
STRESS CONSTRAINED TOPOLOGY 
OPTIMIZATION FOR ADDITIVE 

MANUFACTURING: SPECIFIC CHARACTER AND 
SOLUTION ASPECTS 

Pierre DUYSINX*, Maxime COLLET*, Simon BAUDUIN*,  

and Matteo BRUGGI+ 

 

* Aerospace and Mechanical Engineering Dept, University of Liege, Belgium 

+ Dept of Civil and Environmental Engineering, Politecnico di Milano, Italy 

 

1 
ESMC2015 9th European Solid Mechanics Conference,  

Madrid, July 6-10, 2015 



OUTLINE 

 Introduction & Motivation 
 

 Topology problem formulation 
– Problem statement 

 
 Specific character of stress constrained design 

– Energy vs von Mises stress 
– Local stress constraints 
– Unequal stress limits  
– Fatigue constraints 

 
 Large scale optimization 

– Sensitivity analysis 
– Dual optimization algorithms 

 
 Conclusion & Perspectives 

2 



INTRODUCTION & 
MOTIVATION 
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MOTIVATION 

 TOPOLOGY OPTIMIZATION: 
a creative design tool 

 ADDITIVE MANUFACTURING 

new way of making things 
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INTRODUCTION 

 Topology optimization is mostly based on compliance design 
formulation 

 

 Many aerospace and mechanical components are designed with 
respect to strength or fatigue constraints 

 

 Need for efficient approaches to handle efficiently stress 
constrained problems 

 

 Extending the scope of stress constrained topology optimization 
to cope with: 

– Fatigue constraints 

– Industrial applications  Large scale problems 
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INTRODUCTION 

 This paper  

– Draws a state-of-the-art of topology optimization of 
continuum structures with stress constraints 

 

– Illustrates the specific character of maximum strength with 
respect to compliance design when considering 

 Several load cases 

 Different stress limits in tension and compression 

 

– Extends the scope of stress constrained topology 
optimization to unequal stress constraints, fatigue 
problems.. 

 

– Draws the challenges to tackle large scale optimization 
problems related to local constraints 
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TOPOLOGY OPTIMIZATION 
FORMULATION 
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TOPOLOGY OPTIMIZATION PROBLEM 

 Optimal material distribution 
within a given domain 

 

 Discretization of displacements 
and density distribution using FEM 

 

 Interpolation of material properties 
between void and solid and 
penalize intermediate densities 
(SIMP model) 

 

 

 Solve optimization problem using 
efficient MP optimizers with 
continuous variables 
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TOPOLOGY OPTIMIZATION 

 Density filter: 

 

 

 

 

 Implementation : Topology optimization tool in MATLAB based 
88-line code by Andreassen et al. (2011) 

 

 MMA solver by Svanberg (1987) 
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TOPOLOGY OPTIMIZATION PROBLEM 

 Compliance design  

– Usual approach 

– Unable to capture the 
specific character of 
stress constraints 

 

 

 Stress constrained design 

– Technical difficulties to be 
solved 

– Define appropriate failure 
criterion 

– Computational effort 
compared to compliance 
design 10 

[Duysinx et Bruggi (2012)] 



TOPOLOGY OPTIMIZATION 

 Challenges of stress constraints in topology optimization 

– Definition of relevant stress criteria at microscopic level 

 Microscopic stress should be considered 

 

 

– Stress singularity phenomenon: 

 e-relaxation (Chang and Guo, 1992) 

 q-p relaxation (Bruggi, 2008) 

 

 

– Large scale optimization problem 

 Local constraints  

 Aggregation of constraints: P-norm 
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SPECIFIC CHARACTER OF 
STRESS CONSTRAINTS 
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SPECIFIC CHARACTER OF STRESS CONSTRAINTS 

 Bound of integrated von Mises stress by compliance Bendsoe, Diaz 

and Kikuchi (1993) 

 

 

 

 

 

 For single load case and minimum compliance with volume constraint : 

– Minimizing strain energy bounds almost everywhere the von Mises 
stress 

– Relation between energy minimization and fully stressed design 
nearly every where in the material 

– Compliance design is efficient to predict optimal structural lay-out 
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SPECIFIC CHARACTER OF STRESS CONSTRAINTS 

 Local strain energy can be written as (Timoshenko and Goodier, 1970) 

 

 

– with 

 

 

 

 

 Minimizing von Mises stress does not control compressibility energy!!! 

 Tri-axiality is important. 

 Stiffness and strength designs can be different when 

– Several load cases 

– Several materials 

– Different stress limits in tension and compression 

– Geometrical constraints (perimeter, manufacturing constraints...) 
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NUMERICAL APPLICATIONS: 3-BAR TRUSS 

 Famous benchmark problem with 3 
independent load cases 

 F1 = 40 N 

 F2 = 30 N 

 F3 = 20 N 

 

 Material and geometrical data 

 L=1 m 

 W = 2.5 m 

 E = 100 N/m² 

  = 0.3 

 l = 150 N/m² 

 Vmax = 25%  

 

 Finite Element mesh 

 50 x 20 finite elements 
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 Design variables: 1000 

 Load cases: 3 

 Stress constraints: 3000 



NUMERICAL APPLICATIONS: 3-BAR TRUSS 

 

 

 

 

 

 

 Minimum compliance design 

  

 Compliance (1,2,3) = 73.3 Nm 

  

 Max von Mises: 

 1) 229 N/m² 

 2) 571 N/m² 

 3) 555 N/m² 

 

 Volume = 25% 

 

 

 

 

 

 

 

 Stress constrained design 

 

 Compliance  

 1) 91.2 Nm 

 2) 45.6 Nm 

 3) 45.0 Nm 

 

 Max Von Mises (1,2,3)= 150N/m² 

 

 Volume = 26.4 % 
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Unequal stress limits in tension and compression 

 Extending Von Mises criterion to other failure criteria to cope 
with unequal stress limits behaviors (T  C, s=C/T) 

 

 Raghava criterion (parabolic criterion from Tsai-Wu criterion 
family) 

 

 

 

 

 Ishai criterion (hyperbolic criterion from Prager-Drucker family) 
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NUMERICAL APPLICATIONS: 3-BAR TRUSS 

 

 

 

 

 

 

 High compressive strength 
(s=C/T=3): 

 (C=450 N/m², T=150 N/m²) 

  

 Volume = 25.6 % 

 

 Compliance (1,2,3): 92.8, 47,3, 
46,0 N*m 

 

 

 

 

 

 

 High tensile strength 
(s=C/T=1/3): 

 (C=150 N/m², T=450 N/m²):  

  

 Volume = 12.4 % 
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FATIGUE (UNI AXILAL CASE) 

 Wöhler’s curve : fundamental work 

– Reduction of the amplitude of   

stress with the number of cycles 

 

 Goodman diagram:  

– Influence of mean and alternate stress components 

– Line of equal failure probability for a certain number of 
cycles 

 

 

 Amplitude  / mean stress 
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MULTI AXIAL FATIGUE CRITERIA 

 Like in 1-D problem let’s assume that the total stress is given by 
a certain amount of alternate component ca a and a given 
amount of mean component cm m : 

 

 

 

 

 

 

 

 

 In the following, let assume that alternate and mean 
components are defined by the same reference load case. 
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MULTI AXIAL FATIGUE CRITERIA: SINES 

 Sines fatigue criterion: 

 

 

– Where  

 

– With t-1, the fatigue limit in reverse torsion and f0 is the 
fatigue in repeated bending 

 

 For plane stress 
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MULTI AXIAL FATIGUE CRITERIA: CROSSLAND 

 Crossland fatigue criterion is very similar to Sines criterion: 

 

 

 

 Difference lies in the fact in Crossland the hydrostatic term is 
evaluated on the basis of the maximum stress (not only on the 
mean component): max = a + m: 
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MULTI AXIAL FATIGUE CRITERIA: SINES 

 Assuming a SIMP model, after Finite Element discretization: 

 

 

 

 

 Considering the micro stresses after applying the polarization 
factor  

 

 

 The expression Sines criterion for topology optimization reads 
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NUMERICAL APPLICATION: L-SHAPE 

 SIMP model  

– Penalization p=3  

– q-p relaxation: q=2.6  2.75 

 

 Load F=95 N 

– ca = 0.7 and cm = 0.3 

 

 Material : Steel with properties from Norton (2000) 

– E = 1 Mpa (normalized), =0.3 

–  f = 580 MPa, t-1= 160 MPa, f-1= 260 MPa 

 

 Compliance regularization constraint: ac=2 
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NUMERICAL APPLICATION: LSHAPE 
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Optimal design with Sines criterion Optimal design with Crossland criterion 



NUMERICAL APPLICATION: LSHAPE 
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Stress map for 
optimal design with Sines criterion 

Stress map for  
optimal design with Crossland criterion 



NUMERICAL APPLICATION: LSHAPE 

27 Evolution of the number of  
active constraints 

Evolution of the objective function 
volume 



SOLVING LARGE SCALE 
OPTIMIZATION PROBLEMS 
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SOLVING LARGE SCALE OPTIMIZATION 

 Classical strategy: solve optimization sequential convex 
programming 

– Generate first order approximation sub-problems: CONLIN 
(Fleury, 1985) or MMA (Svanberg, 1987) or GCMMA 
approximation (Bruyneel et al., 2002) 

– Dual solver (Lagrangian maximization) 

 

 When dealing with stress constrained design, one hits the 
limitation of currently available standard:  

– Number of active restrictions is more or less equal to the 
number of design variables 

– Sensitivity analysis become very expensive 

– Solution time of optimization algorithm becomes of the same 
order of magnitude as the FE computation. 
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Strategies to solve large scale problems 

 Improve the sensitivity analysis: 

– Selection of potentially active constraints 

– Adjoin vs direct sensitivity analysis 

 

 Introduction ‘dummy’ compliance constraint’ to control the 
convergence during first steps (Bruggi & Duysinx, 2013)  

 

 Use integrated stress constraints instead of a purely local 
approach 

– Lose of local control of stress constraints: results looks 
closer to compliance design (Duysinx & Sigmund, 1998) 

– Rather difficult to tackle with classical approximation 
(function not convex) 
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Sensitivity analysis 

 Direct approach: solve n (#dv) load cases 

 

 

 

 Adjoin method: solve m (#constraints) load cases 

 

 

 

– For one load case: m=#FE ~ n 

– For several load cases:  m=#FE *#load cases >n 
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Problem formulation: compliance constraint 

 Minimum volume with (fatigue stress) constraints and 
compliance constraint 

 

 

 

 

 

 

 

 

 

 Compliance constraints is introduced to provide a better stability 
and effectiveness to the convergence (Bruggi & Duysinx, 2012) 
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Integrated (aggregated) stress constraint 

 Use aggregate restriction of relaxed stress constraints (Duysinx & 

Sigmund, 1998) 

– q-norm 

 

 

– q-mean 

 

 

 

 

 Ordering relationship 
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NUMERICAL APPLICATIONS: 3-BAR TRUSS 

 

 

 

 

 

 

 Minimum compliance design 

  

 Compliance (1,2,3) = 73.3 Nm 

  

 Max von Mises: 

 1) 229 N/m² 

 2) 571 N/m² 

 3) 555 N/m² 

 

 Volume = 25% 

 

 

 

 

 

 

 

 Stress constrained design 

 

 Compliance  

 1) 91.2 Nm 

 2) 45.6 Nm 

 3) 45.0 Nm 

 

 Max Von Mises (1,2,3)= 150N/m² 

 

 Volume = 26.4 % 
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NUMERICAL APPLICATIONS: 3-BAR TRUSS 

 

 

 

 

 

 

 q-norm of stresses (q=4):  

  

 Bound: 500 N/m² 

 

 Compliance: 87.3, 59.3, 67.9 Nm 

  

 Max von Mises (local) for load case 
1,2, 3 : 

  230, 235, 231 N/m² 

 

 Volume = 24.8% 

 

 

 

 

 

 

 q-mean of stresses (q=4):  

  

 Bound: 92 N/m² 

 

 Compliance:  90.6, 50.3, 53.8 Nm 

  

 Max von Mises (local) for load case 
1,2, 3: 

  237, 215, 207 N/m² 

 

 Volume = 22.4% 
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Large scale optimization algorithms 

 Fleury (2006) pointed out that the computation time of solution 
algorithm growths dramatically with the number of active 
constraints 

 

 For dual maximization algorithms the explanation is rather easy. 
Let’s consider the problem: 

 

 

 

 Dual function 
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Large scale optimization algorithms 

 Dual function maximization 

 

 

 

 Solution algorithms 

 

 

 

Iterative Newton scheme 

 

 

requires solving in various ways 
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Large scale optimization algorithms 

 Results based on numerical experiments by Fleury (2006) show 
that: 

– Computation time growths more or less linearly with the 
number n of design variables; 

– Computation time growths more or less like the power 3 of 
the number of active constraints. 

 

 There is an urgent need for new solvers able to tackle huge 
problems with simultaneously a large number of design 
variables and a high number of active constraints 

 

38 



CONCLUSIONS 
& PERSPECTIVES 

39 



CONCLUSIONS 

 Additive manufacturing have put forward a revived interest for solving 
efficiently topology optimization problems with local constraints (e.g. 
stress constraints) 

 

 Specific character of stress constraints  

– For several load cases 

– For unequal stress limits in tension and compression 

– Geometrical constraint  

– Several materials 

 

 Extension of stress constraints to important problems for engineering 
applications: 

– Various failure criteria like unequal stress criteria 

– Fatigue 
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PERSPECTIVES 

PENDING TOPICS: 

 

 Efficient treatment of large scale optimization problems including stress 
constraints 

– Novel class of solution algorithms 

 

 Accurate calculation of the stress constraints in the framework of 
material distribution problems: 

– Jagged / unclear boundaries 

– Stress intensity factors to take into account notches, etc. 

– Consider stress history i(t) instead of a single load case: 

 other criteria like Matake, Dang Van, Finley… 

– Consider cumulative damage Palmer Milgren 

 

 Manufacturing constraints in order to generate designs which can be 
fabricated using AM 
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PROBLEM FORMULATION 

 Homogenized failure criteria predicting failure in the 
microstructure from macroscopic point of view: 

 

 

 With consistency conditions requirements: p=q 
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Rank 2 layered material SIMP (isotropic) material 
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e-relaxation: interpretation 

 Relaxation of stress constraints 

 

 

by 

 

 

 

 Solve a sequence of perturbated 
problems with a decreasing 
sequence of e going to zero 
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NUMERICAL APPLICATIONS: 4-BAR TRUSS 

E=100 N/m², =0.3, F =1 N, L =1 m 

Von Mises 

T=C=6 N/m² 

Ishai 

T=24 & C=6 N/m² 

Ishai 

T=6 & C=24 N/m² 

From Swan and Kosaka (1997) 
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MULTI AXIAL FATIGUE CRITERIA: CROSSLAND 
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MULTI AXIAL FATIGUE CRITERIA: SINES 

 Assuming a SIMP model, after Finite Element discretization, one 
can calculate the stresses at appropriate positions (e.g. the 
element centroïd) using the tension matrix Te

0 

 

 

 First and second invariants can be computed by introducing the 
hydrostatic stress matrix He

0 and the von Mises quadratic stress 
matrix Me

0:  

 

 

 It is easy to recover the value of the alternate and mean stress 
components 
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MULTI AXIAL FATIGUE CRITERIA: SINES 

 For topology optimization, as suggested by Duysinx & Bendsoe 
(1998), one should consider the micro stresses after applying 
the polarization factor 

 

 

 Sines criterion for topology optimization writes 

 

 

 

 The final expression Sines criterion for topology optimization 
reads 
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SENSITIVITY ANALYSIS 

 Sensitivity analysis of fatigue stress criteria requires the 
sensitivity analysis of the alternate, mean, and max 
components. 

 

 Deriving the expression of the criteria, it comes 
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SENSITIVITY ANALYSIS 

 Selecting the adjoin methods since we have less active stress 
constraints that the number of design variables, one has: 
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Sensitivity analysis 

 Discretized equilibrium 

 

 

 Sensitivity of displacement vector 

 

 

 

 Direct approach: solve for every design variables 

 

 Stress constraint 
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Sensitivity analysis 

 Sensitivity of unequal stress constraints: Ishai 

 

 

 

 Derivative of criteria 

 

 

 

 Adjoin approach (for every constraint) 
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