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Chapter 1

Introduction

1.1 Video Games

1.1.1 History

From the early maze games (like Pac-Man, Namco, 1980) and platform games (like Donkey
Kong, Nintendo, 1981), today’s video games have come a long way and feature a rich history.

At their beginning, there were mostly simple arcade games where the challenge relied on
the players’ capability to react quickly in order to win.

Then, with the emergence of better storage supports like the CD-ROM, followed by the
DVD and now the Blu-Ray Disc and dematerialization, video games became more and more
complex, featuring rich 3D environments and deep interactions between the player and the
game. Video games became more and more realistic from a graphical point of view, and the
challenges they brought involve now the simultaneous consideration of many variables by
the players.

1.1.2 Artificial Intelligence in Video Games

Many if not all games feature a mode where the player can play against an artificial intelli-
gence (AI). Back in the eighties with Pac-Man for instance, the avatar was already chased
by little ghosts. Building an AI for them was not very complicated since their restrained en-
vironment and goal. However, Safadi et al. [2015] underlined the fact that as games continue
to feature richer and more complex environments, designing robust AI becomes increasingly
difficult.

Still today, many game agents are built in a scripted way, meaning that game scenarios,
how to recognize and react to them are hard-coded. This old-fashioned approach is no longer
relevant for modern games, as it is often too complicated to be applied to them regarding
the time and resources developers are given for developing a game. Unfortunately, many
video game companies continue to stick to it, and players are left empty handed when it
comes to measure themselves against a challenging autonomous agent.

Indeed, the common way to solve the problem of the scripted approach – too overwhelm-
ing to be applied – is to reduce the number of strategies an autonomous agent can exhibit.
Moreover, as every game state can not be considered in advance, numerous variables specific
to the game have to be discarded, for the quantity of predefined situations a scripted agent
can recognize to be tractable. Altogether, these shortcuts make the designed agent redun-
dant in its decisions, and the average player is quickly able to recognize the agent strategies
when it plays, removing all the fun and challenge the player could get being surprised by
the moves of the AI.

7



CHAPTER 1. INTRODUCTION 8

Fortunately, with the advent of the machine learning era, we might be at the dawn of
finding techniques where the AI in games is no longer coded by humans, but rather has
learned to play the game as any human player would. This modern approach is nevertheless
not without challenges, as for example large-scale video games feature complex relations
between the entities they manage, leading to difficulties for simulating side-trajectories in
the course of a game.

1.2 Goals

The goal of this work is twofold. It first aims to develop a prototype of theory for the
generic design of autonomous agents for large-scale video games, the main contribution
being a formalization of video games and the problem to solve when creating an AI for one
of them.

Classification of actions based on supervised learning is attempted in order to come up
with a prototype of autonomous agent playing the game Hearthstone: Heroes of WarCraft,
without being able to train it using simulations of side-trajectories in the course of a game,
nor knowing in advance what consequences any possible action has on the game. Indeed,
Hearthstone: Heroes of WarCraft presents so many dependencies amongst all its elements
that it would be intractable to implement some undo mechanic making an algorithm able
to backtrack once a trajectory was simulated from a given state. Therefore, simulation-
based approaches like Monte-Carlo Tree Search (MCTS) [Chaslot et al., 2006; Coquelin and
Munos, 2007; Coulom, 2007; Gelly and Wang, 2006] are out of scope here, as they need
to be able to simulate trajectories. Nevertheless, Section 6.2.3 presents possibly promising
research tracks for applying MCTS to large-scale video games.

The second objective is to develop a modular and extensible clone of the game Hearth-
stone: Heroes of WarCraft, such that practitioners from all over the world can have a new
benchmarking tool to test their algorithms against.

1.3 Related Work

1.3.1 Research on Video Games

For several years now, the video game field has been the center of many research works. This
research is motivated by the development of new technologies to increase entertainment,
but also by the fact that video games present themselves as alternate, low-cost yet rich
environments to assess the performance of machine learning algorithms.

As mentioned by Gemine et al. [2012], one or both of two main objectives are usually
pursued in video game AI research.

The first one is to create agents that exhibit properties making them funnier to play
with. Players are usually frustrated when the AI rivals them thanks to unfair advantages,
like extremely short response times, perfect aim or even cheating. Usually, this kind of work
occurs for games that already feature agents (too) challenging for skilled human players.

The other goal is about complex games for which challenging agents do not exist yet;
MOBAs1 like League of Legends (Riot Games, 2009) are a good example of such games: the
agents exhibit poor threat assessment and ignore threats when returning to their base. For
those complicated games, the goal is of course to increase the performance of the AI.

In both cases, the general idea can be summarized as obtaining an AI whose performance
is similar to that of humans. Mimicking human intelligence has by the way been suggested
to be pursued directly in those new virtual environments [Laird and VanLent, 2001].

1Multiplayer Online Battle Arena
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Human-like behavior in video games was already approached by several studies, often
under the name Imitative Learning. Such studies include for example improvements in more
natural movement behavior and handling weapon switching, aiming and firing in FPS2

games [Bauckhage et al., 2003; Gorman and Humphrys, 2007], discussions about learning
from humans at different cognitive abstraction levels including strategy, tactics and reactions
[Thurau et al., 2004], and production order passing in RTS3 games [Gemine et al., 2012].

1.3.2 Machine Learning & Video Games

In the light of the previous section, the idea of bringing the benefits of machine learning
techniques to video games is not new. Researchers of the University of Liège for instance
developed a theory about designing intelligent agents based on imitative learning to solve
the problem of macro-management in RTS games [Gemine et al., 2012].

In recent years, MCTS has been seen as the method of choice for creating AI agents for
games [van den Herik, 2010]. In particular, it was successfully applied to Go [Lee et al.,
2009; Rimmel et al., 2010] and a large variety of other game environments [Browne et al.,
2012], for example General Game Playing (GGP) [Méhat and Cazenave, 2010; Bjornsson
and Finnsson, 2009], Hex [Arneson et al., 2010] and Havannah [Teytaud and Teytaud, 2010].

Even though we said in the previous section that large-scale video games are in general
difficult to simulate, it has to be noted that attempts to apply simulation-based techniques to
those games do exist, for example for the RTS genre [Soemers, 2014; Buro, 2003; Sailer et al.,
2007; Balla and Fern, 2009] or Magic: The Gathering [Ward and Cowling, 2009; Cowling
et al., 2012], a card game similar to Hearthstone: Heroes of WarCraft. These approaches
however usually solve subproblems of the game they are applied to, and not the game itself,
by making abstraction of many variables.

Some researchers were concerned about the performance issues encountered in games
where the action space is too large to be thoroughly exploited by generic scripting, that
is large-scale video games. By using neural networks-based classifiers, Baysian networks
and action trees assisted by quality threshold clustering, Frandsen et al. [2010] were able
to successfully predict enemy strategies in StarCraft, one of the most complex RTS game
today.

Safadi et al. [2015] state that a big flaw in today’s video game AI is its inability to evolve.
They argue that video game companies are usually reluctant to make use of machine learning
techniques to palliate non-evolving behaviors:

There are a few reasons the video game industry has been reluctant in making
use of machine learning techniques. The complexity of modern video game worlds
can make it challenging to design a learning agent that can be deployed in an
environment where multiple concepts are in play. Even when it is possible to
create robust learning agents, the process of training them can be too costly.
Furthermore, evolving agents are harder to test and can be problematic to quality
assurance (QA) processes. [Safadi et al., 2015]

Even though, they also give some examples of video games – Creatures, Creature Labs,
1996; Black & White, Lionhead Studios, 2001 – for which machine learning techniques are
applied to game agents in order to make them feel more “real” to players.

These techniques are however not restrained to be applied to game agents. With the
emergence of massively multiplayer games, game editors began to integrate machine learning
techniques into their matchmaking and player toxicity detection algorithms.

In League of Legends for example, players can report others for what is called “verbal
harassment”. This report system feeds an algorithm that learns what players define as
verbal harassment. In this way, players flagged as verbally harassing others are players the
majority of League of Legends community feels as toxic. Banning those players thus result

2First Person Shooter
3Real-Time Strategy
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in a healthier platform, where the remaining players share the same values. This system
is therefore more robust and is able to discriminate between players simply swearing and
players having uncivic behaviors (racism, homophobia,...).

Still in this game, machine learning is applied to detect other toxic behaviors that are
well-defined (i.e. not left at the players’ judgment), like players that were “intentionally
feeding” in a game. Players can indeed die on purpose to give advantages to the enemy
team, in the sole goal of making their own team angry. Recognizing an act of intentional
feeding is easy for a human being but less for a computer. By making use of machine
learning techniques to detect based on a game log whether a player was guilty of such toxic
behavior, the system proved to be efficient enough to run permanently on the game servers
[Lyte, 2014].

Given these various considerations, it seems machine learning and video games are going
to have a treacherous yet bright future together.

1.3.3 Existing Hearthstone: Heroes of WarCraft Simulators

Even though several simulators exist [Demilich, 2015; Yule, 2015; Oyachai, 2015], they are
still much works in progress and usually not as extensible, modular and suited for AI research
than what is actually needed. Most of them hard-code each and every card of the game,
making it difficult for practitioners to test precise behaviors by designing their own cards.
Most are also still prone to bugs.

However, we want to mention an exception, the Fireplace open-source project [Leclanche,
2015], which is a comprehensive, full-fledged Hearthstone simulator written in Python. When
beginning this thesis, Fireplace was unfortunately not as mature and actively developed
as it is today. It was also missing some core features needed for pursuing this research.
Consequently, it was found more adapted to build our own simulator for the purpose of this
thesis rather than depending on external projects. More information about the simulator
will be given in the next chapter.

1.4 Structure of This Thesis

In Chapter 2, we first go through a short presentation of the video game Hearthstone: Heroes
of WarCraft, that will give the reader some insight about its goal, mechanics and technical
challenges. This description is required in the first place as further chapters will rely on some
concepts of the game. As this is a commercial, closed-source video game, this same chapter
contains a description of the simulator conceived as part of this work to mimic Hearthstone
behavior and mechanics.

Chapter 3 presents the theory we developed for the generic design of autonomous agents
for modern video games, especially for games where it is difficult or impossible to simulate
side-trajectories and where the available actions have unknown consequences. Considering
these constraints, its aim is to formalize the problem of playing large-scale video games.
Thanks to this formalization, we develop an approach based on supervised learning classifi-
cation that attempts to solve the stated problem.

This theory is then applied in Chapter 4 to the video game Hearthstone: Heroes of
WarCraft. This chapter is a discussion about the design of Nora, the autonomous agent
designed from the application of this theory to this very game. This part also points out
the difficulties we encountered while trying to make Hearthstone: Heroes of WarCraft fit in
the formerly stated problem, and how we circumvented them to finally come up with Nora.

The performances of Nora are then presented in Chapter 5. It describes the methodology
followed for the testing, and features qualitative and quantitative experiments against a
random player and a medium-level scripted player. The results and datasets were obtained
through the use of the simulator showcased in Chapter 2.
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Finally, we give an overall conclusion about this work by highlighting the strengths and
weaknesses of the developed theory, its application to Hearthstone: Heroes of WarCraft
and summarizing what has been done and what could not. This part also introduces the
sidetracks we followed, and presents what could be done as future work to improve Nora’s
capabilities.

A public GitHub repository containing the Python scripts used for model training and
predictions and the source code of the simulator is available at https://github.com/
dtaralla/hearthstone.

https://github.com/dtaralla/hearthstone
https://github.com/dtaralla/hearthstone


Chapter 2

The Hearthstone Simulator

Summary

The aim of this chapter is to present an overview of the game Hearthstone: Heroes of
WarCraft along with a description of the simulator that was implemented to mimic this
closed-source game mechanics. We first give the general rules of the game Hearthstone:
Heroes of WarCraft. Second, some considerations that steered the way the simulator was
built are presented. An overview of the simulator engineering is then given, by studying the
game loop itself. Finally, the most important parts of the software architecture are described.

2.1 Hearthstone: Heroes of WarCraft

Hearthstone: Heroes of WarCraft (or simply Hearthstone) is a turn by turn, 2-player col-
lectible card game created and developed by Blizzard Entertainment, released in March 2014
for PCs and April 2015 for iOS and Android devices.

This game is free-to-play and played online, usually against other human players but
also in solo mode against a rather basic AI. By September 2014, there were already more
than 20,000,000 registered accounts [Haywald, 2014], and four months later this number had
increased by five other millions [Matulef, 2015], making it a real success when considering
the fact that the developer team behind Hearthstone was composed of only five programmers
instead of the sixty to hundred people usually affected to a Blizzard game [Blizzard, 2013].

2.1.1 Game Description

The Figure 2.1 illustrates what a typical game of Hearthsone looks like.

The game features a board with two sides, one for each player. Each player is represented
by a hero. A hero has a special power, no attack points (ATK) and begins the game with
30 health points (HP). Throughout this work, we will identically refer to either heroes or
players, which can be considered as exchangeable terms.

The goal of the game is to reduce the health of the enemy hero to zero. To do so, players
successively play cards from their hand, cards that can either be spells or creatures (with
the latters actually called minions). A player’s hand is hidden to his opponent, who only
sees the card backs (he thus knows the number of cards even though he does not know their
identities).

Each player has a deck – a stack of cards of his choice. A deck never contains the same
card more than twice, and is composed of exactly 30 cards. The decks are shuffled at the
beginning of the game, which means that even though players know their deck content, they
can not know what card they are going to draw next.

12
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Figure 2.1: A typical Hearthstone board
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Figure 2.2: A spell card: this spell costs 1 MP. The text describes the spell’s effects.

Hearthstone is turn-based: players never play simultaneously. At the start of a player’s
turn, he draws a card from his deck if possible. During a player’s turn, he can play any
number of cards from his hand. If he has played minions in his previous turns, and if they
are still alive, he can make them attack enemy characters (hero or minions). The player can
also use the special power of his hero, once per turn. Finally, the player can also choose to
end his turn at any time.

In the case where a player is in the incapacity of drawing a card because his deck is
empty, he draws a Fatigue card. This uncollectible card deals a number of damages to his
hero equal to the quantity of Fatigue cards he has already drawn, this one included. This
mechanism prevents never-ending games from happening.

To play cards or his hero’s special power, a player needs mana points (MP). The mana
is a resource inherent to a player which is restored at the beginning of each of the player’s
turns. Initially, each player begins the game with a reserve of 1 MP. At each subsequent
turn, the mana reserve is incremented by one, until a maximum of ten is reached.

Special powers and cards (regardless of them being spells or minions) have a mana cost.
For example, to be able to play a card of mana cost N , a player has to have at least N MP
available. If he does, he can (but is not forced to) play the card, what will consume N MP
from his mana reserve.

Playing a card reveals it to the opponent. If it is a spell, its text is executed then
the card is removed from the game. If it is a minion, the card is dropped on its owner’s
side of the board at the spot of his choice (for instance between two other previously played
minions), and the minion battlecry, if any, is executed (see below for more information about
battlecries). A player can not play a minion if it already controls seven or more. Minions
can not attack the turn they were put into play, and can also only attack once per turn.

Usually, heroes can not attack. However, a spell or their special power can make them
able to do so.

Note A few elements of the game like Secrets and Weapons were voluntarily left
aside here as they were not implemented in the simulator.

2.1.2 Card Text

Cards usually have text on them. This text expresses the different powers of the card: what
it does when it is played, if it reacts to some event, what effect is applied on the game while
the card is on the board, etc.

The text can be pretty much anything. Indeed, an implicit rule in Hearthstone is that
any rule can be broken by cards. Most of the game behavior depends on the cards present
on the board and what their text says. For instance, a general game rule would be that
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Figure 2.3: A minion card: this minion costs 4 MP, has 2 ATK and 4 HP. Its text says that
it has the Charge ability, and also describes its permanent power.

turns never last more than one minute and thirty seconds. However, nothing prevents the
existence of a card that could have a text saying something like

“Turns can not last more than fifteen seconds.”

This modification on the game rules applies as long as the card is present on the board.
When multiple card texts would have their effects overlapping, it is the text from the last
card put into play that prevails, unless specified otherwise by other cards. As you might
see, this can be quite a challenge to model and implement.

Examples of card texts can be seen on Figures 2.2, 2.3 and 2.4.

2.1.3 Minion Abilities

Abilities and conditions are modifying a bit the game rules for the minion benefiting (or
suffering) from them. Abilities are part of the minion’s text – Figure 2.3 for example shows
a minion having the Charge ability.

Here are the abilities and conditions implemented in the simulator:

Charge Ability. This minion can attack the turn it is put into play.

Taunt Ability. If a player wants to make his characters attack, he is forced to target one
of the enemy minions having this ability.

Frozen Condition. This character loses its next attack. Practically, if the character has
already attacked on this turn, it will not be able to attack on its owner’s next turn.
Else, it will not be able to attack on this turn, but will be on its owner’s next turn.

Silenced Condition. The card text of a minion under this condition does not apply any-
more. A minion under this condition thus does not benefit (nor suffer) anymore from
any of its abilities, enchantments, deathrattle and powers. This condition can be re-
moved only by some action that would send the minion back into its owner’s hand.
Silencing a minion will only remove its currently active effects; any abilities, enchant-
ments, deathrattle and powers that would have in some way been granted to the minion
after it has been silenced would still fully apply their effects.

2.1.4 Battlecry

Minions might have a battlecry, a text that is executed when the minion is played.1 If the
minion is only summoned thanks to some card text, like a spell, the battlecry will not be

1When its card is played from the player’s hand, after its mana cost has been debited from its owner’s
mana reserve.
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Figure 2.4: A minion card: this minion costs 5 MP, has 4 ATK and 5 HP. Its text describes
its battlecry (action executed when the minion is played).

executed as this minion was not played. The battlecry (if any) is displayed in the minion
card text.

Figure 2.4 shows a minion having a battlecry.

2.1.5 Combat

Characters (heroes and minions) may attack if they have more than 0 ATK. A character
can attack only one enemy target (hero or minion) per turn.

If the player’s enemy has minions benefiting from the Taunt ability, he is forced to target
one of these. The restriction disappears only when all these Taunt minions are dead or their
Taunt ability was Silenced.

Upon attacking, the two characters will lose a quantity of HP equal to the ATK of its
opponent.

2.1.6 Death

When a character’s HP become less or equal to zero, its death is resolved and it is removed
from the board. Some minions can also have what is called a deathrattle, a piece of text
that will be executed upon the minion’s death. The deathrattle (if any) is displayed in the
minion card text.

Figure 2.5 shows a minion featuring a deathrattle.

2.2 Considerations

Here are some considerations that steered the way the simulator was built. It was a design-
driven programming project.

Easy creation/editing of cards. Some researchers might want to test their agent in
precise settings. These settings can be modeled by the card list available in a game. But,
rather to only allow researchers to pick cards from a predefined database, the goal was for
them to be able to design their own cards. Indeed, because they are mostly interested in
their agent performance in a given setting, they should not have to dig in the simulator code
and recompile it each time they want to add or modify a card. Consequently, the first goal
of the simulator was to have an easily-expendable card database.
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Figure 2.5: A minion card: this minion costs 5 MP, has 4 ATK and 4 HP. Its text says
that it has the Taunt ability and describes its deathrattle (action executed upon the minion
death).

Easy extension. The initial simulator was meant to embed basic actions that could
be applied on the game: dealing damage to a target or randomly, silencing targets, freezing
targets, enchanting them, make a player draw a card, gain some mana, etc. However, the
library users could want to implement new types of actions that fulfill their precise needs.
These actions can be anything, as they are in the original Hearthstone. It should also be
able to easily implement the missing mechanics, like responding to new events, new minions
abilities,...

Multiprogramming. The simulator should manage game threads, such that multiple
games can be played simultaneously based on the same card collection, without having to
reload the entire collection for each game.

2.3 Game Loop

Before going into details about the software architecture, we wanted to present a big picture,
an overview of what is carried on in the game from a high-level perspective. This can be
crystallized by an abstract view of the game loop.

Everything in the game is about updating the state through a call to an updateState()
function. What it does is first checking if anything triggered, and if so calls itself recursively.
Second, it checks if anybody died, and if so calls itself again.

The game loop is a repetition of the three following steps:

1. Get the current player’s options and hand them to him.

2. Run the action associated with option taken.

3. Call updateState().

This algorithm makes sure everything is correctly handled at the right time. The recur-
sive calls to updateState() are necessary in that of it enables the game to handle a stack
of events. It also allows the game to process the consequence of a character death: a minion
featuring a deathrattle sees its deathrattle executed by the last recursive call to the function.

We mentioned a stack of events. As other card games, Hearthstone implements some kind
of stack rule: an action is considered resolved only once all its consequences are resolved,
what is translated into some event resolution nesting. In the case where an event would
trigger several independent actions, they are executed in the order in which the source cards
were put into play.
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Figure 2.6: Sequence diagram of an example event nested execution

Event nesting is avoided for cards that listen to “after [something] occurred” events. In
this case, it means that the action triggered is executed after the triggering action is resolved
instead of before.

Let us take the example where there are three minions M1,M2 and M3 on the board,
summoned in this order, all listening for an event E, that execute respectively actions A1,
A2 and A3 when it occurs. Let us further say that action A2 will fire an event to which
another card is listening to to trigger action A4, and that action A3 will fire an event after
which a last card will execute action A5. When E is fired by the game, we have the following
nested execution:

1. A1 does not trigger anything before resolution.

2. A1 is executed and marked as resolved.

3. A2 triggers something before resolution.

(a) A4 does not trigger anything.

(b) A4 is executed and marked as resolved.

4. A2 is executed and marked as resolved.

5. A3 does not trigger anything before resolution.

6. A3 is executed and marked as resolved.

7. A5 does not trigger anything before resolution.

8. A5 is executed and marked as resolved.

This execution is represented as a sequence diagram on Figure 2.6.
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2.4 Software Architecture

The Hearthstone Simulator library is based on the Qt 5 Framework. Figure 2.7 puts the
software architecture in a nutshell as a condensed UML diagram.

The design, implementation and testing of this library was a huge part of this thesis, so
we wanted to at least succinctly present the software engineering processes used to build it.
Along with the library were developed two programs dynamically linked to it: a database
generation program and a demonstration one. The latter features a graphical user interface
to make one able to test and play the game visually. This graphical user interface was also
used to play against our autonomous agent.

The following sections describe more thoroughly some critical parts and entities of the
simulator. As far as the other structures are concerned, they will not be described further
in this thesis as its goal is to present the design of an autonomous agent.

2.4.1 Cards

Cards can be looked at in two different ways: the card itself – its name, text, mana cost,...
– and an instance of the card – the card in a player’s hand or on the board. These roles
are represented respectively as the card identity and card entities. The card is what you
play with, and you can have multiple cards sharing the same card identity. One can see the
way we represented cards in the library as the Flyweight pattern, whose goal is precisely
to handle efficiently a large combination of similar objects. Take a deck containing twice
the Shattered Sun Cleric card. It would be pointless to store twice its maximum HP, ATK,
name and text. Furthermore, imagine this in the context of multiprogramming: if N games
were using this deck simultaneously, it would mean duplicating this information N times
unnecessarily, what would lead in a large waste of memory.

Card Database

The library features a CardDB singleton, able to load a file describing the list of cards in a
human-editable way. A card database file is written in JARS2, a JSON-like language we
designed along the simulator. The root object has to be a JSON array, and each element of
this array has to be a card description.

JARS is only “JSON-like” because even if it shares with JSON its way of representing
objects and arrays, it allows the card designer to use human-readable constants wherever he
want, as long as they are constants recognized by JARS. These constants are always prefixed
with the $ sign.

Using an external file with well-defined syntax and semantics allows any third-party
developer to create new cards for the game using the available types and actions and without
touching a single line of code.

As in regular JSON, the order in which you put the fields and their values is not taken
into account. What is important however, is the presence of mandatory fields. JARS ignores
fields that are not documented for the objects it recognizes.

An example of JARS code featuring a minion is given in Figure 2.8.

Detailed information about the JARS language can be found as part of the code docu-
mentation present in the GitHub repository coming along this thesis.

2Just Another Representation Syntax
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Figure 2.7: A summary of the library software architecture
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(a) Represented minion

{
"id": "SHATTERED_SUN_CLERIC",
"type": $CARD_MINION,
"name": "Shattered Sun Cleric",
"text": "<b>Battlecry:</b> Give a friendly minion +1/+1",
"cost": 3,
"attack": 3,
"health": 2,
"battlecry": {

"id": $ENCHANT_CHARACTER,
"target": {

"id": $SELECT_N_IN_GROUP,
"quantity": 1,
"group": {

"owner": $OWNER_ALLY,
"subtype": $TYPE_MINION

}
},
"enchantment": {

"name": "Sunwell energy drink",
"text": "+1/+1",
"atkModifier": 1,
"maxHPModifier": 1

}
}

}

(b) Minion in JARS

Figure 2.8: The Shattered Sun Cleric and its JARS representation
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2.4.2 Actions

Actions are usually always associated to a card, and cards have actions associated to them.
All cards have for instance a link to a PlayAction, executed when its owner plays it. Spells
have an ordered list of actions to be executed when they are played. A minion can also
have a battlecry, a deathrattle and/or some trigger powers, that are just actions triggered
by some event.

Action objects describe precisely something that can be executed to alter the game state.
Some examples:

• Deal 1 damage to an enemy minion

• End the turn

• Summon a 1/1 Murloc Scout

• ...

Along with this description comes an implementation of the Action, materialized by the
resolve() factory method. This method will alter the game state according to the nature
of the action (its class) and its parameters (its constructor arguments, most of the time).

In software engineering, one would call the way actions were coded as Prototype. Because
a card was chosen to be represented as an intrinsic state (its CardIdentity) coupled to an
extrinsic state (the current HP of the card, the enchantments it benefits from,...), an Action
can be one of two things: either a description, or a description and its implementation.

An Action linked to a CardIdentity is a prototype of this action. When a Card is
created based on a CardIdentity, the actions linked to the CardIdentity are cloned and
specialized for this very Card, giving them the context they need to execute themselves; this
card is the source card of these Actions. An Action which has no source card usually can
not compute its resolution, as it is missing context for its execution.

To make things clearer, take the following example. Let a spell be

“Fireball: Deal 6 damages to an enemy minion.”

In its play action consequences, the SpellIdentity that the spell is based on has a
DealDmgHealingAction, with a parameter set to 6 for the amount of damages to deal, and
another parameter describing the fact that the target has to be an enemy minion. In the
SpellIdentity, the Action is nothing but a prototype, a description of the action linked to
the spell. Indeed, the Action could not be executed as it is not linked to some Card, and
thus has no way for now to depict a player as an enemy or a friend, so can not evaluate its
possible targets.

When creating a spell card based on the Fireball SpellIdentity, and putting the re-
sulting Card in a player’s deck, the prototype Action “Deal 6 damages to an enemy minion”
is cloned and specialized to work with a real Card, which has an owner. From this context
information, the specialized Action will be able to evaluate what its possible targets are as
it now has a reference to what it considers an ally.

The cloning and specialization of an Action prototype is done using its setSourceCard()
method; it will return a clone specialized for the very card given as argument.

2.4.3 Players

The Player class, as its name suggests, represents a player. However, player input/output is
implemented in a subclass of the abstract PlayerInput. To a Player is associated one and
only one PlayerInput. The latter lives in the UI thread and the first in the game thread,
in this way the input/output is not blocked while the game updates its state.

This scheme ensures that AI is decoupled from the library. The library represents a
player with its Player class, but makes no assumption on the kind of input or output it
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is given (there is a clear separation between the UI and the game). In this way, anyone
desiring to develop an intelligent agent for the simulator solely has to create a program
where they subclass PlayerInput, and override its askForAction() and askForTarget()
methods such that these reflect the agent behavior. The demonstration program for example
contains four subclasses of PlayerInput:

Human player GUI. This class implements PlayerInput in such a way that the program
displays a graphical interface and asks the user for input when an action or target as
to be selected. The graphical interface is updated with the game state, and everything
that happens is logged in a separate window, making debugging of the library easy.
It can also be used to make oneself play against another human player or one of the
players below.

Random player. This input select actions and targets at random. The only constraint is
that it only ends its turn when it can not do anything else. This class has no graphical
interface nor outputs anything on the screen; it just plays randomly. In code, it
translates into a subclass of PlayerInput only overriding the askForAction() and
askForTarget() methods and ignoring state update signals.

Scripted player. This input selects actions and targets using a fixed, well-defined policy,
designed by Hearthstone experts. It analyzes the current state of the game and choses
its actions and targets accordingly, with a level of medium-difficulty player. This input
is deterministic, hence the scripted term. As the random player input, this does not
display anything on the screen nor require any input from the user.

Nora. This input is the result of this thesis; its behavior will be described further in the
following chapters. This does not require any input from the user, but outputs on
stdout what “crosses its mind” when selecting actions and targets.

Inter-thread messaging was implemented thanks to the Signal/Slot mechanism of the
Qt framework.

Game state updates rely on the Observer pattern. When the subject – the game –
is updated, it sends a non-blocking signal containing all the information about what was
updated and how to the registered PlayerInput objects signal queue – the observers. The
observers are free to handle this signal or not.

For player input handling, things are a little bit more complicated; Figure 2.9 pictures a
sequence diagram illustrating the collaboration between objects to handle the input. When
input is required by the game to carry on (for example, asking the current player to take
an action), the game sends a blocking signal to the corresponding PlayerInput object. The
signal contains a pointer to an IORequest object, and it is the responsibility of the contacted
agent to set the IORequest’s response field to the address of the input value chosen.
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Figure 2.9: Player input handling sequence diagram



Chapter 3

General Theory

Summary

This chapter presents the general technique we developed to create intelligent agents for
complex games. It first formally states the problem to solve, then present an approach based
on supervised learning classification that can be applied to any game formalized as presented
in Section 3.1.

3.1 Problem Statement

Originally, the approach developed in this thesis was meant to work for the game Hearth-
stone: Heroes of WarCraft, which is a turn-based, two-player card game featuring random-
ness and partial observability. However, our theory does not only apply to this particular,
restrained class of games.

There is no restriction on the games to which this theory applies, as all games exhibit
enough structure such that their states and actions can be represented as fixed vectors of
numbers. We consider computable the set of all actions available to a player in a given state.

The ultimate goal is to come up with a novel approach that works for games that can
not simulate trajectories easily or at all.

Finally, we take the assumption that there is a large amount of off-line computing re-
sources, but that there are constraints on on-line resources. This assumption is done because
usually, big video game firms have almost unlimited computation power while developing
their games, but at the end, these games have to run on the players’ personal computers
which have much lower capabilities.

3.1.1 State Vector

Let the game be represented by a world vector w ∈ W. For games likes Hearthstone, the
cardinality of W can be pretty large, as can the length of w. We consider that w contains
all the information available to an agent at any given time.

A world vector w can however contain unrelevant data for the learning and predicting
processes of the targeted application; usually, only a sub-vector s of w will be needed.

Formally, if σ(·) is the projection operator such that

∀w ∈ W, s = σ(w)

is the relevant part of w for the targeted application, we define

25
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S := {σ(w) |w ∈ W}

the set of all state vectors.

The game world vector w (and thus the state vector s = σ(w)) is modified when an
action is executed. This action might be taken explicitly by a player, or triggered by an
event. The next section describes how we represent such actions.

3.1.2 Action Vector

The set of actions that could occur in the targeted game is considered unknown. In this
way, the general theory we develop does not depend on the type of actions at hand, nor in
fact on the type of game we are applying this theory to.

The actions should however exhibit some common features, such that there exists a one-
to-one relation between any possible action and its representation in Rn for some n ∈ N0.

More formally, if A is the set of possible actions, there should exist a bijection Φ such
that

Φ : A → Rn | a 7→ (φ1, φ2, ..., φn), n ∈ N0.

In some games, not all actions can be taken in a given state s ∈ S. We will thus further
define

As := {Φ(a) | a ∈ A and a can be taken in state s}.

3.1.3 State Score Function

Last but not least, there should exist a bounded function

ρ : S → R

associating to a given state s ∈ S a score representing how much a player is in a good
position to win the game in this state. The more the player is winning, the larger the value
of ρ. Furthermore, ρ should have the following properties:

 ρ(s) < 0 if, from state s information, the player is considered as likely to lose,
ρ(s) > 0 if, from state s information, the player is considered as likely to win,
ρ(s) = 0 otherwise.

This should usually be where expert knowledge on the game is put. For Hearthstone
for example, some expert players helped us designing one of its ρ function. It has to be
noted that the value of ρ(s) could crystallize information about previous states and foreseen
subsequent states.

3.1.4 Problem Formalization

We can see games as systems having discrete-time dynamics described by

τ : S ×A → S | (st, a) 7→ st+1 for a ∈ Ast
, t = 0, 1, ...

Let Rρ be an objective function whose analytical expression depends on ρ, such that
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Rρ : S ×A → R | (s, a) 7→ Rρ(s, a) for a ∈ As.

We seek to optimize for t = 0, 1, ... the objective Rρ, thus to find an action selection
policy h such that

h : S → A | s 7→ argmax
a∈As

Rρ(s, a).

An agent using policy h to determine which action to take amongst the available ones in
a given state should follow the expert knowledge and/or experience crystallized in ρ. Indeed,
as long as ρ and Rρ are “well” defined, the agent should select actions worth to be played
in any state, what would eventually lead it to victory.

A first analytical expression for Rρ is the difference between the values of ρ at two
subsequent time steps induced by the choice of taking an action a ∈ As in state s:

Rρ(s, a) := ρ(τ(s, a))− ρ(s).

Considering this analytical expression, if taking action a in state st is putting the game
in a state st+1 such that ρ(st+1) > ρ(st), Rρ(st, a) will be positive, meaning that a is
considered as a “good” action to take in state st. On the contrary, if taking action a yields
to ρ(st+1) < ρ(st), Rρ(st, a) will be negative, meaning that a is considered as a “bad” action
to take in state st.

It is worth mentioning that the value of Rρ(s, ·) is considered uncomputable for the
targeted games, as it works with actions having unknown effects and as action simulation
is not possible. The idea is that the agent proposed will learn by itself the impact any
action has on the game, and therefore whether taking this action is likely to lead it towards
a winning or loosing state. This can be achieved by learning to predict the value of Rρ.

3.2 Supervised Learning Classification

We make the assumption that a dataset

T = {(s, a, r) ∈ S ×A× R | a ∈ As and r = Rρ(s, a)}

of recorded game states is available for the learning phase. Each sample t ∈ T is a tuple
(s, a, r) where r = Rρ(s, a) is the output of t and the concatenation of s and a represents
the features of t. There are no further assumptions on T , not even on the quality of the
actions taken. From then on, the process of generating the database can be as simple as
letting random players play the game for some time, and making them explore the space of
available state-action combinations.

Indeed, if a random player chooses to take action a in state s, it can save the value
of ρ(s), execute a and compute ρ(τ(s, a)). The tuple (s, a, ρ(τ(s, a)) − ρ(s)) can then be
inserted in a dataset like T .

3.2.1 Extremely Randomized Trees Binary Classifier

The goal is to approximate Rρ for unlabeled and new samples. Such an approximation for
instance is to predict whether it is positive or negative. In this way, we will be able to give
the agent some insight about the soundness of the possible actions it is presented. Formally,
the assumption we make here is that the value of Rρ itself is not important, as long as its sign
is well-defined and sufficient for the targeted game to be winnable just by taking “positive”
actions. This work can be carried out by a binary classifier that yields the predicted class
probabilities, i.e. the probabilities that a sample belong to one or the other class.
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Figure 3.1: Our Supervised Learning Process
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We chose to see the problem as a binary one so that the whole Receiver Operating
Characteristic (ROC) and Precision-Recall (PR) framework is available, making one able
to easily assess the quality of the classifier. Some research papers like Patel and Markey
[2005] discussed the various ways to handle classification tasks where the number of classes
is greater than two, but we chose to stick with the common case of binary problems because
it is simpler to analyze and, for our particular application Hearthstone, a two-class classifier
proved to be sufficient to get interesting results.

To this end, the decision to use random tree-based ensemble methods was taken. Decision
trees are inherently suited for ensemble methods [Sutera, 2013], and random forests applying
the random subspace [Ho, 1998] or random patches [Louppe and Geurts, 2012] techniques
are particularly good choices for problems with many variables, as they artificially reduce
the number of variables for each model by the randomization they individually bring.

Moreover, as explained in Dietterich [2000], ensemble methods can often surpass single
classifiers, and this from a statistical, computational and representational point of view.
Plus, decision tree ensemble methods are particularly computationally efficient. Even though
usually ensemble methods are not efficient because of their need to create and maintain
several models, decision tree-based ensemble methods do not suffer that much from this
caveat because of the low computational cost of the standard tree growing algorithm [Geurts
et al., 2006].

Besides being efficient algorithms, they also bring a lot of information about feature
importances and thus feature selection [Breiman, 2001], that can be extremely valuable
when designing the projection operator σ :W → S.

In particular, we chose to work with extremely randomized trees, first introduced by
Geurts et al. [2006]. They showed that even if extremely randomized trees generally use a
bit more memory than Tree Bagging [Breiman, 1996] or Random Forests [Breiman, 2001],
they outperform these techniques in terms of computational efficiency. They also showed
that, on many different problems, extremely randomized trees were as accurate or more
accurate than these other ensemble methods.

Considering the targeted application, which is predicting the soundness of playing a
certain action according to a large amount of features, there was a requirement of using a
robust learning algorithm able to deal with the possible idiosyncrasies of the Rρ function
while ensuring it was handling the numerous features correctly. The study above convinced
us that an extremely randomized trees binary classifier was a fair choice for this purpose.

Nevertheless, the main caveat of using this kind of classifier is the memory it requires.
Indeed, because the games complexity is not bounded in our theory, it may not be assumed
that the learned models will always fit in the memory of a player’s personal computer as the
trees might become arbitrarily complex. To compensate, one should therefore take care of
limiting the tree growing by tuning the algorithm parameters correctly and include a tree
pruning pass.

Note The functioning of the extremely randomized trees algorithm is summarized in
Appendix B.

3.2.2 Training the Classifier

First, a dataset T ′ is obtained by modifying T such that the output of each sample now
represents a class rather than a real number:

T ′ = {(s, a, sgn (r)) | (s, a, r) ∈ T} ⊂ S ×A× {−1, 1}

How to deal with samples whose output Rρ(s, a) = 0 is specific to the targeted applica-
tion. They can either be included in one of the two classes, or simply not included in T ′ at
all.
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The binary classifier is then trained on T ′.

3.2.3 Assessing the Classifier Performance

When it comes to classifiers, it is well-known that the accuracy (i.e., the fraction of suc-
cessfully classified samples in a given test set) is not a good measure to assess a model gen-
eralization performance [Provost et al., 1998]. It is recommended when evaluating binary
decision problems to use the ROC curve, describing how the fraction of correctly classified
positive samples varies with the fraction of incorrectly classified negative samples. Nonethe-
less, ROC curve analysis might overestimate the performance of a binary classifier if there
is a large skew in the class distribution [Davis and Goadrich, 2006]. Because no constraints
were put on the dataset T , one can not rely on the fact that it provides a balanced number
of positive and negative samples.

This is why along ROC curves analysis we validate our binary classifier with the help of
PR curves. PR curves have been mentioned as an alternative to ROC curves for tasks with
a large skew in the class distribution [Craven, 2005; Bunescu et al., 2005; Goadrich et al.,
2004]. Indeed, when the proportion of negative samples is much greater than that of the
positive ones, a large change in the fraction of false positive can lead to a minimal change
in the false positive rate of the ROC analysis, because they are underrepresented in the
test set. Precision analysis on the other hand relates false positives to true positives rather
than true negatives, and therefore does not present the same flaw than ROC analysis in the
case where negative samples are overrepresented in the test set. Therefore, analyzing both
graphs to assess the quality of the model is necessary.

To classify a sample, the model yields the probability of it belonging to the positive
class.1 It means that the performance of the model will depend on the probability threshold
used to predict whether a sample is positive or not. Each point of a ROC or PR curve is the
performance of the model for a given threshold; thus, according to the needs of the targeted
application, one can select the confidence threshold c for which he considers having the
best compromise between the true positive rate, false positive rate and precision. The best
trade-off is defined by the targeted game, as for instance losing an opportunity (predict a
false negative) might or might not be worse than making a mistake (predict a false positive)
in all games.

3.2.4 Selecting a Good Action

From now on, when an agent in state s ∈ S is presented the set of available actions As =
{a1, ..., an}, it simply has to evaluate the probability pi that the sample (s, ai) yields a
positive value for Rρ, ∀i s.t. ai ∈ As. It then extracts from As the actions ai such that
pi ≥ c, which gives it a set of valuable actions to take (randomly, or always the one it is the
most confident in). In the case where the extracted action set is empty, the agent should
decide to do nothing, or end its turn if applicable.

Figure 3.2 is an activity diagram describing the action selection process.

Remark For some games, predicting whether an action is good or not might not be the
interesting point. Rather, it could use the classifier only to get an ordering of the available
actions, from the one that seems the best to the one that seems the worst, and play them
in this order. According to the targeted game, this approach might be more relevant. Even
though this strategy does not need to find the right confidence threshold, it is however still
prone to fail in the case where poor classifiers are used: the study of the ROC and PR curves
should thus still be conducted to avoid those cases.

1This probability is computed as the mean predicted positive class probability of the trees in the forest.
The predicted positive class probability of an input sample in a single tree is the fraction of positive learning
sample cases in the leaf the input sample falls in.
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Figure 3.2: The action selection process



Chapter 4

Application

Summary

The purpose of this chapter is to present an application of the theory developed in the previous
chapter. It first introduces the application selected, by enumerating the motivations behind
our choice. Next, it describes the game configuration, or in other words what we limited
ourselves to in this game. This chapter then goes on with the designed game representation,
such that it fitted the format introduced in the problem statement (Section 3.1). Finally, it
presents the methodologies followed for training and testing the resultant model.

4.1 Why Hearthstone: Heroes of WarCraft?

The theory developed in the previous chapter was chosen to be applied to the game Hearth-
stone: Heroes of WarCraft. The following reasons motivated this choice.

4.1.1 Hearthstone Has Interesting Characteristics for the AI Field

There is no scientific papers to date presenting nor analyzing the behavior of autonomous
agents for this game. We found it a good challenge to be pioneers in the development of
an AI for Hearthstone. Moreover, the game is extremely complex, in a different way state-
of-the-art games like Go are: its unknown action space, partial observability, randomness
and state representation are difficulties one does not face in those well-studied games. Card
games typically exhibit a large amount of hidden information, so they quickly massively
generate branching factors in their game tree which may make even that of Go look small.

We found it thus even more interesting to see if machine learning in general could help
us designing an intelligent agent for it based on some expert knowledge on the game, with
as goal to obtain the level of a beginner human player.

4.1.2 Hearthstone is a Modern, Fun Game to Study

As a lesser goal, we also wanted to introduce a new, fun benchmarking tool for the field of
games AI, more in the spirit of the times as far as video games are concerned. Plus, in order
to do so we needed to find or create an open source simulator all practitioners could use to
test their research against. Creating a simulator from scratch for this complex game was
an interesting experience to conduct as conclusion of the master in computer science and
engineering.

32
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4.2 Game Configuration

The game features were limited such that the state and action spaces remains explorable in
a relatively fast time. As these spaces dimension is mainly dictated by the available card
list, we advise you to give a look at Appendix A which presents the card list the decks used
for training and testing were based on. This list will give the reader some insight about the
type of actions that could occur in simulated games.

Players always used the Mage class for their heroes. The Mage has the Fireblast special
power, which costs 2 MP and deals 1 damage to a character (enemy or ally, hero or minion)
selected by the player.

4.3 State Vector Representation

For Hearthstone, the world vectors w ∈ W should represent all the information a player sees
on a board like the one presented back in Figure 2.1. However, this complete feature space
was reduced such that the state vector s ∈ S contained only information that Hearthstone
experts deemed relevant. These relevant features are summarized in Table 4.1.

4.3.1 About the Difficulty of Representing a State

Problems arose with the state representation: how to handle the missing values in the state?
For instance, take the features describing the minions on the board. There can be zero to
fourteen minions on the board: how to represent the empty spots? The same problem went
for the cards in the player’s hand, as one may have zero to ten cards in hand.

For the latter issue, because each card in the hand is represented by its ID only, we
were able to circumvent the problem by enumerating all possible card identifiers as features
of the state vector, whose value would be set to the number of cards having this ID. This
solution however made the state vectors length grow linearly with the number of cards in
the available card list.

Solving the other problem was not as easy because minions on the board are characterized
by more than just their ID: their remaining HP, their current ATK, etc. We chose to
represent each of the fourteen spots for minions on the board by vectors of 7 values, which
are described in Table 4.2. For empty spots, missing value marker would be put in those
vectors, while occupied spots would contain the information relative to the minion it held.

The spot used by a minion is not important, but its position amongst its neighbors is,
in the case where area-of-effect actions target a minion and its direct neighbors. The list
of occupied spots is thus always contiguous and its order is the same than the order of the
minions on the board.

Because it would not be desirable the algorithm would have learned that first spots of
each side of the board are the most important (its pretty common to have only 2-3 minions
on each side, and rarer to have more), the contiguous list of spot vectors were put at a
random position.

4.3.2 Feature Vector Design

It has to be noted that the variable importances given by extremely randomized trees were
not used to extract valuable features from the world vector, because we did not have the
time to pursue a precise analysis of these importances. Rather, we used our own knowledge
of the game and of how we defined the ρ function to select them.
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4.3.3 Incorporating Identifiers in the Features

Because features whose values would describe the text of cards could not be designed (recall
that it can be anything), we wanted to have a way to “encapsulate” its meaning in some
kind of “meta-feature” and learn it implicitly from this feature. We made the hypothesis
that unique identifiers for cards could possibly be enough for the classifiers to grasp their
influence on the game.

4.4 State Score Function

The state score function ρ we used was designed to exhibit a “board control” characteristic.
It thus does not have the ambition to lead to an absolute winning strategy by itself, but
rather to a piece of strategy that could be used along with others to ensure at the very least
that the agent can have a board control behavior. Because board control is still a pretty
good indicator of “how much a player is winning in a given state s ∈ S” (as defined in
Section 3.1.3), we chose to select this measure for the state score function.

What is interesting with this particular scoring scheme is that, in a fully observable
scenario, it is symmetric – if a player has a positive board control score, her opponent is
going to see the situation with an exactly opposite feeling, which would have the same
magnitude than the positive one of the controlling player.

In the real case where the game state is only partially observable, this symmetry is
broken. Nevertheless, it is still strongly balanced: for a clear situation of board control by
one of the players, the other will still see the situation at his disadvantage. However, the
exact symmetry is broken by the fact that nothing prevents him to have a “game changing
card”, even though seen from the other side he appears in a bad position. Thus, as a
consequence of this partial observability, we have to balance the scoring function such that
it is more cautious when estimating the level of board control. We did that by tweaking the
symmetrical computation, integrating some nuances based on visible data from which we
could infer possible hidden threats.

4.4.1 Board Control Strategy Description

Board control is the process of gaining control of the board and preventing any attempt of
the opponent to take it. Some Hearthstone experts also refer to this strategy as leading the
game tempo.

Whether a player has control over the board depends of several factors, and this score
is a weighted sum relative to their expression. Having the control of the board is a tricky
notion to describe, and we will try to state it as clearly as possible in what comes next
by enumerating the factors we deemed the most relevant when talking about board control
strategies.

Factors Influencing the Board Control Score

Minion advantage. First and simplest factor of all, the more minions a player con-
trols compared to her opponent, the more she controls the board. This factor is pretty
straightforward: with more minions than her enemy, she can more easily prevent him from
putting minions for himself. Indeed, each time he will play a minion then end his turn, she
will be able to easily kill the minion so that her opponent is incapable of attacking with it.
If killing the minion was made at the expense of loosing one or even two of hers, because
she had more minions than him, she keeps her advantage: by playing a number of minions
greater or equal to the number of minions lost in the killing, she will keep her dominant
position.
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Feature
index

Feature description Definition
domain

0 The number of minions controlled by the current player N
1 The number of minions controlled by the next player N
2 The number of minions with Taunt controlled by the

current player
N

3 The number of minions with Taunt controlled by the
next player

N

4 The number of cards in the current player’s hand N
5 The number of cards in the next player’s hand N
6 The current player’s remaining MP N
7 The current player’s maximum MP N
8 The maximum MP the next player will have on its next

turn
N

9 The current player’s remaining HP Z
10 The next player’s remaining HP Z

[11, 108] 14 vectors of length 7 representing the minions on the
board

(Table 4.2)

[109, 109 +N [ Description of the current player’s hand; feature i ∈
[109, 109+N [ is the number of cards of ID (i−109) the
current player has in her hand

NN

Table 4.1: State vector representation. N stands for the number of distinct cards in the
game, collectible as well as non-collectible. The “current player” denotes the player whose
turn it is when the state vector is requested, the “next player” her opponent.

Feature
index

Feature description Definition
domain

0 The minion unique ID N
1 Whether the minion can attack or not {0, 1}
2 The minion current HP N
3 The minion current ATK N
4 Whether the minion is enchanted or not {0, 1}
5 Whether the minion is silenced or not {0, 1}
6 Whether the minion has Taunt or not {0, 1}

Table 4.2: Minion vector representation.
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Tough minion advantage. A second factor, more difficult to apprehend but also more
determining than the previous one, is how much tough – or strong – minions (minions with
more than 4 HP) she has compared to her opponent. In the rich universe of Hearthstone,
there are many MP-costly spells that are able to clear a player’s board at once. We think
for example to the Flamestrike spell:

”Deal 4 damages to all enemy minions.”

As you see, even though a player may have her side of the board full of minions, if they
are all weak minions, this is not considered as having the control. There are way too many
chances that the adversary will cast a devastating spell that he reserved for this kind of
situation where he is overwhelmed by many but weak creatures. As Hearthstone experts,
we do not count the number of times this happened, and it made us learn that even though
having a lot of minions is good, having strong ones is much more better – it is for instance
better to play one strong minion than three weak ones...!

The next factor considered when evaluating the board control strategy is complementary
to this one.

Hand advantage. The real caveat of having many weak minions compared to have
less but stronger minions is the number of cards you lost playing for nothing. Indeed, the
more minions you have on your side of the board, the more your opponent is tempted to
kill them all in one deadly blow. You may say that the opponent can not have so much
devastating cards... Nevertheless, even if you take the extreme case where he has one of
them that he can play, while you have just played seven 1/1 minions, he lost one card while
you lost seven. This is linked to the card advantage factor which will be presented later.

Moreover, the cards a player has in her hand are very representative of her being in control
or not. However, this is a hidden information, thus all we can make here are assumptions,
but rather strong assumptions as Hearthstone is a pretty well balanced game. We thus
assume that the more cards she has in her hand, the more the chances she is able to react
to her opponent’s tentatives to take control of the board.

In the other way around, if she has very few cards in her hand, say one or two, and if
she has less minions (weak or not) than her opponent, she is in a really bad position. Unless
she is very fortunate in her next card draws, she will not be able to handle the pressure
her adversary will be pleased to exercise, knowing he his leading the tempo of the game.
She lost the tempo (or conversely, she let her opponent take it) at the moment she had not
enough cards anymore to counter his tentatives to get it.

The number of cards one has compared to her enemy is thus another factor that should be
taken into account for evaluating board control. Notice that if the game was fully observable,
this factor would be evaluated according to the very cards seen in the opponent’s hand rather
than just the number of cards. Because this information is hidden, we just assumed that
the number of cards in a player’s hand was an indicator on the quality of her hand, thus
that those variables were correlated at some level.

Trade advantage. We wanted the board control score to also reflect how much ex-
ecuting an action facilitated the possible subsequent killings of enemy minions by a given
player. This can be crystallized by what we call trade advantage.

Trade advantage is a subset of a more general factor, namely card advantage. Card
advantage is ultimately an expression of the difference between the rate at which a player
gains cards, and the rate at which they lose cards [Gamepedia, 2014a]. For killing a tough
minion on the board for example, maybe the opponent will have to use two spell cards,
leading to a generation of a “2 for 1” card advantage for its owner.

Unfavorable combat is the principal source of card advantage for the opponent. Because
of this, we chose to only evaluate this facet of the card advantage factor to simplify the
scoring function computations.
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Trading is the action of a player making one or more of his minions attack one of the
enemy’s. The trade advantage is the card advantage generated (or lost) once the trading is
done.

We chose to model the influence of trade advantage in the scoring function by the differ-
ence between the number of card points a player would be able to make the other lose and the
number of card points this player would lose himself when considering (an approximation
of) the best trades available.

After a trade, the card points it grants to its owner depend on whether (some of) the
attacker(s) and/or the target was killed in the fight. If a minion did not die in a trade, it
grants its owner the difference between the HP lost in the fight and the damage dealt to its
opponent. On the other hand, if the minion died in the trade, it makes its owner lose a total
of card points equal to the sum of its ATK and HP before the fight. In this way, we take
into account in the trade results that the dead minion will not be able to attack anymore.

The process of finding the best trade is not trivial, as an exhaustive search would result in
evaluating all possible combinations of possible attack orders – we thus designed a heuristic
able to find approached solutions. We will however not further describe its functioning nor
calculation in this thesis.

Expression of the State Score Function

The state score function is a weighted sum of the scores given above:

ρ(s) = 1.75×Minion advantage in s
+ 2.50× Tough minion advantage in s
+ 1.00×Hand advantage in s
+ 3.75× Trade advantage in s.

The weights were set based on expert knowledge.

4.5 Action Representation

In this game, the players choose to play cards (that can have any effect on the game, not
known in advance), end their turn, make their minions attack, select a character for a
targeted spell, deathrattle or battlecry,... which are all actions. The thing is, we do not
make any assumption on the cards available, nor on the variety of the battlecries, spells and
deathrattles.

Because of the diversity of these possible actions, action representation in Hearthstone is
another challenge. As stated in Section 3.1: Problem Statement, the actions available in this
game should be representable as fixed vectors of numbers for the theory to be applicable.
Nevertheless, we had here a problem: all actions do not have the same structure. Some need
features that are irrelevant for others, so unless wanting to handle missing values and things
alike, the vectors structure is not fixed for all actions.

Consequently, we could not directly apply the theory developed in the previous chapter.
So, we came up with the idea of a divide and conquer approach, breaking this problem into
subproblems for which the theory would be applicable. The division would be made on the
action space: we separate it in disjoint subspaces where each subspace contains actions of
the same type. The key is that all actions belonging to the same subspace would use the
same fixed vector representation.

Practically, we had to define as few action vector structures as possible such that these
covered the entire action space of Hearthstone. We managed to determine three main action
groups:

1. playing a card,
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Figure 4.1: The Shattered Sun Cleric minion

2. selecting a target,

3. making a minion attack.1

Now, this divide and conquer approach means that we will not have one binary classifier
for the supervised learning approach but three. We took the liberty of assuming that these
action spaces were not related, in which case the theory is still valid. However, these action
spaces are related, and taking this relation into account would greatly improve the behavior
of the resulting agent. This will be discussed more thoroughly in the conclusion of this
thesis.

In the following sections, the vector representation of actions in each group will be
described. Also, the way the action space was separated will be justified.

4.5.1 Play Cards

Play actions constitute the main type of actions a player might choose to execute. The only
problem here is how to handle the variety of cards that can appear in Hearthstone. Because
we do not make any assumption on the card list available to the game, we can not design
a representation that would describe what the card is and does. Of course, you have only
minion and spell cards; however some minions might have special abilities, trigger powers,
battlecry and deathrattle – describing those using a fixed structure is unrealistic. The same
reasoning goes for spells: these can do pretty much everything, thus it is intractable to
design a common representation for them.

Nevertheless, by encapsulating what the card is and does in what we call a meta-feature
– a single feature summarizing all the information about something – we circumvent all
the difficulties mentioned above. A card identifier, unique for each card, should be enough:
eventually, the agent will learn to understand the meaning of these identifiers and the effects
they have on the game environment.

The Shattered Sun Cleric minion (Figure 4.1) is an example that made us think to this
reasoning. For instance, we thought that the agent will eventually learn that playing the
card whose identifier refers to this minion is better when there is another friendly minion
on the board; in this way the bonus its battlecry brings is not lost. It should also eventually
learn that playing a card with this identifier has more value than one whose identifier refers
to a minion with no card text.

This is the kind of reasoning that lead us thinking that summarizing a card by a unique
identifier should be sufficient, as long as the agent training was “complete enough” to grasp
those subtleties. Hopefully, this approach seems to have payed off (see Section 5.2: Quali-
tative Experiments).

1The attentive reader will notice that the “end turn” action does not fit in any of those sets. We chose to
handle the end turn action manually, playing it only when the agent “does not want” to do anything else.
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(
played card ID

)

Table 4.3: Vector representation of play actions.

Figure 4.2: The Fireball spell

Now that we know how to represent a card, the action of playing a card can be represented
as a vector of length 1 containing the identifier of the card that is going to be played (Table
4.3).

4.5.2 Selecting Targets

Hearthstone asks the player to select a target when she takes the decision of playing a
targeted spell or power (Fireball for instance, Figure 4.2). However, it can also ask her to
do so in response to an event (for instance, in response to a minion’s battlecry). We call the
actions requiring such a target selection process, other than attacks, targeted actions.

To represent a targeted action instance, at least two pieces of information are required:
what the target is and what action will be executed on this target.

First, the target. It is always a character (minion or hero). It will be represented by
its unique identifier (the same than the one used for the play actions) and some variables
describing its current state: current HP, ATK, whether it is silenced or not, whether it has
Taunt or not,...

The identifier is required to encapsulate the target’s card text meaning. This is done
for the same reason than that of the previous section. The current state variables allow
the agent to discriminate between targets sharing the same identifier, but whose current
characteristics differ. For instance, targeting a damaged, 6 HP Ironbark Protector (Figure
4.3) with Fireball is not the same action than targeting an undamaged 8 HP one: in the
first case the spell shall kill the minion, while in the other the targeted minion shall remain
alive.

Now, the action that will be executed on the target is also important. Take the following
simple example: the process of selecting a target for the Fireball spell is quite different
than the one for the Swipe (Figure 4.4) spell. Targeted actions thus have to include some
information about the action that will be executed on the target.

We encounter here the same difficulties than in the previous section: the effects of a
spell, battlecry, deathrattle or triggered power can be pretty much anything. Similarly to
what was done for play actions, we chose to encapsulate the meaning of these effects into
action identifiers. A unique identifier is given to each and every possible targeted action
of the game, with the hope that the agent will eventually learn their meaning during the
training.
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Figure 4.3: The Ironbark Protector minion

Figure 4.4: The Swipe spell

The detailed vector representation of a targeted action is summarized in Table 4.4.

4.5.3 Make Characters Attack

Attack actions are the last kind of actions in Hearthstone. One could wonder why they were
not considered as targeted actions, which they are in principle. The answer to this question
is simple: the targeted action ID could not summarize the current state of the attacking
character. However, this is a crucial information: attacking with a damaged, 1 HP Ironbark
Protector should not be considered the same action than attacking with an undamaged one!

In fact, almost the same amount of information about the attacker than about the target
is required. This is why we chose to have this third and last action subspace. Table 4.5
shows the content of an attack action vector.



Targeted action ID
Target ID
Ally target?
Target HP
Target ATK

Target silenced?



Table 4.4: Vector representation of targeted actions. The variables featuring a question
mark are boolean values. The remaining variables are natural numbers.
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Attacker ID
Attacker HP
Attacker ATK

Attacker silenced?
Target ID
Ally target?
Target HP
Target ATK

Target silenced?



Table 4.5: Vector representation of attack actions. The variables featuring a question mark
are boolean values. The remaining variables are natural numbers.

Rρ(s, a) > 0 Rρ(s, a) < 0 Rρ(s, a) = 0
Play Actions classifier 400,000 400,000 0

Attack Actions classifier 400,000 400,000 0
Targeted Actions classifier 400,000 400,000 0

Table 4.6: Distribution of samples in the classifiers training sets

4.6 Supervised Learning Classification

All supervised learning algorithms were obtained using the Scikit-Learn library [Pedregosa
et al., 2011]. We also used this library to get the ROC and PR curves of our models. The
program linked to the Hearthstone Simulator library and responsible of testing the agent
against random, scripted and human players uses C++/Python bindings in order to interact
with the trained models.

Figure 4.5 is an activity diagram of the action selection process for play and attack
actions.

4.6.1 Dataset Generation

We wrote a multi-threaded program dynamically linked to the Hearthstone Simulator library,
able to simulate a large amount of games simultaneously and using the logging capability of
the library to generate log files.

We generated huge datasets by simulating 640,000 games with random players playing
with random (but legal) decks. The card set however was fixed and contained 56 different
cards, among which 40 minions and 16 spells (see Appendix A for the detailed card list).
Finally, there is a chance that if they would want to use their special power, this action
would not be selected and another one would be taken. This last point is enforced to ensure
they do not use it too often, as it is always available for 2 MP, what would bias the samples
distribution regarding the frequency at which a given action was taken.

The distribution of positive and negative samples in the sets used to train the classifiers
is summarized in Table 4.6. Samples for which the Rρ function would evaluate to zero were
excluded from the training sets.
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Figure 4.5: The action selection process for play and attack actions
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4.6.2 Assessing the Classifiers Performance

As underlined in Section 3.2.3: Assessing the Classifier Performance, it is important to look
at both the ROC and PR curves of the three classifiers to evaluate their performances.

Methodology

To get the ROC and PR curves of a trained classifier, one must have a representative test
set to evaluate the classifier against. The test set we used was distributed exactly as the
training set (50% positive samples, 50% negative samples – see Table 4.6), had the same
size, but of course was generated from games with a different random seed than the one
used for generating the training set.

Classification Performance

The objective is to maximize the Area Under the Curve (AUC) for both the PR and ROC
curves [Hanley and McNeil, 1982]. Equivalently, the goal is to have ROC (resp. PR) curves
the most in the top left (resp. top right) corner of their graphs.

Figures 4.6 and 4.7 show them, with the objective already well achieved. Indeed, the
AUC for both PR and ROC, and for all classifiers, is fairly good for a “first” shot.

As a side note, it should be considered that these curves were obtained with a minimal
work on the feature selection and expression and on the board control scoring function
design. The same holds for the extremely randomized trees classifiers parameters, that were
simply set to the default values recommended by Geurts et al. [2006]. Only a hundred trees
were used for each classifier.

For the example, before obtaining those curves, we made some others where the board
control scoring function (Section 4.4) did not take into account the minion advantage factor.
Moreover, the random players used to generate the training and test sets were not enforced
to play actions as long as they could, and thus had a chance to prematurely end their turn.
The curves we obtained at that time are presented on Figures 4.8 and 4.9.

As you can see, by simply taking into account the minion advantage factor and by tuning
a little bit the way the training set was generated, we already made a huge improvement
on the “Play Actions” classifier – just by looking at it qualitatively, we see its AUCs are
increased in both the ROC and PR graphs.

We had similar results with the addition of a new important feature that we did not
included at first, leading to another increase in the AUC of all curves. However, we will
not further present those early development curves in this thesis. We just wanted to show
that the quality of the classifiers could be improved rather easily by common sense and
expert knowledge about the game, without even touching to the extremely randomized
trees parameters.

No Thresholding

Recall that the classifier outputs class affiliation probabilities, or in other words the percent-
age of confidence in classifying a sample in the positive class. Thresholding can be used to
discriminate between what is considered positive and what is not.

At first, we used the ROC and PR curves to determine the best threshold of confidence
such that we avoided having too many judgment errors. However, using thresholding, we
never had significant results. We noticed however that the lower the threshold, the higher
the average win rate of our agent, the extreme case where the threshold was put to zero
being the best. This might seem strange but is in fact logical.

First, in Hearthstone, it is much worse to lose an opportunity than to mistakenly do
something. This already partially explains why the win rate grows with the reduction of
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Figure 4.6: ROC curves of the agent (TPR against FPR). Please ignore the concavity change
in the knee of the red curve; this is an artifact caused by a small bug in the Scikit-Learn
library.
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Figure 4.7: PR curves of the agent (precision against recall). Please ignore the concavity
change in the knee of the red curve; this is an artifact caused by a small bug in the Scikit-
Learn library.
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Figure 4.8: ROC curves of the agent (TPR against FPR)
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Figure 4.9: PR curves of the agent (precision against recall)
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the threshold: with a smaller threshold, the precision (fraction of true positives that we did
not miss) is bigger at the expense of a higher false positive rate. The number of missed
opportunities thus decreases.

Second, we have to keep in mind that the agent learning is based on a scoring function
which does not take into account time steps later than the next one. It would therefore be
silly to try to make it hold cards for later turns or prevent it to attack on a turn, as it is
incompatible with the scoring function it used to be trained with.

In the light of these two reasons, is is consequently obvious that our application does not
need any thresholding.

Memory Usage

Because we did not tune the extremely randomized trees classifiers parameters, those clas-
sifiers were built unnecessarily large (approximately 14 gigabytes of RAM are required to
hold the three classifiers in memory). Because of this, it is unlikely any player’s personal
computer will be able to run the agent.



Chapter 5

Results

Summary

This chapter regroups the tests carried on the supervised learning trained agent (called Nora)
and their results. It is divided into two parts: a quantitative experiment and a qualitative
one.

5.1 Quantitative Experiment

The goal of this experiment was to be able to objectively assess whether Nora had learned
something from its rough training. This can be done by confronting her to a random player.

5.1.1 Experimental Protocol

Nora was faced against

1. a random player, which plays cards and makes its minions attack as long as it can,
choosing to end its turn only when no other actions are available;

2. a scripted player, which implements the strategy of a medium-level player, already
familiar with the game mechanics and balance.

Nora and her opponents shared the same deck composition, to prevent lucky decks from
biasing the results – see Appendix A for the detailed composition of this deck. For each
opponent, 10,000 games were simulated. For the sake of comparison, a random player has
also faced the scripted player using the same protocol.

We chose to have a simulation of 10,000 games because we empirically showed that the
win rate had converged past this value to something sufficiently accurate for our discussion.
Figures 5.1 and 5.2 confirm this behavior, respectively for the random and scripted players.

Finally, to show that the average win rates do not depend on having trained a good
classifier set1 “by luck”, we trained four more classifier sets on the same database, with
distinct random seeds, all different from the one for which detailed results are given. These
four classifier sets are then confronted to the random and scripted players for 10,000 games
each (one simulation per classifier set here, as we have shown that it yields a sufficiently
accurate average).

1The extremely randomized trees classifiers depend on a random seed given at the beginning of their
training.
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Win rate Loss rate Tie rate
Simulation 1 92.90% 6.90% 0.20%
Simulation 2 92.57% 7.29% 0.14%
Simulation 3 92.92% 6.96% 0.12%
Simulation 4 92.88% 6.90% 0.22%
Simulation 5 92.72% 7.12% 0.16%

Average 92.798% 7.034% 0.168%

Table 5.1: Results of Nora against the random player. Each simulation was made on 10,000
games, with a distinct random seed from a simulation to another.

Win rate Loss rate Tie rate
Simulation 1 10.70% 89.18% 0.12%
Simulation 2 10.25% 89.55% 0.20%
Simulation 3 10.25% 89.52% 0.23%
Simulation 4 10.82% 89.10% 0.08%
Simulation 5 10.35% 89.46% 0.19%

Average 10.474% 89.362% 0.164%

Table 5.2: Results of Nora against the scripted player. Each simulation was made on 10,000
games, with a distinct random seed from a simulation to another.

5.1.2 Win Rate

Figures 5.1 and 5.2 show the results of our intelligent agent against respectively the random
and scripted players. The details of the win, loss and tie rates are presented in Tables 5.1
and 5.2.

As a comparison, Table 5.3 gives the win, loss and tie rates of a random player playing
against the scripted player. This last table definitely proves that Nora learned to do some
“reasonings” the random player does not.

Tables 5.4 and 5.5 finally compare the average win, loss and tie rates for the four ad-
ditional classifier sets trained with distinct random seeds faced against the random and
scripted players respectively. As you may notice, these results are quite similar to those of
Tables 5.1 and 5.2, and confirm that they were not dependent on the very classifier set we
used.

Win rate Loss rate Tie rate
Simulation 1 1.01% 98.96% 0.03%
Simulation 2 0.79% 99.19% 0.02%
Simulation 3 1.01% 98.95% 0.04%
Simulation 4 1.01% 98.95% 0.04%
Simulation 5 0.85% 99.10% 0.05%

Average 0.934% 99.03% 0.036%

Table 5.3: Results of the random player against the scripted player. Each simulation was
made on 10,000 games, with a distinct random seed from a simulation to another.
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Figure 5.1: Convergence of the simulation win rates of Nora against the random player.
Each curve represent the win rate at the different moments of the simulation. Sufficient
convergence is attained near 10,000 games.
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Figure 5.2: Convergence of the simulation win rates of Nora against the scripted player.
Each curve represent the win rate at the different moments of the simulation. Sufficient
convergence is attained near 10,000 games.

Win rate Loss rate Tie rate
Random seed 1 93.31% 6.50% 0.19%
Random seed 2 93.45% 6.37% 0.18%
Random seed 3 93.18% 6.68% 0.14%
Random seed 4 92.75% 7.06% 0.19%

Table 5.4: Average results of Nora – trained with different random seeds – against the
random player. Numbers obtained by simulating over 10,000 games for each classifier set.
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Win rate Loss rate Tie rate
Random seed 1 10.96% 88.87% 0.17%
Random seed 2 10.96% 88.84% 0.20%
Random seed 3 10.45% 89.33% 0.22%
Random seed 4 11.39% 88.34% 0.27%

Table 5.5: Average results of Nora – trained with different random seeds – against the
scripted player. Numbers obtained by simulating over 10,000 games for each classifier set.

Nora: My possible actions:
Make Chillwind Yeti attack Abomination (David) (Confidence: 16%)
Play Fireball (Confidence: 52%)
Play Flamestrike (Confidence: 54%)
Play Fireblast (Confidence: 70%)

Nora: I choose to Play Fireblast
Nora: I need to choose a target.
Nora: I can target:

Jaina (Nora) (Confidence: 44%)
Jaina (David) (Confidence: 49%)
Boulderfist Ogre (David) (Confidence: 72%)
Chillwind Yeti (Nora) (Confidence: 38%)
Chillwind Yeti (David) (Confidence: 48%)
Abomination (David) (Confidence: 51%)

Nora: I select Boulderfist Ogre (David) and I am 72% confident in this choice.

Figure 5.3: An example of entry that can be found in Nora’s log. “Jaina” is the name of
the hero both player use. The name between parenthesis is the owner of the target.

5.2 Qualitative Experiments

The experiments presented below were conducted by testing Nora against us, analyzing her
log to see what “crossed her mind” while playing. An entry in the log consists in the list of
actions she can take, with her level of confidence for each, followed by the action she took.
An example of such log is given in Figure 5.3.

The qualitative conclusions given in this section constitute a crystallization of our general
feeling about Nora. These are no absolute truths, rather some overall characteristics any
player could give to Nora if asked to describe her behavior after playing some games against
her.

Nora does not harm her minions intentionally. When she needs to select a target
for an offensive targeted action, she usually never targets her characters. Evenly, when
selecting a target for giving it a bonus, she chooses an ally character most of the time.

Nora is expert when it comes to playing Fireblast. This is a perfect example of
successful targeted action learning. Indeed, the target selected when Nora played Fireblast2

was usually never an ally except in rare and isolated cases, even though the game allows to
select one. Moreover, her selection was often an excellent choice, regarding the current state
of the game.

This is especially true for situations where there are minions with huge ATK but 1 HP
(for instance, a 8 ATK/1 HP minion): if the board contains such a minion, she would give
the Fireblast play action a large confidence value and therefore choose to play it. During the

2As you might recall, Fireblast is the heroes’ special power. It costs 2 MP and deals 1 damage to any
character of the player’s choice. It can be used only once per turn.
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Nora’s side 4 ATK/2 HP – 38%

Our side 4 ATK/5 HP – 48% 7 ATK/1 HP – 72% 4 ATK/4 HP – 51%

Figure 5.4: Situation of the board. The percentages represent how confident Nora is in
selecting one or the other target for its Fireblast.

target selection process, the possible targets confidence values were often low for all minions
and much higher for the enemy ones that could be killable by the special power. Figure 5.4
shows an example of such situation.

It seems Nora learned by herself, based on the identifier of the Fireblast targeted action,
that this action deals exactly 1 damage or at least, that it deals few damages. Indeed, she
almost never tries to use it on a creature with more than 1 HP, unless there is no other
choice. The more the HP, the less she seems confident in targeting the character. This gives
us the feeling that she did manage to extract some of the targeted actions meaning from
their identifiers.

It is not a surprise that she has a pretty accurate behavior with this targeted action. As
this action was always available (once per turn) for the random players that helped creating
the training dataset, it has statistically more chances to appear in the dataset tuples along
with all sorts of game environments, more than other targeted actions. Because of this,
there is more information related to this targeted action than to others in the training set,
leading to Nora having a better understanding of this action compared to others.

Nora exhibits traces of board control behaviors. As you might have noticed with
the two first observations, Nora has learned some ways of acquiring the board control. When
the Hearthstone experts who helped us design the ρ function analyzed her logs while playing
against her, they were pleased to see that she was showing board control behaviors. They
usually said that, according to the limited knowledge put into the ρ function and what she
could learn from the Rρ objective, she was doing as they expected.



Chapter 6

Conclusion & Future Work

6.1 Conclusion

In this thesis, we presented a generic approach to design intelligent agents for complex video
games. This approach has been successfully applied to Hearthstone: Heroes of WarCraft, a
popular two-player and partially observable card game. The results were encouraging, just
as much quantitatively as qualitatively. They clearly showed that Nora, the agent designed
following our theory, had learned to apply some strategies a random player did not. Indeed,
Nora wins approximately 93% of the time against a random player, and 10% of the time
against a medium-level scripted player. The latter result might seem poor, but it has to be
compared to the win rate a random player obtains against the same opponent, which is less
than 1%. This confirms that Nora succeeded in extracting valuable moves in all states, from
a data set composed of random moves. From a data mining perspective, this result is fairly
encouraging.

However, by applying the developed theory, we noticed two main weaknesses:

Memory usage. The goal to have an agent able to fit in any player’s personal computer was
not attained, because of the large amount of memory the trained models need. Memory
is not theoretically bounded by the approach, and we showed with a counterexample
– our application to Hearthstone – that it effectively is so.

Representations and state score function. For complex games, the process of defining
the representation of actions and states can be tough. Defining the state score function
(that represents the likelihood of a player to win) is even harder and requires much
expert knowledge.

In order to apply our theory to Hearthstone: Heroes of WarCraft, we implemented a
modular and extensible simulator of this game, which is able to let researchers play against
their agents, or let agents play against themselves.

JARS, a card representation language we designed, was also introduced. This language
allows the library users to define their own cards in a user-friendly way, without having to
recompile anything.

The simulator features an almost complete version of Hearthstone, where only a fraction
of the game mechanics were left aside as future development work. At the start of this work,
there were no viable alternatives so the implementation of this simulator was a requirement.
Therefore, we designed this simulator with a long-term vision, to allow further research work
based on Hearthstone. However, we advise researchers interested in designing autonomous
agents for Hearthstone to use the Fireplace open-source project [Leclanche, 2015], which is a
full-fledged Hearthstone clone coded in Python, and which recently released a stable build.
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6.2 Future Work

6.2.1 Improving the Application to Hearthstone

The way we created the dataset Nora is trained on is not perfect. The problem is linked
to the fact that Nora consists in three classifiers, one for each type of actions, especially
targeted actions and play actions. Because of this, it means that the process of playing
a targeted spell like Fireball: Deal 6 damages to a character is decoupled between the
process of playing the card and the one of selecting the spell target. Therefore, the value
of Rρ predicted by Nora is sullied by errors. Indeed, as the dataset was created by random
players, she learned to predict the value of Rρ when playing the Fireball spell card based
on random target selection! As the policy she effectively applies is the result of another
classifier and not random selection, the way she predicts the value of play actions that need
target selection is wrong: she constantly underestimate the value of playing such actions,
as on average the random player selects worse targets than her.

This behavior can easily be fixed by a two-step training. First, we would create a
dataset as before, by letting random players play. Based on this dataset, we would train
the classifier responsible of the target selection process. Then, we would create a second
dataset, by letting semi-random players play: as usual, they would select at random actions
to take, but when it comes to target selection, would use the classifier from the previous
step in place of the random selection policy. This way, the play actions classifier would be
trained on data where the target selection policy is the same than the one that will be used.

Note that the attack actions classifier is independent from the others, and thus does not
suffer from this caveat. It can therefore be trained either on the first dataset or the second,
without distinction.

Unfortunately, we did not have the time to constitute the required datasets, so this
improvement is left as future work.

6.2.2 Using Fitted Q Iteration to Integrate Long-Term Information
in Rρ Predictions

Originally, we thought of another approach than the one solely based on supervised learning
and binary classifiers, which is based on the Fitted-Q Iteration (FQI) algorithm [Ernst et al.,
2005]. Unfortunately, we had no time to implement it and get the results thus it was left as
future work. Let us however explain the idea.

Instead of only predicting whether Rρ will be positive or negative, we want to predict
something based on Rρ that integrates some long-term nuances, such that the predicted
values take into account future possible actions and their foreseen rewards. Consequently, the
predicted values based on which the agent will decide what action to take do not approximate
the Rρ function itself, but rather a discounted cumulative sum of subsequent values of Rρ
that are sensed to be granted when choosing an action.

Fitted Q Iteration

The FQI algorithm [Ernst et al., 2005] was one of the first batch mode reinforcement learning
algorithms to be published. It is a very popular algorithm mainly because of its outstanding
inference performances [Fonteneau, 2011]. As such, there are many successful applications of
FQI in various domains – robotics [Riedmiller et al., 2009; Lange and Riedmiller, 2010], power
systems [Ernst et al., 2009], image processing [Ernst et al., 2006], water reservoir optimization
[Castelletti et al., 2010] and dynamic treatment regimes [Ernst, 2005] are examples of such
domains. Last but not least, this algorithm is the basis of a recent technique [Mnih et al.,
2013] developed to learn to play Atari 2600 arcade games with only their raw pixel streams
as input.

Appendix C details the functioning of FQI.
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Regression Algorithm

We choose for the regression algorithm RA required by FQI to work again with extremely
randomized trees, because the benefits of using them as presented in Section 3.2.1 still apply.
Moreover, it was shown by Ernst [2005] that tree-based ensemble methods were particularly
suited for FQI. Indeed, if we keep the tree structures constant at each iteration of FQI, and
only the values of the trees leaves are refreshed, convergence of FQI is ensured.

Application to Hearthstone

We run into troubles when trying to apply this idea to Hearthstone. As we said, actions can
not be all represented using the same structure, what lead us to design three classifiers in
the final approach based on supervised learning. However, in its reward update process for
state st, FQI needs to use the (unique) model computed so far to predict values of actions
that can be taken in state st+1. This can not be done, as the actions that can be taken can
have up to three different representations!

Moreover, the concept of “available actions at timestep t+ 1” is fuzzy in Hearthstone. It
is straightforward for play actions, but less clear for target selection actions.

Nevertheless, we came up with the following reasoning:

1. Get a classifier as in the other approach for target selection. The classifier is trained
on a dataset created by letting random players play without constraints.

2. Train a regressor through FQI, based on a partially-random dataset: let random play-
ers play, but make them use the classifier of step 1 as target selection policy. This
regressor will be used to predict the value of playing a given card in a given state.
Train another regressor through FQI, based on the same dataset, but applied only to
attack actions.

3. Define two meta-actions:

(a) play some card,

(b) make some character attack.

Create a dataset by letting players choose at random between these three meta-actions,
but using the classifier and FQI regressors created before for selecting the precise action
to take. The representation of actions here is the same for the two meta-actions (just
their identifier for instance), as the only goal is to find a policy able to switch optimally
between these two processes. Actions available in the next state are also well-defined.

4. Train a last FQI regressor based on this dataset.

As you notice, the target selection policy is the same as in the supervised learning
approach presented in this work. This is because it performs already quite well, but mostly
because it can not be handled as it by FQI. Indeed, defining what target selection actions
are available after selecting a target has no sense.

The idea is to use a two-level FQI. By subdividing the action space, we again make the
assumption that these are independent. It means that when asked to predict the value of
playing a card, the FQI responsible of play actions will not take into account subsequent
possible attack actions. This also stands the other way around.

By embracing both regressors into a more general one only answering the question “what
to do next: play a card or make a character attack?”, we try to artificially link those action
spaces back together.

6.2.3 Simulation-Budgeted MCTS

In the introduction of this work, we argued that MCTS approaches were out of scope for
large-scale video games, as side-trajectories are difficult to simulate. Even though some
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attempts to use simulation-based techniques were presented, it was underlined that they
circumvent the difficulty by solving only a subproblem of the game they were applied to and
not the game itself.

In order to simulate a large-scale video game completely, as there are usually practically
no ways to implement some “undo” mechanic for those games, the simulation should be
done by cloning the game completely and execute the side-trajectory simulation on this
clone. Often, the cloning would be the bottleneck regarding computing performances because
much data would have to be copied each time a simulation is required. However, we thought
that future work based on an explicitly budgeted MCTS was a good track to follow. By
instantiating a “pool” of N games at the start in addition to the true game (and thus
allocating memory all at once, which is faster than piece by piece), we could update all
N games by taking the actions effectively taken in the true game. When a simulation is
required, it would be made on a game from the pool which would be destroyed after its result
was retrieved. It would be very interesting to work with a simulation-budgeted MCTS, in
order to evaluate the bond between budget and the resulting agent, to find out whether
MCTS could practically be applied to large-scale video games.



Appendix A

Card Set

This appendix contains the list of available cards in the figures A.1, A.2 and A.3. We used
this card set for generating both the test and training sets in the various steps of this thesis.
Random decks were based on it, as well as our predefined deck.

Notice that non-collectible1 cards like The Coin or Murloc Scout are not represented
here even though the game uses them.

The images from figures A.1, A.2 and A.3 are the property of Blizzard Entertainment.
They are used here for illustration purposes only.

Predefined Deck

This deck is the one we used in the simulations for evaluating the win rate of our agent
against the random player.

2x Abomination

2x Abusive Sergeant

1x Acolyte of Pain

1x Arcane Explosion

2x Arcane Intellect

1x Arcane Missiles

2x Bloodfen Raptor

1x Bluegill Warrior

2x Boulderfist Ogre

2x Chillwind Yeti

2x Fireball

2x Flamestrike

2x Frostbolt

2x Gurubashi Berserker

1x Ironfur Grizzly

2x Mana Wyrm

2x Senjin Shieldmasta

2x Shattered Sun Cleric

1Cards that can not be used when building a deck
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Figure A.1: Card Set (1/3) c© Blizzard Entertainment
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Figure A.2: Card Set (2/3) c© Blizzard Entertainment
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Figure A.3: Card Set (3/3) c© Blizzard Entertainment



Appendix B

Extremely Randomized Trees

This appendix summarizes briefly the extremely randomized trees algorithm. For details
about its implementation (impurity reduction measures, default parameters,...), we redirect
the reader to the original paper on extremely randomized trees published by Geurts et al.
[2006].

The training of this algorithm is done by building M ∈ N0 regression (resp. decision)
trees and by averaging (resp. outputting the majority class of) their predictions. All trees
are individually built based on the complete original training set. To create a test at a
node, this algorithm picks K ∈ N0 features at random from the feature space and for each
of these features selects a cut-point at random. It then computes the “impurity reduction”
each of the K tests brings and chooses the test that maximize this reduction. The algorithm
stops splitting a node when the number of elements in this node is less than some parameter
nmin ∈ N0.

The algorithm therefore has three parameters: the number M of trees in the forest, the
number K of random tests to evaluate at each node during tree building and the minimal
number nmin of elements in a leaf node.
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Appendix C

Fitted Q Iteration

This appendix reviews the basis of the Fitted Q Iteration (FQI) algorithm as published by
Ernst et al. [2005].

We can see games as systems having discrete-time dynamics described by

τ : S ×A → S | (st, a) 7→ st+1 with a ∈ Ast
, t = 0, 1, ...

We also associate to the transition from t to t+ 1 the instantaneous reward

rt = r(st, at).

Let now

h : S → A | s 7→ a ∈ As

be a stationary control policy and Jh∞(s0) denote the expected return obtained over an
infinite time horizon when starting from the initial state s0 ∈ S and when using the policy
h, or in other words when ∀t, at = h(st).

Finally, for a given initial condition s0 ∈ S, Jh∞(s0) is defined as

∀s0 ∈ S, Jh∞(s0) = lim
N→∞

(
E

0≤t<N

[
N−1∑
t=0

γtr(st, h(st))
])

where γ ∈ [0, 1[ is a discount factor that weights short-term rewards more than long-term
ones, and where the conditional expectation is taken over all trajectories starting with the
initial state s0.

The goal is to find an optimal stationary policy h∗, i.e. a stationary policy that maximizes
Jh∞(s0):

h∗ ∈ argmax
h

Jh∞(s0).

Algorithm 1 details the functioning of FQI. It computes an approximation Q̃∗ of the
optimal state-action value function Q∗ : S ×A → R from a sample of system transitions

Fn =
{(
slt, a

l, rl, slt+1
)n
l=1

}
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where ∀l ∈ {1, ..., n},
rl = r(slt, al)

and
slt+1 = τ(slt, al).

A near-optimal stationary policy h̃∗ can then be derived as follows:

∀s ∈ S, h̃∗ = argmax
a∈As

Q̃∗(s, a).

Algorithm 1: The Fitted Q Iteration algorithm
Input:
a set of one-step system transitions Fn =

{(
slt, a

l, rl, slt+1
)n
l=1

}
a regression algorithm RA
a discount factor γ ∈ [0, 1[

Output: a near-optimal state-action value function from which a near-optimal
control policy can be derived

/* Initialization */
1 N ← 0;
2 Let Q̃0 be equal to 0 all over the state-action space S ×A;

/* Procedure */
3 while Stopping conditions are not reached do
4 N ← N + 1;
5 Build the dataset D =

{(
il, ol

)n
l=1

}
based on the function Q̃N−1 and on the full

set of one step system transitions Fn:

il = (slt, al)
ol = rl + γmaxa∈A

sl
Q̃N−1(slt+1, a)

;
6 Use the regression algorithm RA to infer from D the function Q̃N :

Q̃N = RA(D)

;
7 end
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Learning Artificial Intelligence
in Large-Scale Video Games

— A First Case Study with Hearthstone: Heroes of Warcraft —

Over the past twenty years, video games have become more and more complex thanks to
the emergence of new computing technologies. The challenges players face now involve the
simultaneous consideration of many game environment variables – they usually wander in
rich 3D environments and have the choice to take numerous actions at any time, and taking
an action has combinatorial consequences. However, the artificial intelligence (AI) featured
in those games is often not complex enough to feel natural (human). Today’s AI is still
most of the time hard-coded, but as the game environments become increasingly complex,
this task becomes exponentially difficult.

To circumvent this issue and come with rich autonomous agents in large-scale video
games, many research works already tried and succeeded in making video game AI learn
instead of being taught. This thesis does its bit towards this goal.

In this work, supervised learning classification based on extremely randomized trees is
attempted as a solution to the problem of selecting an action amongst the set of available
ones in a given state. In particular, we place ourselves in the context where no assumptions
are made on the kind of actions available and where action simulations are not possible to
find out what consequences these have on the game. This approach is tested on the col-
lectible card game Hearthstone: Heroes of WarCraft, for which an easily-extensible simulator
was built. Encouraging results were obtained when facing Nora, the resulting Mage agent,
against random and scripted (medium-level) Mage players. Furthermore, besides quantita-
tive results, a qualitative experiment showed that the agent successfully learned to exhibit
a board control behavior without having been explicitly taught to do so.
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