Using 2D-PIV measurements to compute unsteady aerodynamic loads on a flat plate at high angle of attack

> A. GUISSART¹, L. P. BERNAL², <u>G. DIMITRIADIS</u>¹ and V.E. TERRAPON¹

¹Department of Aerospace and Mechanical Engineering, University of Liege

²Department of Aerospace Engineering, University of Michigan

IFASD - 30 June 2015

Motivation

Forces measurement using load sensor

Not always possible

- Moving body with high inertia
- Small forces
- Sectional loads

Motivation

Static flat plate

Physics of phenomenon

- Nearly periodic vortex shedding
- Phase averaging \Rightarrow synchronization
- \Rightarrow Small amplitude pitching motion

Large amplitude pitching flat plate

Physics of phenomenon

- Periodic shedding due to pitching
- Phase averaging using motion

 \Rightarrow Evolution of $c_l(t)$ & $c_d(t)$

- Water channel
- PIV
 - \Rightarrow Synchronization
- Direct force measurements
 - \Rightarrow Comparison

Data collection

Pre-processing

Forces calculation

- Shadow due to mounting
- Use of symmetry
- Stitching of two images
 - \Rightarrow Overlap use for stitching
 - \Rightarrow Overlap may cause troubles

	$\alpha =$	30°	$\alpha =$	45°
α		$\overline{C_d}$		$\overline{C_d}$
Indirect calculation	1.05 ± 0.01	0.60 ± 0.03	1.07 ± 0.08	1.08 ± 0.03
Direct measurement	0.97 ± 0.04	0.62 ± 0.03	1.02 ± 0.09	1.11 ± 0.12

· · · · · · · · · · · · · · · · · · ·	$\alpha =$	30°	$\alpha =$	45°
α		$\overline{C_d}$		$\overline{C_d}$
Indirect calculation	1.05 ± 0.01	0.60 ± 0.03	1.07 ± 0.08	1.08 ± 0.03
Direct measurement	$\textbf{0.97} \pm \textbf{0.04}$	$\textbf{0.62} \pm \textbf{0.03}$	1.02 ± 0.09	1.11 ± 0.12

		$\alpha =$	30°	$\alpha =$	45°
α			$\overline{C_d}$	<u>C</u>	$\overline{C_d}$
Indirect calculatio	n	1.05 ± 0.01	0.60 ± 0.03	1.07 ± 0.08	1.08 ± 0.03
Direct measureme	ent	0.97 ± 0.04	0.62 ± 0.03	1.02 ± 0.09	1.11 ± 0.12
	Me	aning of stan	dard deviation	, J	
		 Indirect cald ⇒ 7 different 	culation nt surfaces ${\cal S}$		
	s				
	()	

	α =	30°	α :	= 45°
α	$\overline{C_l}$	$\overline{C_d}$	<u>C</u>	$\overline{C_d}$
Indirect calculation	1.05 ± 0.01	0.60 ± 0.03	1.07 ± 0.08	1.08 ± 0.03
Direct measurement	0.97 ± 0.04	0.62 ± 0.03	1.02 ± 0.09	1.11 ± 0.12
	A			
	 Indirect cald ⇒ 7 differe Direct meas ⇒ averagin 	dard deviation culation nt surfaces S surement g measuremen	ts	$egin{array}{cccc} \mathcal{C}_7 & \mathcal{C}_2 & \mathcal{C}_1 \\ & & & \\ & & & \\ \mathcal{S}_7 & \mathcal{S}_2 & \mathcal{S}_1 \end{array}$

	α	$= 30^{\circ}$	α	$=45^{\circ}$
α		$\overline{C_d}$	<u>C</u>	$\overline{C_d}$
Indirect calculation	n 1.05 ± 0.01	$1 0.60 \pm 0.03$	1.07 ± 0.08	1.08 ± 0.03
Direct measureme	nt 0.97 ± 0.04	0.62 ± 0.03	1.02 ± 0.09	1.11 ± 0.12
α 4 	Meaning of sta • Indirect c ⇒ 7 diffe • Direct me ⇒ averag	andard deviation alculation rent surfaces <i>S</i> easurement ing measuremen	n ts	$egin{array}{ccc} \mathcal{C}_7 & \mathcal{C}_2 & \mathcal{C}_1 \\ & & & \\ & & & \\ \mathcal{S}_7 & \mathcal{S}_2 & \mathcal{S}_1 \end{array}$

Small amplitude pitching

, ,		$lpha=$ 30 $^{\circ}$				$\alpha =$	45°	
α	$\overline{C_l}$	c_l^{rms}	$\overline{C_d}$	C_d^{rms}	$\overline{C_l}$	c_l^{rms}	$\overline{C_d}$	C_d^{rms}
Indirect calculation	1.14	0.15	0.61	0.14	1.08	0.10	1.07	0.12
Direct measurement	1.08	0.06	0.69	0.02	1.06	0.11	1.15	0.09

Small amplitude pitching

		$\alpha = 30^{\circ}$				$\alpha =$	45°	
α	$\overline{C_l}$	c_l^{rms}	$\overline{C_d}$	c_d^{rms}	$\overline{C_l}$	c_l^{rms}	$\overline{C_d}$	C_d^{rms}
Indirect calculation	1.14	0.15	0.61	0.14	1.08	0.10	1.07	0.12
Direct measurement	1.08	0.06	0.69	0.02	1.06	0.11	1.15	0.09

Small amplitude pitching

, ,		$lpha=$ 30 $^{\circ}$				$\alpha =$	45°	
α	$\overline{C_l}$	C _l ^{rms}	$\overline{C_d}$	C_d^{rms}		C _I ^{rms}	$\overline{C_d}$	C_d^{rms}
Indirect calculation	1.14	0.15	0.61	0.14	1.08	0.10	1.07	0.12
Direct measurement	1.08	0.06	0.69	0.02	1.06	0.11	1.15	0.09

Small amplitude pitching with DMD

		30 °				45°		
α	$\overline{C_l}$	C_l^{rms}	$\overline{C_d}$	C_d^{rms}	$\overline{C_l}$	C _l ^{rms}	$\overline{C_d}$	c _d ^{rms}
Indirect (without DMD)	1.14	0.15	0.61	0.14	1.08	0.10	1.07	0.12
Indirect (with DMD)	1.14	0.09	0.61	0.03	1.10	0.06	1.05	0.08
Direct measurement	1.08	0.06	0.69	0.02	1.06	0.11	1.15	0.09

Small amplitude pitching with DMD

	30°				45°			
α	$\overline{C_l}$	C _l ^{rms}	$\overline{C_d}$	C_d^{rms}	$\overline{C_l}$	Cl ^{rms}	$\overline{C_d}$	c _d ^{rms}
Indirect (without DMD)	1.14	0.15	0.61	0.14	1.08	0.10	1.07	0.12
Indirect (with DMD)	1.14	0.09	0.61	0.03	1.10	0.06	1.05	0.08
Direct measurement	1.08	0.06	0.69	0.02	1.06	0.11	1.15	0.09

Large amplitude pitching

Large amplitude pitching

Large amplitude pitching

Conclusion and future work

- Good estimation of mean coefficients
- Good estimation of temporal evolution for large amplitude
- Method is noise sensitive
- \Rightarrow DMD can be used to reduce the noise

- Further study impact of resolutions, window size, ...
- Comparison with other formulations