

Learning Artificial Intelligence in Large-Scale Video Games

— A First Case Study with Hearthstone: Heroes of WarCraft —

MASTER THESIS SUBMITTED FOR THE DEGREE OF MSC IN COMPUTER SCIENCE & ENGINEERING

David TARALLA

Author

Prof. Damien ERNST Supervisor

Video Games, Then and Now

- ▶ Then, the problems to solve were representable easily
 - \rightarrow Example: *Pac-Man*
 - Fully observable maze
 - Limited number of agents
 - Small, well-defined action space
- ▶ Now, the problems feature numerous variables
 - \rightarrow Example: *StarCraft*
 - Vast, partially observable map
 - Complex state representation
 - Prohibitively large action space, difficult to represent

Video Games, Then and Now

Games continue to feature richer environments...

Video Games, Then and Now

Games continue to feature richer environments...

... but designing robust Als becomes increasingly difficult!

2nd Master in Computer Science & Engineering

Video Games, Then and Now

Games continue to feature richer environments...

... but designing robust Als becomes increasingly difficult!

Making Al learn instead of being taught: a better solution?

Objectives of this Thesis

- 1. Design & study of a theory for creating autonomous agents in the case of large-scale video games
 - → Study applied to the game Hearthstone: Heroes of Warcraft

- 2. Develop a modular and extensible clone of the game Hearthstone: HoW
 - \rightarrow Makes us able to test the theory practically

University of Liège

1. State Vectors

- ▶ World vector $w \in \mathcal{W}$ contains all information available in a given state
 - \rightarrow Everything is not relevant
- ▶ If $\sigma(\cdot)$ is the projection operator such that

$$\forall w \in \mathcal{W}, s = \sigma(w)$$

is the relevant part of w for the targeted application, we define

$$\mathcal{S} := \{ \sigma(w) \mid w \in \mathcal{W} \}$$

the set of all state vectors.

2. Action Vectors

- Available actions have unknown consequences
- \triangleright Let \mathcal{A} be the set of available actions in the game
- ▶ Let A_s be the set of actions that can be taken in state $s \in S$

3. State Scoring Function

There should exist a bounded function

$$\rho: \mathcal{S} \to \mathbb{R}$$

having the following properties:

$$\left\{ \begin{array}{ll} \rho(s) < 0 & \text{if, from s info, the player is considered as likely to lose,} \\ \rho(s) > 0 & \text{if, from s info, the player is considered as likely to win,} \\ \rho(s) = 0 & \text{otherwise.} \end{array} \right.$$

Based on expert knowledge

4. Problem Formalization

► Games follow discrete-time dynamics:

$$au: \mathcal{S} imes \mathcal{A} o \mathcal{S} \mid (s_t, a) \mapsto s_{t+1} ext{ for } a \in \mathcal{A}_{s_t}, \quad t = 0, 1, ...$$

Let R_{ρ} be an objective function whose analytical expression depends on ρ :

$$R_{\rho}: S \times \mathcal{A} \rightarrow \mathbb{R} \mid (s, a) \mapsto R_{\rho}(s, a) \text{ for } a \in \mathcal{A}_s.$$

4. Problem Formalization

- $ightharpoonup R_{\rho}(s,a)$ is considered uncomputable from state s
 - → Difficulty to simulate side-trajectories in large-scale games
- Find an action selection policy h such that

$$h: S \to \mathcal{A} \mid s \mapsto \operatorname*{argmax}_{a \in \mathcal{A}_s} R_{\rho}(s, a).$$

2nd Master in Computer Science & Engineering

Iniversité de Liège

Getting Intuition on Actions from State Scoring Differences

▶ Our analytical expression for R_{ρ} :

$$R_{\rho}(s,a) := \rho(\tau(s,a)) - \rho(s).$$

Report erratum – In Figure 3.2, the classifier is asked to predict the sign of R_{ρ} , and not ρ .

2nd Master in Computer Science & Engineering

Nora: Design & Results

Action Selection Process

Report erratum – In Figure 4.5, the classifiers are asked to predict the sign of R_{ρ} , and not ρ .

Caveats

- ► Memory usage
 - → Approx. 14GB is needed to keep the models in RAM
 - → Fix: tree pruning and parameters tuning
- Play actions classifier underestimates the value of some actions
 - \rightarrow Random target selection is assumed after playing an action that needs a target
 - → Fix: Two-step training

Matchup	Win rate
Nora vs. Random	93%
Nora vs. Scripted	10%

But compared to the random player performance...

Matchup	Win rate
Nora vs. Random	93%
Nora vs. Scripted	10%
Random vs. Scripted	< 1%!

- ▶ Nora applies some strategy the random player does not
- Qualitatively, this translates into a board control behavior
 - ightarrow Never target her allies with harmful actions, even though it is allowed
 - → Accurate understanding of the Fireblast special power

Conclusion

Any questions?

Thank you for your attention.

Appendix – Why Extremely Randomized Trees?

- ▶ Ensemble methods can often surpass single classifiers
 - \rightarrow From a statistical, computational and representational point of view
- Decision trees are particularly suited for ensemble methods
 - → Low computational cost of the standard tree growing algorithm
 - ightarrow But careful about memory...
- ▶ Random trees suited for problems with many features
 - → Each node can be built with a random subset of features
- Feature importances
 - ightarrow Useful for designing the projection operator $\sigma: \mathcal{W}
 ightarrow \mathcal{S}$

University of Liège

Appendix – Computation of the ExtraTrees Classifier Confidence

- ▶ It is the predicted positive class probability of the classifier
- Computed as the mean predicted positive class probability of the trees in the forest
- ▶ Predicted positive class probability of a sample *s* in a tree:

$$\frac{\#\{s' \in \text{leaf in which } s \text{ falls} \mid s' \text{ labelled positive}\}}{\#\{s' \in \text{leaf in which s falls}\}}$$

Stylized combat game

University of Liège

- Cards are obtained by drawing from your deck
 - \rightarrow Your hand is hidden to your opponent

Goal: Make the enemy player's hero health go to zero.

- Cards are played using a resource: the Mana
 - \rightarrow Minions that join the battle
 - \rightarrow Spells
- Rules are objects in the game
 - → Game based on creating new and breaking/modifying rules

Things Might Get Tricky...!

Appendix – The simulator

- ► Hearthstone: HoW simulator created with C++/Qt 5
 - \rightarrow Modular, extensible
 - → Cards are loaded from an external file
 - \rightarrow Quite a challenge!
- Definition of JARS for describing cards in a user-friendly way
 - → Just Another Representation Syntax
 - → Context-aware, JSON-based language
 - → Makes it easy to create and edit cards without coding