Regioselective labeling of Nanofitin by using a phosphorylated peptide tag

Marine Goux ${ }^{\left[1,2,3,{ }^{*}\right]}$, Mathieu Cinier ${ }^{[2]}$ and Charles Tellier ${ }^{[1]}$

${ }^{[1]}$ Unité de Fonctionnalité et Ingénierie des Protéines, University of Nantes, France ; ${ }^{[2]}$ Affilogic SAS, Nantes, France and ${ }^{[3]}$ Cyclotron Research Center, University of Liège, Belgium ; * contact: marine.goux@univ-nantes.fr

INTRODUCTION

Recently, new strategies emerged in the field of monoclonal antibodies radiolabeling for PET imaging with the use of positron emitters such as zirconium-89 or gallium-68. Despite their important role in the therapeutic world, antibodies have many disadvantages related to their structure. Moreover, conjugation of chelating agent often occurs on ysines, which is non-regioselective and leads to a heterogeneous mixture of products. In addition, the slow clearance of antibodies can be a problem to obtain a good contrast when they are used in imaging.

To address these different limitations, we developed a chemistry-free chelating system consisting of a phosphorylatable peptide tag. A specific phosphorylation step, with the alpha subunit of the human casein kinase II can generate a nanocluster of phosphate moieties that can interact strongly with metal ions like zirconium ${ }^{[1]}$. Two peptides sequences have been used as a starting material, one already described to promote the specific anchoring of protein on zirconium-phosphate surface, the other one selected for its capacity to chelate lantanide ions such as terbium(III).

Objectives:

1) Adapt the labeling tag to the stereoselective chelation of radionuclides for PET imaging 2) Genetically fuse the tag to a Nanofitin, a protein scaffold developed as an alternative to antibodies, to ensure an efficient targeting of the radionuclide.

Results Chelation and phosphorylatable tag
To optimize the sequence of the phosphorylatable tag, we studied the chelation of different mimetic peptides (from 0 to 4 phospho-serine) with a lanthanide (terbium).

NB: Actually, terbium emits
expelling water molecules.

- Affinity for Tb^{3+} in the micromolar range: $2 P>3 P \approx 4 P>1 P>0 P$
- Chelation of the Zr^{4+} by the peptide tag was confirmed by competition.

Results

CheLation and Lanthanide-Binding Tag
To increase the affinity for radionuclide from micromolar to nanomolar, we worked on a sequence derived from calcium-binding proteins to chelate specifically lanthanides ${ }^{[2]}$. We optimized this sequence by incorporating a phosphate nanocluster to improve the chelation with radionuclides ${ }^{[3]}$,

NB: Actulaly, terbli
water molecules.

- Affinity for terbium(III) in the sub-micromolar range for the lanthanide-binding tag fused to the Nanofitin and in the micromolar range for the mono-phosphorylated.
- Chelation of zirconium and gallium by the peptide tag was observed by a competition study.

Conclusion

We succeeded to generate two types of phosphorylatable tag able to chelate terbium(III). Through competition studies, we have shown evidence for a capacity of chelation of zirconium(IV) and gallium(III). Radiolabeling studies with gallium-68 are on going to evaluate the powerfulness of such a strategy for the chelation of radionuclides.
References : [1] Cinier M. et al. (2012), Journal of Biological Inorganic Chemistry, 17, pp. 399-407 ; [2] Martin L. J. et al. (2007), Journal of American Chemistry Society, 129(22), 7106-7113 ; [3] Pardoux R. et al. (2012), PLoS ONE, 7(8).

	UFIP UMR CNRS 6286 2 rue de la Houssinière, 44322 Nantes, France AFFILOGIC SAS 2 rue de la Houssinière, 44322 Nantes, France Cyclotron Research Center Allée du 6 Août, 4000 Liège, Belgium) $\begin{aligned} & \text { Refign } \\ & \text { PAYS DE LA LOIRE }\end{aligned}$		NanoFar

