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The protein encoded by ORF9 is essential for varicella-zoster virus (VZV) replication. Previous studies documented its presence
in the trans-Golgi network and its involvement in secondary envelopment. In this work, we deleted the ORF9p acidic cluster,
destroying its interaction with ORF47p, and this resulted in a nuclear accumulation of both proteins. This phenotype results in
an accumulation of primary enveloped capsids in the perinuclear space, reflecting a capsid de-envelopment defect.

One of the crucial steps in herpesviruses infection is capsid exit
from the nucleus. This process mainly follows the envelop-

ment/de-envelopment model, strongly documented by transmis-
sion electron microscopy (TEM) observations (1). According to
this model, nuclear capsids bud at the inner nuclear membrane
(INM), thereby acquiring a primary envelope, which is then lost
after fusion with the outer nuclear membrane (ONM), resulting
in the release of naked capsids into the cytoplasm (1).

Viral glycoproteins seem to play a role during this de-envelop-
ment fusion process (2). In the case of herpes simplex virus
(HSV), it is known that gB and gH/gL, components of the viral
entry machinery, are present at nuclear membranes and are likely
responsible for this fusion (2, 3). Moreover, the fusogenic role of
gB seems to be mediated by its pUS3-dependent phosphorylation
(4). These hypotheses are supported by observations that HSV
mutants lacking pUS3 or both gB and gH accumulate primary
enveloped virions in the perinuclear space (3, 4). The components
of the nuclear export complex (NEC), pUL31 and pUL34, have
been described to mediate the primary envelopment (2). Phos-
phorylation of pUL31, another substrate of pUS3, also promotes
the de-envelopment process (5).

Unfortunately, the mechanisms leading to varicella-zoster vi-
rus (VZV) nuclear egress are still poorly understood, and it is not
clear whether the role of these proteins is conserved in VZV egress.
In this work, we destroyed the interaction of the essential VZV
tegument protein ORF9p (6) with the viral kinase ORF47p, ho-
mologous to HSV-1 VP22 and UL13, respectively, and this af-
fected their localization and impaired VZV de-envelopment.

ORF9 is the most transcribed VZV gene during infection (7),
and ORF9p has been observed to be present in the trans-Golgi
network (TGN) (8), playing a role in secondary envelopment (9).
Within its sequence is an acidic motif corresponding to residues
85 to 93: EDDFEDIDE (Fig. 1B). Acidic clusters are described as
targeting signals to the TGN (10), and the HSV VP22 acidic cluster
has been shown to have a role in both correct protein subcellular
localization and virion incorporation (11). We thus deleted this
acidic region to generate BAC-VZV-ORF9-�AC-V5 C-ter (Fig.
1A and B). Transfection of this bacterial artificial chromosome
(BAC) into MeWo cells led to VZV-ORF9-�AC-V5 virus. Infec-
tion analysis revealed a significant defect in infectivity for this
mutant, compared to that of the previously described VZV-
ORF9-V5 (Fig. 1C) (9). Generation of the revertant VZV-ORF9-

rev-V5, achieved by replacing the ORF9-�AC sequence with the
wild-type one, rescued this defect (Fig. 1C).

In order to determine if this acidic region influences ORF9p
localization, immunofluorescence analysis was performed on
MeWo cells infected with VZV-ORF9-V5 (Fig. 2A to C), VZV-
ORF9-�AC-V5 (Fig. 2D to F), or VZV-ORF9-rev-V5 (Fig. 2G to
I). This experiment revealed the nuclear accumulation of ORF9p-
�AC-V5 (Fig. 2D), compared to ORF9p-V5 or ORF9p-rev-V5,
which appeared to be mainly cytoplasmic (Fig. 2A and G). ORF9p
has been previously observed in the nucleus of infected cells by
TEM analysis after immunogold labeling (8) and is characterized
by the presence of two in silico-predicted nuclear localization sig-
nals (NLS) with the PSortII software (12); the first one has been
confirmed to be active (13). Moreover, it contains an active nu-
clear export signal (NES) (13). This suggests that ORF9p can shut-
tle between the nucleus and cytoplasm, where its acidic region is
thought to mediate its targeting to the TGN. Deletion of the
ORF9p acidic region does not affect its isoelectric point or its in
silico-predicted localization (PSortII prediction [12]), but it
strongly modifies its subcellular localization.

This acidic cluster overlaps the consensus sequence SEDD (Fig.
1B), which we have previously described as being responsible for
ORF47p-dependent phosphorylation (9). We thus decided to
check the ORF9p-�AC Western blotting pattern in the context of
infection. As shown in Fig. 2J to K (lanes 2 to 4), ORF9p-�AC
migrated more quickly than ORF9p or ORF9p-rev in the gel, likely
due to a reduced level of phosphorylation. In addition, coimmu-
noprecipitation experiments confirmed that the ORF9p-ORF47p
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interaction observed for the wild type and the revertant was lost in
cells infected with this �AC mutant (Fig. 2J and K, lanes 8).

Moreover, immunofluorescence analysis indicated a stronger
nuclear accumulation of ORF47p in VZV-ORF9-�AC-V5-in-
fected cells (Fig. 2E) than in VZV-ORF9-V5- or VZV-ORF9-rev-

V5-infected cells (Fig. 2B and H). This observation suggests an
involvement of ORF9p in exporting ORF47p from the nucleus to
the cytoplasm or in its cytoplasmic retention. All experiments
were performed as previously described (9).

In order to better understand the phenotype of this �AC mu-

FIG 1 Deletion of the ORF9p acidic region impairs VZV infectivity. (A) Primer sequences used for the construction of recombinant viruses. (B) Schematic represen-
tation of the ORF9p mutant inserted in BAC-VZV, via a two-step BAC recombineering technique described by Warming et al. (21), generating the BAC-VZV-ORF9-
�AC-V5 construct. �AC, deletion of the acidic cluster corresponding to amino acids (AA) 85 to 93 of ORF9p. (C) Analysis of VZV replication in MeWo cells. Uninfected
cells were inoculated at day 0 with 200 infected cells for each infection (VZV-ORF9-V5, VZV-ORF9-�AC-V5, or VZV-ORF9-rev-V5), based on analysis by flow
cytometry. Inoculated flasks were harvested daily for 4 days to perform serial dilutions. Infection quantification was performed after 2 days; we counted the fluorescent
foci on melanoma cell monolayers. Each point represents the mean number of foci from three independent experiments. Error bars represent the standard errors of the
means. RH, alphaherpesvirus conserved region of homology. Statistical significance is indicated by the following symbols (calculated by a two-way analysis of variance):
**, P � 0.01, and ***, P � 0.001 (compared with VZV-ORF9-V5); §, P � 0.05, and §§§, P � 0.001 (compared with VZV-ORF9-rev-V5).
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FIG 2 Deletion of the ORF9p acidic region leads to ORF9p and ORF47p nuclear accumulation. MeWo cells infected with VZV-ORF9-V5 (A to C), VZV-ORF9-
�AC-V5 (D to F), or VZV-ORF9-rev-V5 (G to I) for 48 h were fixed using 4% paraformaldehyde and immunostained using the anti-V5 antibody (A, D, and G)
or ORF47p antiserum (B, E, and H). Alexa 568 anti-rabbit and Alexa 633 anti-mouse were used as secondary antibodies. (C, F, and I) Nuclear labeling with
Hoechst stain. Imaging was performed using a Zeiss 780 confocal microscope with a 63� oil objective. (J and K) Uninfected MeWo cells or MeWo cells infected
for 24 h with VZV-ORF9-V5, VZV-ORF9-�AC-V5, or VZV-ORF9-rev-V5 were harvested in lysis buffer, and cell extracts were incubated with beads coated with
anti-V5 antibody (J) or ORF47 antiserum (K). The immunoprecipitated proteins were resolved by SDS-PAGE and immunoblotted using antibody against the V5
tag and ORF47p antiserum. NI, noninfected cells; IRR, irrelevant antibody.
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FIG 3 Deletion of the ORF9p acidic region causes an accumulation of primary enveloped capsids in the perinuclear space. MeWo cells were infected with
VZV-ORF9-V5, VZV-ORF9-�AC-V5, or VZV-ORF9-rev-V5 for 48 h and then fixed and analyzed by TEM. (A to D) Nucleus of a VZV-ORF9-�AC-infected cell,
representative of nuclear capsid accumulation (A), and higher magnifications of perinuclear spaces showing accumulations of primary enveloped VZV-ORF9-
�AC capsids (B to D). (E) A nucleus representative of a VZV-ORF9-V5-infected cell. (F) Quantification of the observed phenotype. Cells infected with
VZV-ORF9-V5, VZV-ORF9-�AC-V5, or VZV-ORF9-rev-V5 were analyzed for the presence or absence of perinuclear capsid accumulation, and the results are
displayed in the table. Statistical significance was calculated by using Fisher’s exact test and is indicated by one of the following symbols: *, P � 0.05; **, P � 0.01;
ns, nonsignificant. N, nucleus; C, cytoplasm; INM, inner nuclear membrane; ONM, outer nuclear membrane. Arrowheads indicate perinuclear capsid accu-
mulation.
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tant, VZV-ORF9-V5-, VZV-ORF9-�AC-V5-, and VZV-ORF9-
rev-V5-infected MeWo cells were analyzed by TEM 48 h postin-
fection (Fig. 3). Surprisingly, the VZV-ORF9-�AC-V5-infected
cells showed primary enveloped capsids that had accumulated in
the perinuclear space (Fig. 3A to D versus E). Such perinuclear
accumulation was observed in 32% of infected cells (up to 11
capsids/perinuclear structure), while it was observed in only 6%
(maximum, 4 capsids) and 13% (maximum, 6 capsids) of wild-
type- or revertant-infected cells, respectively (Fig. 3F). Altogether,
these observations could explain the infection defect of VZV-
ORF9-�AC-V5. ORF9p could be directly involved in capsid
egress or have an indirect role, regulating ORF47p localization,
which could itself regulate VZV de-envelopment. Another possi-
bility is that neither ORF9p nor ORF47p are involved in capsid
egress, but nuclear misaccumulation of one or both of these pro-
teins could have an adverse effect on de-envelopment.

Nuclear and cytoplasmic extracts (14) from VZV-ORF9-V5-,
VZV-ORF9-�AC-V5-, or VZV-ORF9-rev-V5-infected MeWo
cells were further analyzed by Western blotting 24 h postinfection,
in order to determine if the de-envelopment defect could be due to
an altered expression level, stability, or localization pattern of gB,
gH, ORF66p, ORF24p, or ORF27p, which are homologous to the
HSV proteins involved in de-envelopment. The glycoprotein gE,
described as an additional fusion protein during VZV entry (15),
was also analyzed, while IE63 was chosen as an infection control.
No apparent difference was observed for any of these proteins
(Fig. 4), suggesting instead an independent role for ORF9p, which
may act as a negative regulator of the fusion process. Observations
of a pseudorabies mutant virus deleted for both gB and gH showed
no defect in nuclear egress (16); indeed, this suggests that glyco-

protein-mediated fusion is probably not the only mechanism in-
volved in the de-envelopment process.

In summary, we showed that ORF9p is somehow involved in
the ORF47p nuclear/cytoplasmic balance, and its acidic cluster
was identified as an important determinant for ORF9p subcellular
localization, ORF47p interaction, and VZV infectivity. We also
found evidence that VZV nucleocapsid egress is impaired when
the ORF9p acidic cluster is deleted.
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