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Article

Introduction

The first observations of the effects of anesthetic agents on the 
EEG occurred soon after the development of clinical EEG, at 
the beginning of the 20th century.1 Interest in this noninvasive 
tool for exploring brain activity, and measuring the effects of 
anesthesia, became rapidly evident. However, the complexity 
of the EEG signal and its interpretation, as well as its high sen-
sitivity to various types of perturbations, prevented rapid devel-
opment of routine clinical applicability within the anesthesia 
field. Its intraoperative use remained limited to a small number 
of specialized research teams. A resurgence of interest took 
place at the end of the 20th century, with the development of 
EEG-derived indices that were aimed at simplifying EEG inter-
pretation during anesthesia. The advent of digitization and 
computerization of the signal permitted the definition of spe-
cific EEG parameters, whose evolution through the course of 
anesthesia was correlated to the intensity of the desired effects 
of anesthetic agents, such as the alteration of consciousness.2 
Using mathematical algorithms, the combination of those 
parameters gave birth to dimensionless indices of the depth of 
specific components of general anesthesia. Simultaneously, 

and particularly during the past 10 years, technological 
advances progressively, and more thoroughly, dissected the 
EEG signal. High-density EEG and channel multiplication 
improved space resolution, allowed identifying sources of 
activity, and provided a better topographical definition 
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Abstract
Major clinical endpoints of general anesthesia, such as the alteration of consciousness, are achieved through effects of anesthetic 
agents on the central nervous system, and, more precisely, on the brain. Historically, clinicians and researchers have always 
been interested in quantifying and characterizing those effects through recordings of surface brain electrical activity, namely 
electroencephalography (EEG). Over decades of research, the complex signal has been dissected to extract its core substance, with 
significant advances in the interpretation of the information it may contain. Methodological, engineering, statistical, mathematical, 
and computer progress now furnishes advanced tools that not only allow quantification of the effects of anesthesia, but also shed 
light on some aspects of anesthetic mechanisms. In this article, we will review how advanced EEG serves the anesthesiologist 
in that respect, but will not review other intraoperative utilities that have no direct relationship with consciousness, such as 
monitoring of brain and spinal cord integrity. We will start with a reminder of anesthestic effects on raw EEG and its time and 
frequency domain components, as well as a summary of the EEG analysis techniques of use for the anesthesiologist. This will 
introduce the description of the use of EEG to assess the depth of the hypnotic and anti-nociceptive components of anesthesia, 
and its clinical utility. The last part will describe the use of EEG for the understanding of mechanisms of anesthesia-induced 
alteration of consciousness. We will see how, eventually in association with transcranial magnetic stimulation, it allows exploring 
functional cerebral networks during anesthesia. We will also see how EEG recordings during anesthesia, and their sophisticated 
analysis, may help corroborate current theories of mental content generation.
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of anesthesia-induced changes. In addition, the detection of 
functional and effective interactions between brain regions 
defined the so-called functional and effective connectivity,3 
which is thought to play an important role in supporting higher 
order brain functions.4

Hence, besides increasing clinical interest with regard to 
monitoring of anesthetic drug effects, advanced EEG, alone or 
in combination with other techniques such as transcranial mag-
netic stimulation, has gained major importance in exploring the 
mechanisms of general anesthesia, with, consequently, impli-
cations for the understanding of the mechanisms of mental con-
tent generation. In this article, we will focus on those 2 specific 
aspects of advanced anesthesia-applied EEG.

Approaches to EEG Analysis of Current 
Use in the Anesthesia Field

The analysis of the EEG applied to anesthesia can be decom-
posed into different categories, according to the considered 
approach (Figure 1). The first descriptions of the anesthetic 
effects on the EEG were syntactic, or semantic, dealing with 
wave shape, amplitude, and global frequency. The progressive 
definition of time and frequency domain parameters led to a 
more detailed analysis of anesthesia-induced changes. As dose 

increases, anesthetic agents with hypnotic properties gradually 
modify the EEG, both in the time and frequency domain, and 
produce specific wave shapes. The description of EEG com-
plexity through a time domain approach with parameters such 
as total power or zero crossing frequency is limited.5 Hence, a 
more precise description has been sought for using a frequency 
domain approach. Induced changes in the frequency domain 
are classically considered to be biphasic,1 at least for hypnotic 
agents that are presumed to act through the promotion of 
GABAergic inhibitory neurotransmission.6 At low doses, EEG 
desynchronizes and accelerates to frequencies between 13 and 
30 Hz. This is known as β activation. The EEG then slows 
down toward δ activity (0.5-4 Hz) and its amplitude decreases.7 
With propofol, a frequently used hypnotic agent, the observed 
slow waves resemble the slow waves of physiological sleep, 
but are spatially limited. At deeper stages, bursts followed by 
periods of flat signal occur, an EEG pattern known as burst 
suppression that can be quantified using the burst suppression 
ratio (proportion of the length of a signal epoch where the 
amplitude is below a specified voltage). Higher dosages of 
hypnotic agents are associated with isoelectricity.5 Waxing and 
waning 12- to 15-Hz oscillations lasting for at least half a sec-
ond, known as sleep-like spindles, can also be observed,8 but 
their presence is not systematic.7 Power in the γ range (>25 
Hz)9 displays variable modifications during anesthesia, depend-
ing on the hypnotic agent, the brain region, and the exact limits 
of the studied frequency band. With propofol, at intermediate 
doses, an increase in γ power has been described.7 The altera-
tions of first-order (time domain) and second-order (frequency 
domain) EEG parameters are not homogenously distributed 
over the scalp. Quantitative EEG (QEEG) studies have 
described the topographical distribution of frequency domain 
alterations during anesthesia,9 showing a frontal predominance 
for most studied parameters.10 For example, during propofol 
sedation, activity in the α range progressively disappears in the 
occipital part of the brain while progressively increasing in the 
frontal region. In addition, phase-amplitude relationships in the 
α and β range display reproducible modifications during con-
sciousness-unconsciousness transitions.11

Several other parameters can be extracted from the dissec-
tion of the EEG signal into its frequency components, and from 
the estimation of the relative contribution of each component to 
the global signal, namely the power spectrum of the EEG.5 
Examples of such parameters are the peak frequency (the one 
with the highest power), the median frequency (50% of power 
is achieved by lower frequencies, and 50 % by higher ones), 
and the spectral edge frequency (a specified percentage of the 
power is achieved by lower frequencies, generally 90% or 95 
%). Time and frequency domain description of the EEG can 
also be obtained through the use of discrete wavelet transform 
and eigenvector analysis.12,13 It consists in deriving a number 
of coefficients that best correspond to time and frequency 
domain information contained in a signal epoch.

Higher orders of time and frequency domain analysis have 
also been studied during anesthesia, such as coherence,9 a mea-
sure of synchronization between brain regions at a given 

Figure 1. Summary of the approaches to EEG analysis as applied 
to anesthesia, and examples of derived parameters, as well as type 
of information provided by each kind of analysis. Derived from the 
classification by Rampil.111 Besides syntactic analysis, which describes 
frequency, amplitude, and shape of the global signal, digitization of 
the EEG allows mathematical and statistical analysis. Nonparametric 
analysis extracts signal descriptors from time domain and frequency 
domain information, or from the estimated disorder into the signal. 
The parametric approach constructs statistical models that look at 
the ability of a given signal to predict another one.111

Abbreviations: Symbolic, symbolic entropy; Spectral, spectral entropy; AA, 
average amplitude; ZCF, zero crossing frequency; BSR, burst suppression 
ratio; PS, power spectrum; RP, relative power; PF, peak frequency; MF, 
median frequency; SEF, spectral edge frequency; QEEG, quantitative EEG; 
SC, spatial coherence; PhS, phase synchrony; DWT, discrete wavelet 
transform; ApEn, approximate entropy; PeEn, permutation entropy; SampEn, 
sample entropy; STE, symbolic transfer entropy; DCM, dynamic causal 
modeling; MM, meanfield modeling.
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frequency range, bispectrum,1 a measure of phase correlation 
between different frequency components, or phase synchrony.14 
The physiological significance of those parameters is still not 
known with certainty, but their changes over sequential transi-
tions between different anesthestic stages are consistent and 
reproducible. The inter-region coherence in the gamma band 
may be modified during anesthesia,15 while phase synchrony 
has been shown to increase in the θ, α, and γ frequency band 
during propofol-induced loss of consciousness.7,16

When administered to patients, some hypnotic anesthetic 
agents may produce different EEG patterns than those described 
above. For example, ketamine, although reducing α activity 
(8-13 Hz), induces high-amplitude rhythmic θ activity (4-10 
Hz), polymorphic δ activity, and scattered β activity.17 The α

2
-

adrenergic agonists such as clonidine or dexmedetomidine 
increase δ and θ power, as well as the activity in the spindle 
frequency range (12-15 Hz).18 The observed differences 
between agents are certainly related to differences regarding 
their mechanism of action.

Another approach to EEG analysis during anesthesia con-
sists in estimating the underlying disorder into the signal, a 
physical concept named entropy. Intuitively, one may easily 
understand that EEG disorder will be higher in an awake indi-
vidual as compared with an anesthetized unconscious one. 
EEG entropy can be calculated by EEG amplitude (Shannon or 
symbolic entropy), or by power spectrum (spectral entropy).2 
The third type of entropy estimation is based on the prediction 
of future amplitudes according to previous ones, and hence 
estimates the stability of the system. During anesthesia, the 
EEG tracing is more predictable than during the awake state. 
This principle has been applied to calculate the approximate 
entropy,19 the sample entropy,20 and the permutation entropy.21 
All these 3 types of entropy are based on single channel 
recordings.

Besides parameters that describe the EEG in the time and 
frequency domain, or describe the complexity of a single elec-
trode EEG signal, other types of analyses may extract supple-
mentary information and add the dimension of interactions 
between brain regions. Contrary to the other types of entropy, 
symbolic transfer entropy looks at causality between signals 
recorded at different sites, and hence allows exploitation of 
directed functional connectivity between brain regions.22 
However, symbolic transfer entropy is an oversimplification of 
Granger causality analysis.23 Granger causality establishes a 
statistical link between the activity observed in a specific 
region and the activity recorded previously in another region.23 
It has allowed evidencing directed functional connectivity 
alterations during propofol anesthesia.14 Other methods such as 
dynamic causal modeling3,23 and meanfield modeling,24 add a 
mechanistic dimension to the exploration of connectivity. They 
necessitate the a priori construction of mechanistic models that 
describe the coupling among brain regions. The task then con-
sists in identifying the model that best fit the recorded data.

As illustrated above, an in depth dissection of the EEG sig-
nal is able to provide a huge amount of information. This infor-
mation may be of variable nature, ranging from numerical 

signal descriptors whose combination reflects a specific state 
of brain activity, to statistical maps describing spatial coher-
ence or phase synchrony between or within brain regions, sta-
tistical maps describing functional connectivity, or mechanistic 
models. Evidently, the information driven from the EEG may 
serve either to measure anesthetic drug effects, or explore the 
mechanisms of anesthetic action on the brain.

Assessing Depth of Anesthesia  
Using EEG

The administration of anesthetic agents to patients aims at 
allowing them to tolerate unpleasant and painful interventions, 
while facilitating the surgical procedure and avoiding compli-
cations. This is achieved through several pharmacodynamic 
effects of anesthetic agents including, among others, an altera-
tion of consciousness (the hypnotic effect of anesthesia), 
immobility (essentially achieved through muscle relaxation), 
and limitation of reactions to noxious surgical stimulation (or 
anti-nociception). Depending on anesthetic agent combina-
tions, doses, and inherent properties, each pharmacodynamic 
component of anesthesia may be more or less pronounced. 
Changing the combination allows adapting anesthesia to cir-
cumstances. Hence, when referring to depth of anesthesia, one 
must be precise over the concerned pharmacodynamic ele-
ment.25,26 In that respect, being able to separately and specifi-
cally monitor each pharmacodynamic component of anesthesia, 
and modify anesthetic agent administration accordingly, would 
be ideal. Muscle relaxation can easily and reliably be assessed 
by peripheral neurostimulation and recording of muscle 
response, and is beyond the scope of this review. The other 2 
main components of anesthesia, namely hypnosis and anti-
nociception, may be approached through EEG recording and 
analysis.

The Hypnotic Component: Prevention of 
Intraoperative Awareness

The fear of unexpected intraoperative awareness, and the wish 
to prevent patients from experiencing such a traumatic event, 
has long prompted anesthesiologists to search for efficient pre-
vention means. During anesthesia, the observation of common 
clinical alerts such as increased blood pressure, heart rate, 
tears, or movements is not sensitive and specific enough to 
achieve a reasonable degree of security. The reasons for this are 
myriad: pharmacodynamic effects of anesthesia interact with 
each other (eg, the level of hypnosis is influenced by the 
amount of noxious stimulation), the pharmacodynamic proper-
ties of anesthetic agents are variable, there exists interindivid-
ual variability in sensitivity to the effects of anesthetic agents, 
and patients often receive nonanesthetic medications with 
effects on clinical signs that are not related to the depth of one 
component of anesthesia or the other.25 Furthermore, con-
sciousness is likely influenced by, but not directly related to, 
autonomic system activity, dissociating these signs from con-
sciousness mechanistically.
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Considering its sensitivity to the effects of anesthetic agents, 
EEG was the first noninvasive recording to catch anesthesiolo-
gists’ attention in that domain. Interpreting single or multiple 
channels raw EEG is not within easy reach of untrained clini-
cians, though with training this can be overcome. In addition, 
single time and frequency domain parameters often have poor 
prediction ability regarding depth of hypnosis,27 prompting the 
idea of developing dimensionless indices whose value would 
correlate with depth of the hypnotic component of anesthesia.

Commercially Available Dimensionless Indices. The general prin-
ciple governing construction of EEG-derived dimensionless 
indices is based on the extraction of parameters from the EEG 
whose value is known to be statistically correlated with anes-
thetic agent concentration and/or clinically assessed depth of 
hypnosis. These parameters then enter a mathematical algo-
rithm whose output is a normalized index. The index is gener-
ally a number varying between 0 and 100, or a letter indicating 
anesthetic stage. Currently, at least 7 different indices of that 
type are available on the market, namely the Bispectral Index 
(BIS, Covidien plc, Dublin, Ireland), the M-Entropy (RE and 
SE, Datex Ohmeda Inc, GE Healthcare, Madison, WI), the 
Patient State Index (PSI, SEDline, Masimo Corp, Irvine, CA), 
the Cerebral State Index (CSI, Danmeter-Goalwick, Odense, 
Denmark), the Narcotrend (Arbeitsgruppe Informatik/Biomet-
rie der Anästhesieim Klinikum Region Hannover Oststadt-
Heidehaus, Hannover, Germany), the WAV

CNS
 (NeuroSense, 

NeuroWave Systems Inc, Cleveland, OH), and the aepEX 
(Medical Device Management Ltd, Essex, UK; Table 1). Sev-
eral of these are generated through a patent-protected algo-
rithm, whose details are not entirely divulged.

Historically, BIS was the first, and has been studied the most. 
Its calculation algorithm has evolved over time to ameliorate 
artifact rejection and reliability. It involves power spectrum, 
relative activity in the β frequency range, burst suppression 
activity, synchronized fast slow activity, and bispectrum.28

The spectral entropy of the EEG is calculated on the power 
spectrum, using the Shannon function. The calculation is per-
formed over two different frequency bands to generate 2 differ-
ent normalized numbers: the Response Entropy (RE; 0.8- to 
47-Hz band), and the State Entropy (SE; 0.8- to 32-Hz band).29 
RE and SE are independent of the frequency and amplitude 
scales of the EEG signal. SE ranges between 0 and 91, is mainly 
based on cortical EEG activity, and is supposed to reflect the 
depth of the hypnotic component of anesthesia. In addition to 
EEG activity, RE takes account of facial EMG activity, which 
increases in case of non-counterbalanced noxious stimulation. 
RE ranges between 0 and 100, and is always higher or equal to 
SE. Its gradient with SE has been proposed to reflect the balance 
between nociception and anti-nociception during anesthesia.30

The PSI is derived from 4 EEG channels, and has been 
designed to be less dependent on anesthetic drug combina-
tion.31 The PSI algorithm incorporates relative activity in spe-
cific frequency bands, interhemispheric coherence information, 
as well as anteroposterior frequency and phase relationships. It 
takes account of the frontal localization of power spectrum 

changes during anesthesia. The output of the algorithm is, 
again, a dimensionless number between 0 and 100.32

Cerebral State Index calculation involves relative α and β 
powers, the difference between them, and the importance of 
burst suppression.33,34 The system automatically selects the 
best parameter to be used. Correspondence between CSI values 
and depth of the hypnotic component of anesthesia are well 
defined. The delay between EEG acquisition and index output 
is approximately 15 seconds.

The concepts governing the development of the Narcotrend 
were slightly different from the above-described indices. Six 
different visually recognizable EEG patterns were initially 
identified as corresponding to different sleep stages. They were 
further divided into a total of 15 different patterns evidenced 
during anesthesia. Each of these stages was then characterized 
by a set of EEG parameters, including spectrum, entropy, and 
autoregression. The output is a number between 0 and 100, as 
well as a letter corresponding to the anesthetic stage. This index 
seems to be more appropriate for propofol-based anesthesia 
than for anesthesia induced by volatile agents.

A wavelet analysis, which captures both time and frequency 
domain information on the EEG signal in the form of wavelet 
coefficients, is used to calculate the WAV

CNS
 (Wavelet-based 

Anesthetic Value for Central Nervous System monitoring).12,13 
The result is a 0 to 100 index with high stability in time during 
steady-state anesthesia and linear evolution during the transi-
tion from the awake state to isoelectricity. The reaction time of 
that index is shorter than the reaction time of BIS.

The aepEX uses a different approach. It necessitates the 
administration of 7-Hz auditory clicks to the patient through 
earphones. Middle latency auditory evoked potentials are 
extracted from the raw EEG using a moving averaging win-
dow. The index is then calculated based on the amplitude and 
latency of those evoked potentials,35,36 knowing that amplitude 
decreases and latency increases with hypnotic depth.

Clinical Utility of EEG Indices During Anesthesia. The debate on 
the prevention of intraoperative awareness.

The use of EEG indices correlating with hypnotic anesthetic 
agent pharmacodynamic effects or anesthetic stages is appeal-
ing. From the beginning of their availability, a potential utility 
of those indices to prevent unexpected intraoperative aware-
ness with explicit recall has been foreseen. Demonstrating such 
utility was not straightforward, and this was because of 3 main 
reasons (Table 2).

First, unexpected intraoperative awareness is a relatively 
rare event, with an overall estimated incidence of approxi-
mately 0.2%. Hence, large studies, preferably randomized con-
trol trials, were needed to demonstrate any potential benefit of 
using those monitors for prevention. Those studies are now 
available, and show conflicting results.37-42 According to 
Avidan and Mashour,43 an in-depth analysis of those studies 
leads to the conclusion that an EEG-driven administration of 
intravenous hypnotic anesthetic agents helps prevent unex-
pected intraoperative awareness with explicit recall, at least in 
patients at higher risk of experiencing such an event. However, 
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Table 1. Principal Commercially Available Monitors of the Depth of the Hypnotic Component of Anesthesia, With Parameters Entering 
Their Calculation Algorithm, and Reference Values.

Name Involved Parameters Range of Values Classically Defined Thresholds ADD (Seconds)

BIS •  Relative β activity
•  SFS activity
•  Quasi-flat activity
•  BS activity
•  Bispectrum

0-100 Wake state: >93
LOR: 80
RIV: 40-60

30-60

RE-SE •  Power spectrum
•  Shannon equation
•  RE: 0.8-47 Hz
•  SE: 0.8-32 Hz

RE: 0-100
SE: 0-91

RIV: <60 2-60a

PSI •  Power spectrum
•  IHC
•  APFPR

0-100 Wake state: > 90
Surgery: 40-50
Eyes opening: 80

50

CSI •  α and β ratio
•  α − β difference
•  Burst suppression

0-100 Wake state: 90-100
Drowsy: 80-90
Light sedation: 60-80
RIV: 40-60
Deep: 10-40
Very deep: 0-10

15

Narcotrend •  Spectral
•  Entropy
•  Autoregressive

0-100
Letter

Wake state: A, B0
Sedation: B1, B2
Light anesthesia: C0 to C2
General anesthesia: D0 to D2
Deep hypnosis: E0 to E2
Burst suppression: F0, F1

20

WAV
CNS

•  Wavelet coefficients 0-100 Linear relationship between wake state 
and EEG iso-electricity

15-30

aepEX •  MLAEP latency and amplitude 0-99 Full wake state: 99
No brain activity: 0

0.144

Abbreviations: ADD, average delay between signal recording and index display on the screen; SFS, synchronized fast slow; BS, burst suppression; LOR, loss of 
responsiveness; RIV, recommended intraoperative value; RE, response entropy; SE, state entropy; IHC, interhemispheric coherence; APFPR, anteroposterior 
frequency and phase relationships; MLAEP, middle latency auditory evoked potentials.
aIncreases for lower frequencies.

Table 2. Factors Limiting the Ability to Demonstrate Usefulness of EEG-Derived Indices for the Prevention of Unexpected Intraoperative 
Awareness With Explicit Recall.

Factor Detail Solution Current Implication

Low incidence of UAER 0.2% overall Large randomized control trials More efficient for IV anesthesia
No superiority over ETACM for 
inhaled anesthesia

Factors confounding 
interpretation of displayed 
value

•  Electrical artifacts
•  Interindividual variability
•  Site of recording
•  Delay for value display
•  Hypothermia
•  Hypoglycemia
•  Cortical atrophy
•  Age
•  Seizures
•  Carotid clamping
•  Cerebral ischemia
•  Interactions
•  . . .

Artifact rejection
Detailed definition of situations where 
interpretation is difficult
Better models of interactions

Good knowledge of limitations for 
optimal use

Definition of loss of 
consciousness during 
anesthesia

•  Consciousness
•  Connectedness
•  Responsiveness

Search for witnesses of the integrity of 
physiological substrates sustaining consciousness, 
connectedness, and responsiveness

Ongoing active research

Abbreviations: UAER, unexpected intraoperative awareness with explicit recall; IV, intravenous; ETACM, end-tidal anesthetic agent concentration monitoring.
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when volatile anesthetic agents are used, monitoring their end-
tidal concentration, which reflects concentrations attained in 
the brain, and setting low concentration alarms is at least as 
efficient at achieving the same goal. The difference between 
intravenous and volatile agents may be explained by a larger 
interindividual variability of the minimal effective concentra-
tion for intravenous agents compared with volatile agents.

Second, several confounding factors may impede the inter-
pretation of EEG-derived indices, and may lead to erroneous 
conclusions regarding real depth of the hypnotic component of 
anesthesia. They include artifacts from surrounding electrical 
devices, interindividual variability in terms of baseline EEG 
characteristics, erroneous site of EEG recording, delay between 
EEG acquisition and value display,44-46 and specific clinical 
conditions such as hypothermia, hypoglycemia, dementia, corti-
cal atrophy, advanced age,47 seizures, carotid clamping, and 
cerebral ischemia.25 In addition, the effect of the interactions 
between anesthetic medications on the index value is often not 
much considered but is important. For example, an observed 
BIS value of 40 does not mean the same in the presence of high 
anti-nociceptive agent concentration and relatively low hyp-
notic agent concentration, or in the presence of the inverse.48 In 
the latter, the patient may be at higher risk of reacting to noxious 
stimulation, and perhaps waking up, than in the first case. Other 
medications, such as ketamine,49,50 nitrous oxide,17 and muscle 
relaxants, may also paradoxically modify the index value.51,52

Third, there has long been confusion regarding the definition 
of consciousness or loss of consciousness during anesthesia. 
From an operational point of view, it seems reasonable to distin-
guish between different concepts that are relevant to anesthe-
sia,53 namely consciousness, connectedness, and responsiveness, 
which are often mixed up, even in the anesthetic literature.54 
Consciousness corresponds to subjective experience, connect-
edness to the awareness of the environment and of external 
stimuli (as opposed to experience triggered by internal thoughts, 
dreams, and imaginings), and responsiveness movement by the 
patient be it spontaneous or goal-directed behavior. During anes-
thesia, consciousness is not necessarily associated with connect-
edness, responsiveness, or even recall. Connected consciousness 
describes experience of surgery or external stimuli during anes-
thesia. Different physiological substrates and mechanisms sus-
tain the presence or the absence of such abilities. As we will 
describe below, consciousness likely depends on the integrity of 
corticothalamic networks, while spontaneous responsiveness 
may depend on subcortical and spinal cord networks. The mech-
anisms underlying connectedness remain more obscure, but may 
depend on specific neuromodulators and corticothalamic cir-
cuits. Searching for specific signs of the integrity of each of them 
could help better detect the presence or absence of connected 
consciousness during anesthesia, and hence prevent patients 
from being conscious of their surgical procedure.

It appears that EEG-derived indices of the depth of the hyp-
notic component of anesthesia are far from being a panacea, 
and that improvements are needed to optimize their clinical use 
with regard to detection of unexpected intraoperative 

connectedness. At the present time, other clinical utilities may 
further justify their regular usage.

Other clinical utilities. No superiority of one type of monitor 
over the other has been evidenced. Insofar as they measure an 
effect of medications, they should allow individual titration, 
avoid episodes of overdosage,55 and hasten recovery when the 
procedure has come to its end,56 with less side effects. Although 
large randomized control studies have failed to corroborate 
such beneficial effects,43 they were not controlling for interac-
tions between anesthetic medications. If anesthesia is achieved 
using high doses of hypnotic agents and low doses of anti-noci-
ceptive agents, one may expect that EEG-guided titration will 
be less efficient at limiting hypnotic agent consumption than in 
situations with tightly controlled anti-nociception.57 Control-
ling for overdosage may prove important, since an association 
has been found between prolonged time with low EEG indi-
ces during anesthesia, and long-term outcome,58-61 but not with 
absolute amount of anesthetic agent received. However, this 
may reflect an intrinsic sensitivity of the brain to the effect of 
anesthetic agents in vulnerable patients. Hence, cause and effect 
remain far from established. Nonetheless, the ease of titration 
may even be further improved in the future, when closed-loop 
administration systems will be available for routine use .62-68

The Future. As stated above, there is a need for a refinement in 
the detection of the presence or absence of connected con-
sciousness during anesthesia. A necessary step for achieving 
this goal is a detailed understanding of anesthesia-induced 
alteration of consciousness, connectedness, and responsive-
ness,53 and a better definition of endpoints when designing 
studies in that domain. Recent advances in EEG analysis may 
provide the means to develop specific monitors of cortical con-
nectivity, and particularly of fronto-parietal feedback connec-
tivity, which is thought to be a sign of consciousness, but not 
necessarily of connectedness.69,70 High-density EEG, transcra-
nial magnetic stimulation,4 Granger causality,23,71 symbolic 
transfer entropy,22 permutation entropy,21 and others might be 
the route to follow, but these techniques must be refined and/or 
simplified before used in daily practice. Monitoring connected-
ness is not accessible the same way, and evoked potentials 
could be an alternative in that case.53 Finally, Purdon et al11 
have recently proposed a refined analysis of phase-amplitude 
relationships, and topographical distribution of power spec-
trum that identifies signatures of the presence or the absence of 
responsiveness during anesthesia.11

The Balance Between Noxious Stimulation and 
Anti-Nociception

In an attempt to better titrate anti-nociception individually, there 
is currently intense effort to develop specific monitors of this 
pharmacodynamic component of anesthesia.72 Based on known 
repercussions of noxious stimulation (Figure 2), 4 types of 
parameters are investigated, namely signs of autonomic response 
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to noxious stimulation, signs of withdrawal motor response, 
evoked potentials, and EEG variability. The first 2 types include 
parameters such as pupil diameter,73 heart rate variability,74,75 
skin vasomotor reflex,76 skin conductance,77 spinal reflexes,78,79 
and indices combining heart rate and pulse amplitude.80-84 These 
parameters have proven ability to appreciate the balance between 
noxious stimulation and anti-nociception to a certain degree, or 
being able to predict patient motor response to noxious stimula-
tion, but their interpretation may sometimes be affected by con-
founding factors.85-87 Other concepts use pharmacodynamic 
interaction modeling to derive theoretical indices of nociception, 
but do not involve physiological measurements (Noxious 
Stimulation Response Index, NSRI).88,89

Describing all these new indices in detail is beyond the scope 
of this review, because they are not related to the EEG. However, 
the latter may also provide information on nociception, either 
through the recording of evoked potentials, or through the study 
of EEG variability. Nociception-related somatosensory evoked 
potentials are sensitive to the noxious stimulation–anti-nocicep-
tion balance,90 but their recording is not easy in the electrically 
hostile environment of an operating theater. Middle latency 

auditory evoked potentials, and derived indices, may also pro-
vide information on the level of anti-nociception.91 Their early 
variation in response to noxious stimulation, as compared to 
BIS, may simply be due to the arousal effect of noxious stimula-
tion and shorter delay for index calculation. Recent interest has 
emerged regarding BIS and electromyographic (EMG) variabil-
ity, or an index combining both parameters (the Composite 
Variability Index, CVI), at assessing the adequacy of anti-noci-
ception during anesthesia.92 Again, the idea behind it is the 
arousal effect of noxious stimulation, and hence its effect on 
BIS value, and the evocation of a motor reflex that would trans-
late into an increase in EMG activity. BIS variability can be 
estimated using the standard deviation of BIS values recorded 
during the previous 3 minutes. EMG variability corresponds to 
the standard deviation of EMG power over the same period of 
time. CVI is a normalized index ranging between 0 and 100. 
The algorithm for its calculation has been designed according to 
the ability of subparameters to predict the occurrence of a 
somatic event (or patient movement) in response to noxious 
stimulation. This new tool still needs clinical validation with 
respect to the influence of muscle relaxation on its value, reli-
ability of considering patient movement as a surrogate of inad-
equate anti-nociception, efficacy at guiding anti-nociceptive 
agent administration, and effect on outcome.93 The last EEG-
derived parameter proposed to assess anti-nociception is the 
aforementioned RE-SE gradient of Spectral Entropy.94 The 
same restrictions as those described for CVI also apply to 
RE-SE, and particularly the effect of muscle relaxation.49,95-97

Functional Exploration of the Brain 
During Anesthesia Using EEG

Exploring Functional Connectivity

EEG studies have contributed to the considerable progress that 
has recently been made in the understanding of the mechanisms 
of anesthesia-induced alteration of consciousness.6,98,99 The 
advantage of EEG over other techniques, is that it allows 
exploring functional effective connectivity, or causal influence, 
between brain regions rather than statistical dependencies in 
changes of indirect signs of regional brain activity.23 From a 
holistic view, concepts have evolved toward dose-dependent 
targeted effects of hypnotic agents on brain functional assem-
blies sustaining consciousness. Following the demonstration 
that the cortex was affected by hypnotic agents at lower doses 
than subcortical structures,100 and that higher order cortical 
association areas were more sensitive to that effect than lower 
order ones,101 the first evidence of altered connectivity into 
thalamocortical networks sustaining consciousness came from 
high-density EEG studies combined with transcranial magnetic 
stimulation.4 These findings were further confirmed by func-
tional magnetic resonance imaging studies describing dose-
dependent connectivity alterations into the Default Mode 
Network (DMN, involved in self-awareness), and in the 
Executive Control Network (ECN, involved in the awareness 
of the environment), while connectivity in lower order sensory 
networks was preserved.102 Granger causality and dynamic 

Figure 2. Principles of nociception balance monitoring. Underlined 
parameters are those obtainable through EEG recordings. Noxious 
input evokes a motor response emerging from the spinal cord 
and the brainstem, and leading to spinal reflexes and an increase 
in electromyographic (EMG) power. Noxious input to the cortex 
produces an arousal effect and an increase in EEG variability. 
Noxious input also has an impact on the autonomic nervous system 
and its target organs such as the pupils, and the cardiovascular 
system. Pharmacodynamic modeling allows designing theoretical 
indices that correlate with the probability of a patient response to 
noxious stimulation.
NSRI, Noxious Stimulation Response Index; ANS, autonomic nervous 
system; HRV, heart rate variability; SVR, skin vasomotor reflex; sBIS, 
Bispectral Index variability; CVI, Composite Variability Index; MLAEP, 
middle latency auditory evoked potentials; NRSEP, nociception-related 
somatosensory evoked potentials; RE-SE, gradient between response and 
state spectral entropy of the EEG; sEMG, variability of electromyographic 
activity.
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causal models applied to EEG recordings during anesthesia 
also confirmed the preferential inhibition of frontoparietal 
feedback connectivity, an element of consciousness networks,22 
while thalamocortical connectivity specific to those networks 
was shown to be preserved3 at doses that induce unresponsive-
ness. That connectivity requires higher doses to disappear.53 
Contrarily, the nonspecific thalamocortical connectivity 
involved in cortical arousal is early inhibited.103 In other net-
works, such as the lower order visual and auditory networks, 
functional connectivity, including thalamocortical connectiv-
ity, is relatively resistant to the action of hypnotic anesthetic 
agents,102 but cross-modal interactions are altered. All these 
changes may occur through deregulation of subcortical thal-
amo-regulatory systems involving the putamen.104

Despite a current better definition of what happens during 
anesthesia, the exact sequence of events remains to be deter-
mined. The link with known effects of hypnotic agents on sub-
cortical systems sustaining arousal or promoting sleep is still 
not known with precision.6 Primary effects of anesthesia may 
occur at the cortical level with secondary effects on subcortical 
systems, but the inverse could also be true. Locally, cortical 
neuronal networks remain intact but become isolated from 
other brain regions,105 and this could be the consequence of a 
direct effect of hypnotic agents on the cortex, or the conse-
quence of an indirect effect on subcortical structures. On emer-
gence from anesthesia, connectivity recovery does not seem to 
simply follow the inverse of what happens during induction of 
anesthesia.103,106 These differential dynamics between induc-
tion and recovery remain to be precisely defined. Finally, the 
exact link between biochemical targets of anesthetic agents and 
observed functional effects is still in the dark.

The whole picture of functional alterations during anesthe-
sia is therefore far from being entirely understood. For a better 
comprehension of these mechanisms, there is a need for addi-
tional studies that should ideally be designed according to the 
operational concepts of consciousness, connectedness, and 
responsiveness,53 and investigate dynamic changes rather than 
steady states.

EEG and Theories of Consciousness

The reversibility of anesthesia, and the study of anesthesia-
induced EEG modifications, is a unique tool for studying con-
sciousness, and for corroborating or invalidating conceptual 
theories about that state. For example, the reversible break-
down of connectivity into corticothalamic networks during 
anesthesia4 fits in the integrated information theory (IIT).107 
Like most respected theories of consciousness, IIT postulates 
that consciousness is generated by corticothalamic networks. 
Specialized cortical areas can distinguish among a large reper-
toire of information, and connections within and between those 
areas allows integration of information. The breakdown of con-
nectivity during anesthesia, and the associated loss of con-
sciousness reinforce the hypotheses of ITT. Another example is 
the global workspace theory (GWT).108 GWT hypothesizes that 

specialized brain regions share their information into a global 
workspace. Attention then brings one element of that informa-
tion or the other from the backstage to the front of the con-
scious scene. The discovery of frontoparietal connectivity 
alterations during anesthesia,22 which is thought to represent a 
global workspace breakdown, provides support to GWT.109 
The third example is the theory explaining the ability of the 
brain to bind information into a single unified percept.15 This 
binding would occur through a hierarchical processing of infor-
mation from lower order neurons to higher order ones (conver-
gence), from lower order cell assemblies to higher order ones 
(assembly), and at a global level (synchrony). Oscillations in 
the γ frequency range would be the landmark of synchrony. 
The suppression of γ oscillations during anesthesia would be 
responsible for the unbinding of information, and therefore for 
the loss of consciousness. All those theories constitute at least 
parts of the substrate of consciousness, but their unification is 
not yet within easy reach. Several features of consciousness 
still require formal theoretical explanations, and the ability to 
get access to their quantification and measurement.110 
Anesthesia and EEG will more than probably help progress in 
that domain.

Conclusions

As demonstrated in this review, EEG provides a huge amount 
of information to the anesthesiologist, either for routine clinical 
practice or for the understanding of the mechanisms of anesthe-
sia. There is still a lot of work to be performed in both domains, 
for refining the way we provide anesthesia to our patients, 
avoid undesirable events, hopefully improve outcome, and 
understand what we do every day. EEG will be of great help to 
achieve these goals in the near future.
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