000

NUMERICAL APPLICATIONS: 3-BAR TRUSS

Minimum compliance design

Compliance (1,2,3) = 73.3 Nm

Max von Mises:

- 1) 229 N/m²
- 2) 571 N/m²
- 3) 555 N/m²

Volume = 25%

Stress constrained design

Compliance 1) 91.2 Nm 2) 45.6 Nm 3) 45.0 Nm

Max Von Mises (1,2,3)= 150N/m²

Volume = 26.4 %

Unequal stress limits in tension and compression

- Extending Von Mises criterion to other failure criteria to cope with unequal stress limits behaviors (T ≠ C, s=C/T)
- <u>Raghava criterion</u> (parabolic criterion from Tsai-Wu criterion family)

$$\sigma_{RAG}^{eq} = \frac{J_1(s-1) + \sqrt{J_1^2(s-1)^2 + 12J_{2D}s}}{2s} \le 7$$

<u>Ishai criterion</u> (hyperbolic criterion from Prager-Drucker family)

$$\sigma_{ISH}^{eq} = \frac{(s+1)\sqrt{3J_{2D}} + (s-1)J_1}{2s} \le T$$

- with $J_1 = \sigma_{ii} \quad J_{2D} = 0.5s_{ij}s_{ij}$

NUMERICAL APPLICATIONS: 3-BAR TRUSS

 High compressive strength (s=C/T=3): (C=450 N/m², T=150 N/m²)

Volume = 25.6 %

Compliance (1,2,3): 92.8, 47,3, 46,0 N*m

 High tensile strength (s=C/T=1/3): (C=150 N/m², T=450 N/m²):

Volume = 12.4 %

10⁶

 10^{7}

FATIGUE (UNI AXILAL CASE)

- Wöhler's curve : fundamental work

 Reduction of the amplitude of stress with the number of cycles
- Goodman diagram:
 - Influence of mean and alternate stress components
 - Line of equal failure probability for a certain number of cycles σ_a^{eq}

$$\sigma(t) = \sigma_m + \sigma_a \sin(\omega t)$$

Amplitude / mean stress

$$\sigma_a = \frac{\sigma_{max} - \sigma_{min}}{2} \qquad \sigma_m = \frac{\sigma_{max} + \sigma_{min}}{2}$$

104

10⁵

Number of cycles

 10^{2}

Stress amplitude [MPa]

10

10

MULTI AXIAL FATIGUE CRITERIA

• Like in 1-D problem let's assume that the total stress is given by a certain amount of alternate component $c_a \sigma_a$ and a given amount of mean component $c_m \sigma_m$:

 In the following, let assume that alternate and mean components are defined by the same reference load case.

MULTI AXIAL FATIGUE CRITERIA: SINES

Sines fatigue criterion:

$$\sqrt{J_{2,a}} + \kappa \cdot \sigma_{h,m} \le \lambda$$

– Where

$$\lambda = t_{-1} \qquad \kappa = \frac{6t_{-1}}{f_0} - \sqrt{6}$$

- With t_{-1} , the fatigue limit in reverse torsion and f_0 is the fatigue in repeated bending
- For plane stress

$$J_{2,a} = \frac{1}{6} \left[(\sigma_{11,a} - \sigma_{22,a})^2 + \sigma_{22,a}^2 + \sigma_{11,a}^2 + 6\sigma_{12,a}^2 \right]$$
$$\sigma_{h,m} = \frac{1}{3} (\sigma_{11,m} + \sigma_{22,m}) = \frac{J_1}{3}$$

21

MULTI AXIAL FATIGUE CRITERIA: CROSSLAND

• Crossland fatigue criterion is very similar to Sines criterion:

$$\sqrt{J_{2,a}} + \kappa \cdot \sigma_{h,max} \le \lambda$$

• Difference lies in the fact in Crossland the hydrostatic term is evaluated on the basis of the maximum stress (not only on the mean component): $\sigma_{max} = \sigma_a + \sigma_m$:

$$\sigma_{h,max} = \sigma_{h,a} + \sigma_{h,m}$$

MULTI AXIAL FATIGUE CRITERIA: SINES

• Assuming a SIMP model, after Finite Element discretization:

$$\begin{aligned} \sigma_a^{eq} &= \sqrt{3J_2(\sigma_{a,ij})} & \sigma_{a,e}^{eq} &= x_e^p \left(c_a \sqrt{\mathbf{U}_{\mathbf{e}}^{\mathbf{T}} \mathbf{M}_{\mathbf{e}}^{\mathbf{0}} \mathbf{U}_{\mathbf{e}}} \right) &= x_e^p \overline{\sigma}_{a,e}^{eq} \\ \sigma_m^{eq} &= J_1(\sigma_{m,ij}) & \sigma_{m,e}^{eq} &= x_e^p (c_m \mathbf{H}_{\mathbf{e}}^{\mathbf{0}} \mathbf{U}_{\mathbf{e}}) &= x_e^p \overline{\sigma}_{m,e}^{eq} \end{aligned}$$

Considering the micro stresses after applying the polarization factor

$$\langle \sigma_{ij,e} \rangle = \frac{\sigma_{ij,e}}{x_e^q}$$

The expression Sines criterion for topology optimization reads

$$\frac{x_e^{(p-q)}}{\lambda} \left[\frac{\overline{\sigma}_{a,e}^{eq}}{\sqrt{3}} + \frac{\kappa}{3} \overline{\sigma}_{m,e}^{eq} \right] \le 1$$

NUMERICAL APPLICATION: L-SHAPE

- SIMP model
 - Penalization p=3
 - − q-p relaxation: q=2.6 \rightarrow 2.75
- Load F=95 N
 c_a = 0.7 and c_m = 0.3

- Material : Steel with properties from Norton (2000)
 - E = 1 Mpa (normalized), v=0.3
 - σ_f = 580 MPa, t₋₁= 160 MPa, f₋₁= 260 MPa
- Compliance regularization constraint: $\alpha_c = 2$

NUMERICAL APPLICATION: LSHAPE

Optimal design with Sines criterion

Optimal design with Crossland criterion

NUMERICAL APPLICATION: LSHAPE

Stress map for optimal design with Sines criterion

Stress map for optimal design with Crossland criterion

NUMERICAL APPLICATION: LSHAPE

Evolution of the objective function volume

Evolution of the number of ²⁷ active constraints

SOLVING LARGE SCALE OPTIMIZATION PROBLEMS

SOLVING LARGE SCALE OPTIMIZATION

- Classical strategy: solve optimization sequential convex programming
 - Generate first order approximation sub-problems: CONLIN (Fleury, 1985) or MMA (Svanberg, 1987) or GCMMA approximation (Bruyneel et al., 2002)
 - Dual solver (Lagrangian maximization)
- When dealing with stress constrained design, one hits the limitation of currently available standard:
 - Number of active restrictions is more or less equal to the number of design variables
 - Sensitivity analysis become very expensive
 - Solution time of optimization algorithm becomes of the same order of magnitude as the FE computation.

Strategies to solve large scale problems

- Improve the sensitivity analysis:
 - Selection of potentially active constraints
 - Adjoin vs direct sensitivity analysis
- Introduction 'dummy' compliance constraint' to control the convergence during first steps (Bruggi & Duysinx, 2013)
- Use integrated stress constraints instead of a purely local approach
 - Lose of local control of stress constraints: results looks closer to compliance design (Duysinx & Sigmund, 1998)
 - Rather difficult to tackle with classical approximation (function not convex)

Sensitivity analysis

- Direct approach: solve n (#dv) load cases $\frac{\partial U}{\partial \rho_i} = K^{-1} \left(\frac{\partial F}{\partial \rho_i} - \frac{\partial K}{\partial \rho_i} U \right)$
- Adjoin method: solve m (#constraints) load cases

$$\lambda = K^{-1} \left\{ \frac{s-1}{2s} W^{0} + \frac{s+1}{2s} \frac{1}{\sqrt{U^{T} V^{0} U}} V^{0} U \right\}$$

- For one load case: m=#FE ~ n
- For several load cases: m=#FE *#load cases >n

Problem formulation: compliance constraint

Minimum volume with (fatigue stress) constraints and compliance constraint

$$\begin{cases} \min_{x_0 \le x_e \le 1} & \mathcal{W} = \sum_N x_e V_e \\ \text{s.t.} & \mathbf{K}(\mathbf{x}) \mathbf{U} = \mathbf{F}, \\ & \mathcal{C} / \mathcal{C}_L \le 1, \\ & \frac{x_e^{(p-q)}}{\lambda} \left[\frac{\overline{\sigma}_{a,e}^{eq}}{\sqrt{3}} + \frac{\kappa}{3} \overline{\sigma}_{M,e}^{eq} \right] \le 1, \\ & \text{for } e = 1, ..., N \end{cases}$$

 Compliance constraints is introduced to provide a better stability and effectiveness to the convergence (Bruggi & Duysinx, 2012)

$$\mathcal{C}_L = \alpha_c \mathcal{C}_0$$

Integrated (aggregated) stress constraint

 Use aggregate restriction of relaxed stress constraints (Duysinx & Sigmund, 1998)

$$- \operatorname{q-norm} \left[\sum_{e=1}^{N} \left(\max\left\{ 0, \frac{1}{T} \quad \frac{({}^{*} \sigma^{eq})_{e}}{\rho_{e}^{p}} - \frac{\varepsilon}{\rho_{e}} + \varepsilon \right\} \right)^{q} \right]^{1/q} \le 1$$

$$- \operatorname{q-mean} \left[\frac{1}{N} \sum_{e=1}^{N} \left(\max\left\{ 0, \frac{1}{T} \quad \frac{({}^{*} \sigma^{eq})_{e}}{\rho_{e}^{p}} - \frac{\varepsilon}{\rho_{e}} + \varepsilon \right\} \right)^{q} \right]^{1/q} \le 1$$

Ordering relationship

$$\left[\frac{1}{N}\sum_{e=1}^{N} \left\|\sigma_{e}^{*}\right\|^{q}\right]^{1/q} \leq \max_{e=1...N} \left\|\sigma_{e}^{*}\right\|^{q} \leq \left[\sum_{e=1}^{N} \left\|\sigma_{e}^{*}\right\|^{q}\right]^{1/q}$$
33

NUMERICAL APPLICATIONS: 3-BAR TRUSS

Minimum compliance design

Compliance (1,2,3) = 73.3 Nm

Max von Mises:

- 1) 229 N/m²
- 2) 571 N/m²
- 3) 555 N/m²

Volume = 25%

Stress constrained design

Compliance

- 1) 91.2 Nm
- 2) 45.6 Nm
- 3) 45.0 Nm

Max Von Mises (1,2,3)= 150N/m²

Volume = 26.4 %

35

NUMERICAL APPLICATIONS: 3-BAR TRUSS

Bound: 500 N/m²

Compliance: 87.3, 59.3, 67.9 Nm

Max von Mises (local) for load case 1,2, 3 : 230, 235, 231 N/m²

Volume = 24.8%

q-mean of stresses (q=4):

Bound: 92 N/m²

Compliance: 90.6, 50.3, 53.8 Nm

Max von Mises (local) for load case 1,2, 3: 237, 215, 207 N/m²

Volume = 22.4%

Large scale optimization algorithms

- Fleury (2006) pointed out that the computation time of solution algorithm growths dramatically with the number of active constraints
- For dual maximization algorithms the explanation is rather easy.
 Let's consider the problem:

min	$1/2 x^T x$	$\dim x = n$
<i>s.t</i> .	$C^T x \ge d$	dim C = nxm

Dual function

$$\max \quad -1/2 \,\lambda^T (C^T C) \lambda + d^T \lambda$$

s.t.
$$\lambda \ge 0$$

Large scale optimization algorithms

Dual function maximization

$$\max \quad \ell(\lambda) = -1/2 \,\lambda^T (C^T C) \lambda + d^T \lambda$$

s.t.
$$\lambda \ge 0$$

• Solution algorithms $\nabla \ell(\lambda) = d - C^T x$ $\nabla^2 \ell(\lambda) = -C^T C$

Iterative Newton scheme

$$\lambda^{(k+1)} = \lambda^{(k)} + \alpha (-C^T C)^{-1} (d - C^T \lambda^{(k)})$$

requires solving in various ways

 $(C^T C)^{-1}$ dim C^TC = (mxm)

Large scale optimization algorithms

- Results based on numerical experiments by Fleury (2006) show that:
 - Computation time growths more or less linearly with the number n of design variables;
 - Computation time growths more or less like the power 3 of the number of active constraints.
- There is an urgent need for new solvers able to tackle huge problems with simultaneously a large number of design variables and a high number of active constraints

CONCLUSIONS & PERSPECTIVES

CONCLUSIONS

- Additive manufacturing have put forward a revived interest for solving efficiently topology optimization problems with local constraints (e.g. stress constraints)
- Specific character of stress constraints
 - For several load cases
 - For unequal stress limits in tension and compression
 - Geometrical constraint
 - Several materials
- Extension of stress constraints to important problems for engineering applications:
 - Various failure criteria like unequal stress criteria
 - Fatigue

67.5

PERSPECTIVES

PENDING TOPICS:

- Efficient treatment of large scale optimization problems including stress constraints
 - Novel class of solution algorithms
- Accurate calculation of the stress constraints in the framework of material distribution problems:
 - Jagged / unclear boundaries
 - Stress intensity factors to take into account notches, etc.
 - Consider stress history $\sigma_i(t)$ instead of a single load case:
 - → other criteria like Matake, Dang Van, Finley...
 - Consider cumulative damage Palmer Milgren
- Manufacturing constraints in order to generate designs which can be fabricated using AM

THANK YOU FOR YOUR ATTENTION

PROBLEM FORMULATION

 Homogenized failure criteria predicting failure in the microstructure from macroscopic point of view:

 $\|\sigma^{eq}(\rho)\| = \sigma^{*eq}/\rho^{p} \leq \sigma_{l}$

With consistency conditions requirements: p=q

Rank 2 layered material

SIMP (isotropic) material ⁴³

ϵ -relaxation: interpretation

Relaxation of stress constraints

 $\| \sigma^{eq}(\rho) \| \leq \sigma_l \quad \text{if } \rho > 0$ by $\begin{cases} \frac{\| \sigma^{eq}(\rho) \|}{\sigma_l} & -\frac{\varepsilon}{\rho} + \varepsilon \leq 1\\ \varepsilon^2 \leq \rho \end{cases}$

 Solve a sequence of perturbated problems with a decreasing sequence of ε going to zero

$$\begin{array}{c|c}
\min_{0 \le \rho(x) \le 1} & V = \int_{\Omega} \rho(x) \, dx \\
s.t. & \| \sigma^{eq}(\rho) \| \le \sigma_l \left(1 - \varepsilon + \frac{\varepsilon}{\rho} \right) \\
& \varepsilon^2 \le \rho
\end{array}$$

$$\|\sigma^{eq}(\rho)\| \leq \sigma_l (1 - \varepsilon + \frac{\varepsilon}{\rho})$$

44

NUMERICAL APPLICATIONS: 4-BAR TRUSS

 Von Mises
 Ishai
 Ishai

 T=C=6 N/m²
 T=6 & C=24 N/m²
 T=24 & C=6 N/m²

E=100 N/m², v=0.3, F =1 N, L =1 m

From Swan and Kosaka (1997)

MULTI AXIAL FATIGUE CRITERIA: CROSSLAND

MULTI AXIAL FATIGUE CRITERIA: SINES

Assuming a SIMP model, after Finite Element discretization, one can calculate the stresses at appropriate positions (e.g. the element centroïd) using the tension matrix T_e⁰

First and second invariants can be computed by introducing the hydrostatic stress matrix H_e⁰ and the von Mises quadratic stress matrix M_e⁰:

$$J_{1,e}(\sigma_{ij}) = x_e^p \mathbf{H}_e^0 \mathbf{U}_e$$
$$3J_{2D,e}(\sigma_{ij}) = x_e^{2p} \mathbf{U}_e^T \mathbf{M}_e^0 \mathbf{U}_e$$

 It is easy to recover the value of the alternate and mean stress components

$$\sigma_{a,e}^{eq} = x_e^p \left(c_a \sqrt{\mathbf{U}_{\mathbf{e}}^{\mathbf{T}} \mathbf{M}_{\mathbf{e}}^{\mathbf{0}} \mathbf{U}_{\mathbf{e}}} \right) = x_e^p \overline{\sigma}_{a,e}^{eq}$$

$$\sigma_{m,e}^{eq} = x_e^p (c_m \mathbf{H}_{\mathbf{e}}^{\mathbf{0}} \mathbf{U}_{\mathbf{e}}) = x_e^p \overline{\sigma}_{m,e}^{eq}$$
47

MULTI AXIAL FATIGUE CRITERIA: SINES

 For topology optimization, as suggested by Duysinx & Bendsoe (1998), one should consider the micro stresses after applying the polarization factor

$$\langle \sigma_{ij,e} \rangle = \frac{\sigma_{ij,e}}{x_e^q}$$

Sines criterion for topology optimization writes

$$\frac{\langle \sigma_{a,e}^{eq} \rangle}{\sqrt{3}\lambda} + \kappa \frac{\langle \sigma_{m,e}^{eq} \rangle}{3\lambda} \leq 1$$

The final expression Sines criterion for topology optimization reads

$$\frac{x_e^{(p-q)}}{\lambda} \left[\frac{\overline{\sigma}_{a,e}^{eq}}{\sqrt{3}} + \frac{\kappa}{3} \overline{\sigma}_{m,e}^{eq} \right] \le 1$$

SENSITIVITY ANALYSIS

- Sensitivity analysis of fatigue stress criteria requires the sensitivity analysis of the alternate, mean, and max components.
- Deriving the expression of the criteria, it comes

$$\frac{\partial \langle \sigma_{a,e}^{eq} \rangle}{\partial x_k} = \delta_{ek}(p-q)x_e^{p-q-1} \,\overline{\sigma}_{a,e}^{eq} + \frac{\partial \overline{\sigma}_{a,e}^{eq}}{\partial x_k}x_e^{p-q} \\
\frac{\partial \langle \sigma_{m,e}^{eq} \rangle}{\partial x_k} = \delta_{ek}(p-q)x_e^{p-q-1} \,\overline{\sigma}_{m,e}^{eq} + \frac{\partial \overline{\sigma}_{m,e}^{eq}}{\partial x_k}x_e^{p-q} \\
\frac{\partial \langle \sigma_{M,e}^{eq} \rangle}{\partial x_k} = \delta_{ek}(p-q)x_e^{p-q-1} \,\overline{\sigma}_{M,e}^{eq} + \frac{\partial \overline{\sigma}_{M,e}^{eq}}{\partial x_k}x_e^{p-q}$$

SENSITIVITY ANALYSIS

 Selecting the adjoin methods since we have less active stress constraints that the number of design variables, one has:

$$\frac{\partial \overline{\sigma}_{a,e}^{eq}}{\partial x_k} = -\widetilde{U}^T \frac{\partial K}{\partial x_k} U \quad \text{with} \quad K\widetilde{U} = \left[c_a (U^T M_e^0 U)^{-\frac{1}{2}} M_e^0 U \right]$$
$$\frac{\partial \overline{\sigma}_{m,e}^{eq}}{\partial x_k} = -\widetilde{U}^T \frac{\partial K}{\partial x_k} U, \quad \text{with} \quad K\widetilde{U} = \left[c_m H_e^0 \right]$$
$$\frac{\partial \overline{\sigma}_{M,e}^{eq}}{\partial x_k} = -\widetilde{U}^T \frac{\partial K}{\partial x_k} U, \quad \text{with} \quad K\widetilde{U} = \left[c_a H_e^0 + c_m H_e^0 \right]$$

Sensitivity analysis

Discretized equilibrium

$$K U = F$$

Sensitivity of displacement vector

$$\frac{\partial U}{\partial \rho_i} = K^{-1} \left(\frac{\partial F}{\partial \rho_i} - \frac{\partial K}{\partial \rho_i} U \right)$$

Direct approach: solve for every design variables

$$\sigma = TU$$

Stress constraint

 $J_{1}^{*} = 3\sigma_{h}^{*} = w^{T} \quad \sigma = Wq \quad and \quad J_{2D}^{*} = 1/3 \, \left(\sigma_{VM}^{*}\right)^{2} = 1/3 \, U^{T}VU$ $W = \rho^{p}W^{0} \qquad \qquad V = \rho^{2p}V^{0}$

Sensitivity analysis

Sensitivity of unequal stress constraints: Ishai

$$\|\sigma_{ISH}^{eq}\| = \left\| \sigma_{ISH}^{eq} / \rho^{p} = \frac{s-1}{2s} W^{0} U + \frac{s+1}{2s} \sqrt{U^{T} V^{0} U} \right\|$$

Derivative of criteria

$$\frac{\partial \| \sigma_{ISH}^{eq} \|}{\partial \rho_i} = \left\{ \frac{s-1}{2s} W^0 + \frac{s+1}{2s} \frac{1}{\sqrt{U^T V^0 U}} V^0 q \right\}^T \frac{\partial U}{\partial \rho_i}$$

Adjoin approach (for every constraint)

$$\lambda = K^{-1} \left\{ \frac{s-1}{2s} W^{0} + \frac{s+1}{2s} \frac{1}{\sqrt{q^{T} V^{0} q}} V^{0} U \right\}$$
$$\frac{\partial \| \sigma_{ISH}^{eq} \|}{\partial \rho_{i}} = \lambda^{T} \left(\frac{\partial g}{\partial \rho_{i}} - \frac{\partial K}{\partial \rho_{i}} U \right)$$

52