

Contents lists available at ScienceDirect

Journal of Quantitative Spectroscopy & Radiative Transfer

journal homepage: www.elsevier.com/locate/jqsrt

A comparative study between semi-empirical oscillator strength parametrization and relativistic Hartree–Fock methods for computing the radiative parameters in Zr II spectrum

P. Quinet ^{a,b,*}, S. Bouazza ^c, P. Palmeri ^a

^a Astrophysique et Spectroscopie, Université de Mons, B-7000 Mons, Belgium

^b IPNAS, Université de Liège, B-4000 Liège, Belgium

^c LISM, E. A. 4695 Université de Reims-Champagne-Ardenne, UFR SEN, BP 1039, F-51687 Reims Cedex 2, France

ARTICLE INFO

Article history: Received 15 May 2015 Received in revised form 6 June 2015 Accepted 9 June 2015 Available online 23 June 2015

Keywords: Fine structure Transition probabilities Oscillator strengths Zr II spectrum

ABSTRACT

In the present work, we compare the radiative transition rates computed by two different semi-empirical approaches, based on a parametrization of the oscillator strengths and on a pseudo-relativistic Hartree–Fock model including core-polarization effects, for spectral lines in singly ionized zirconium. A detailed comparison with available experimental results is also reported and an overall good agreement is observed between all sets of data allowing us to provide new reliable oscillator strengths for a large amount of Zr II lines in the wavelength region from 1616 to 14746 Å. Moreover, we give radial integral values of the main atomic transitions deduced in this study: $\langle 4d^25p|r^1|4d^25s\rangle = -3.1522$ (0.0161), $\langle 4d^25p|r^1|4d^25s\rangle = -1.481$ (0.794) and $\langle 4d^25p|r^1|4d^25d\rangle = 2.289$ (0.014).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A great deal of experimental work has been done on hyperfine structure and isotope shift of neutral zirconium [1] but only a few measurements concerning these two topics have been achieved so far for Zr II. Regarding Zr II oscillator strength determinations many studies were performed in the past: Corliss and Bozman, using an arc as a light source, were the first to give experimental values of 321 Zr II line oscillator strengths [2]. Two decades later Biémont et al. [3], recurring to lifetimes and branching fractions, reported also 31 line oscillator strength values. Radiative lifetimes of 16 odd levels belonging to the lowest Zr II configurations have been

* Corresponding author. *E-mail address:* Pascal.Quinet@umons.ac.be (P. Quinet).

http://dx.doi.org/10.1016/j.jqsrt.2015.06.011 0022-4073/© 2015 Elsevier Ltd. All rights reserved. measured by Malcheva et al. [4], using a time-resolved laser induced fluorescence technique with a single-step excitation. This team extended this study since it reported also transition probabilities for 243 transitions combining experimental data with pseudo relativistic Hartree-Fock calculations taking into account core-polarization effects. In the same year Ljung et al. [5] gave oscillator strength values for 263 Zr II lines in the spectral range 2500–5400 Å through two steps: taking advantage of line intensities measured with the Lund Fourier Transform Spectrometer they first derived branching fractions. Afterward they combined the latter with lifetimes obtained by Biémont et al. [3] and deduced oscillator strength values. Theoretically Bogdanovich et al. [6], having recourse to the superposition-of-configuration method, computed oscillator strength values. In the present work, we propose to compare experimental data available in literature to computed values obtained by two semi-empirical approaches, based on a parameterization of the oscillator strengths and on a pseudo-relativistic Hartree–Fock model including core-polarization effects.

It is worth reminding that the accurate determination of spectroscopic parameters in singly ionized zirconium is of great importance in astrophysics since Zr II lines have been detected in many different types of stars, such as e.g. the Ap stars of the Cr–Eu–Sr subgroup [7,8] or the Bp stars of the Hg–Mn subgroup [9]. Zr has five stable isotopes, namely ⁹⁰Zr, ⁹¹Zr, ⁹²Zr, ⁹⁴Zr and ⁹⁶Zr, the first four being only made by the slow neutron capture process (s-process), while the fifth one being made by the rapid process (r-process). There also exist 15 shorter lived isotopes and isomers. Singly ionized zirconium has also been investigated in the context of the Zr abundance in the solar photosphere [3,6]. Moreover, using a limited set of accurate oscillator strengths, Sikström et al. [10] were unable to resolve the anomaly existing in the HgMn star yLupi observed using the Hubble Space Telescope between the zirconium abundance deduced from weak lines of Zr II at optical wavelengths and strong Zr III lines in the UV region in the framework of the Local Thermodynamic Equilibrium (LTE). Although, according to these authors, the difference is probably mainly due to non-LTE or diffusion effects rather than to uncertainties affecting the oscillator strengths, an extended set of reliable transition rates in these ions is highly needed for investigating this problem in a more detailed way.

2. Oscillator strength parametrization method

2.1. Fine structure analysis

For semi-empirical approaches, such as the oscillator strength parametrization method, the determination of very accurate eigenvectors of the two levels of each studied transition is of paramount importance: we have to transform angular coefficients of the transition matrix from SL coupling to intermediate one by means of fine structure (fs) eigenvector amplitudes. Here, *L* and *S* represent, respectively, the total angular momentum and the resulting spin quantum numbers for a system of electrons. Sometimes the fine structure analysis is not easy to achieve because there are not enough experimental energy levels to fit in order to determine Slater integrals, spin–orbit constants, configuration–interaction parameters, two-body parameters, etc. Sometimes also the level assignments previously published are questionable.

The Zr II fs was initiated by Kiess [11] and extended by Moore [12]. Meggers, Corliss, and Scribner collected in 1975 the previous data in NIST compilation [13]. Some years ago we studied the three lowest even-parity configuration fs, gathering 37 levels in the model space $(4d + 5s)^3$ [14]. This time we consider a bigger set of configurations: $4d^25s$, $4d^3$, $4d5s^2$, $4d^26s$, $4d^25d$, $4d5p^2$ and $4d5d^2$.

Table 1

Fine structure 1	parameter value	es adopted for	even-parity co	onfigurations	in th	ie oscillato	r strength	parametrizatio	n method.	All values a	are given in	. cm ⁻¹ .
		· · · · · · · · · · · · · · · · · · ·	1	0			0	1			0	

Config.	4d ² 5s	4d ³	4d ² 6s	4d ² 5d	4d5s ²	4d5p ²	4d5d ²
E_{av} F ² (4d,4d) F ⁴ (4d,4d)	7756 (12) 35,143 (40) 20 572 (50)	12,071 (16) 33,385 (41) 20 345 (59)	69,620 (18) 37,080 (105) 22,969 (430)	73,107 (114) 37,080 22 556	15,322 (23)	81,872	105,900
$F^{2}(5p,5p)$	20,372 (30)	20,3 13 (33)	22,303 (130)	22,330		19,224	
$G^{0}(4d,5d)$				2553		6448	2748
$G^{2}(4d,5s)$	11,929 (29)		2644 (34)			0440	
$G^{2}(4d,5d)$ $G^{3}(4d,5p)$				2100		5142	2450
$F^{2}(4d,5d)$ $F^{4}(4d,5d)$				5142 1501			6437 2894
$F^{2}(4d,5p)$ $F^{2}(4d,5d)$						13,523	12 720
$F^{2}(5d,5d)$							8640
ζ4d ζ5d	372 (8)	325 (9)	376 (6)	376 36	402	421	445 50
ζ_{5p}	22		22			838	
α β	9 (1) -99 (13)	9 (1) -99 (13)	9 (1) -99 (13)	9 (1) -99 (13)			
CI	D^0	E^2	D^2	R^2	R^4		
$4d^{2}5s-4d^{3}$				- 14,681 (20)			
$4d^{2}5s - 4d^{2}6s$ $4d^{2}5s - 4d^{2}5d$	480 (48)	4800 (279) - 700	2100				
4d ² 5s-4d5s ² 4d ³ -4d ² 6s				– 14,085 (89) – 3941			
$4d^{3}-4d^{2}5d$ $4d^{3}-4d5s^{2}$	800	640	2100	5800 15,042 (82)	3800 (313)		
4d ² 5d–4d ² 5d 4d ² 5d–4d5s ²		- 64U	-2100	- 1900			

Table 2

Comparison of the observed and calculated even-parity energy levels and g_r factors (see text). Experimental data are taken from [12].

J	E_{exp} (cm ⁻¹)	E_{calc} (cm ⁻¹)	g _{exp}	gcalc	1st LS component (%)	2nd LS component (%)
1/2	5724.38 7512.67 9553.10 19,613.54 25,201.57	5716.46 7513.99 9564.26 19,618.41 25,198.77	0.690 2.656 2.649 0.514 1.990	0.683 2.666 2.656 0.674 1.996	59.2 4d ^{3 2} P 99.6 4d ² (³ P)5s ⁴ P 98.8 4d ^{3 4} P 57.5 4d ² (³ P)5s ² P 98.5 4d ² (¹ S)5s ² S	39.7 4d ² (³ P)5s ² P 0.2 4d ² (¹ S)5s ² S 0.5 4d ² (³ P)5s ² P 39.5 4d ³ ² P 0.7 4d5p ² ² S
3/2	0.00 2572.21 4248.30 6111.70 7736.02 9742.80 13,428.50 13,428.50 14,298.64 20,080.30 27,699.96 63,602.64	- 13.44 2574.73 4214.70 6118.69 7739.00 9754.78 13,440.42 14,321.07 20,067.39 27,714.01 63,700.24	0.398 0.413 0.812 1.304 1.720 1.721 0.800 0.807 1.326	0.403 0.417 0.813 1.310 1.727 0.801 0.805 1.330 0.800 0.400	98.9 $4d^2({}^3F)5s {}^4F$ 95.3 $4d^3 {}^4F$ 46.4 $4d^2({}^1D)5s {}^2D$ 55.2 $4d^3 {}^2P$ 99.1 $4d^2({}^3P)5s {}^4P$ 97.6 $4d^3 {}^4P$ 65.7 $4d5s^2 {}^2D$ 56.2 $4d^3 {}^2D$ 57.3 $4d^2({}^3P)5s {}^2P$ 69.0 $4d^3 {}^2D$ 99.2 $4d^2({}^3F)6s {}^4F$	$\begin{array}{l} 0.8 \ 4d^2(^1D)5s \ ^2D \\ 1.6 \ 4d^2(^1D)5s \ ^2D \\ 20.9 \ 4d5s^2 \ ^2D \\ 36.0 \ 4d^2(^3P)5s \ ^2P \\ 0.3 \ 4d^3 \ ^2P \\ 1.3 \ 4d^2(^3P)5s \ ^2P \\ 22.9 \ 4d^2(^1D)5s \ ^2D \\ 23.8 \ 4d^2(^1D)5s \ ^2D \\ 39.2 \ 4d^3 \ ^2P \\ 21.0 \ 4d^3 \ ^2D \\ 0.4 \ 4d^2(^3F)5d \ ^4F \end{array}$
5/2	314.67 2895.05 4505.50 5752.92 8058.16 9968.65 14,162.90 14,733.37 19,514.84 27,640.60 63,868.45	308.52 2904.11 4542.10 5776.04 8066.43 9963.76 14,155.23 14,731.69 19,528.65 27,644.83 63,935.16	1.023 1.025 1.172 0.883 1.585 1.593 1.209 1.188 0.855 1.110	1.029 1.032 1.177 0.884 1.594 1.600 1.201 1.201 0.859 1.200 1.200 1.026	99.1 $4d^{2}({}^{3}F)5s {}^{4}F$ 98.1 $4d^{3} {}^{4}F$ 51.5 $4d^{2}({}^{1}D)5s {}^{2}D$ 84.2 $4d^{2}({}^{3}F)5s {}^{2}F$ 98.2 $4d^{2}({}^{3}P)5s {}^{4}P$ 99.2 $4d^{3} {}^{4}P$ 68.1 $4d5s^{2} {}^{2}D$ 60.2 $4d^{3} {}^{2}D$ 91.1 $4d^{3} {}^{2}F$ 70.9 $4d^{3} {}^{2}D$ 97.5 $4d^{2}({}^{3}F)6s {}^{4}F$	$\begin{array}{c} 0.4 \ 4d^2(^1D)5s \ ^2D \\ 0.7 \ 4d^2(^1D)5s \ ^2D \\ 1.7.7 \ 4d5s^2 \ ^2D \\ 6.9 \ 4d^3 \ ^2F \\ 0.7 \ 4d5s^2 \ ^2D \\ 0.3 \ 4d5p^2 \ ^4P \\ 19.5 \ 4d^2(^1D)5s \ ^2D \\ 23.0 \ 4d^2(^1D)5s \ ^2D \\ 23.0 \ 4d^2(^3F)5s \ ^2F \\ 17.4 \ 4d^3 \ ^2D \\ 1.9 \ 4d^2(^3F)6s \ ^2F \end{array}$
7/2	763.44 3299.64 6467.61 7837.74 14,059.76 19,433.24 64,368.28	762.53 3310.50 6456.85 7848.21 14,049.09 19,449.07 64,301.64	1.235 1.227 1.144 0.887 0.890 1.153 1.205	1.238 1.238 1.142 0.891 0.889 1.143 1.237	99.7 $4d^{2}({}^{3}F)5s {}^{4}F$ 99.6 $4d^{3} {}^{4}F$ 89.3 $4d^{2}({}^{3}F)5s {}^{2}F$ 72.9 $4d^{3} {}^{2}G$ 72.6 $4d^{2}({}^{1}G)5s {}^{2}G$ 90.4 $4d^{3} {}^{2}F$ 98.1 $4d^{2}({}^{3}F)6s {}^{4}F$	$\begin{array}{c} 0.3 \ 4d^2({}^3F)5s \ {}^2F \\ 0.2 \ 4d^3 \ {}^2G \\ 8.5 \ 4d^3 \ {}^2F \\ 26.3 \ 4d^2({}^1G)5s \ {}^2G \\ 26.4 \ 4d^3 \ {}^2G \\ 8.3 \ 4d^2({}^3F)5s \ {}^2F \\ 1.5 \ 4d^2({}^3F)6s \ {}^2F \end{array}$
9/2 11/2	1322.91 3757.66 8152.80 11,984.46 14,190.45 64,901.71 12,359.66	1325.95 3763.88 8151.58 12,010.43 14,216.16 64,782.85 12,356.23	1.324 1.326 1.107 0.910 1.103 1.274 1.091	1.334 1.332 1.111 0.915 1.108 1.334 1.091	99.8 4d ² (³ F)5s ⁴ F 98.8 4d ^{3 4} F 68.8 4d ^{3 2} G 96.8 4d ^{3 2} H 67.6 4d ² (¹ G)5s ² G 99.6 4d ^{3 4} F 99.8 4d ^{3 2} H	$\begin{array}{l} 0.1 \ 4d^2({}^1G)5s \ {}^2G \\ 0.9 \ 4d^3 \ {}^2G \\ 28.7 \ 4d^2({}^1G)5s \ {}^2G \\ 2.9 \ 4d^2({}^1G)5s \ {}^2G \\ 29.8 \ 4d^3 \ {}^2G \\ 0.2 \ 4d^2({}^3F)6s \ {}^4F \\ 0.1 \ 4d^2({}^3F)5d \ {}^2H \end{array}$

The fs least square fitting procedure has been carried out over all even-parity levels available in literature up to 66,000 cm⁻¹. With 42 parameters, 12 of which were treated as free, an excellent fit has been achieved. Table 1 contains the values of fs radial parameters obtained thanks to the fitting procedure. When fs parameters are given without uncertainties this means that these parameters were given simply ab initio values or were deduced by links with other parameters thanks to ab initio ratio of the corresponding parameters. Let us add that values of some parameters, although predicted by theory but expected to be small in this study, were fixed to zero and then are not listed in this table. In Table 2 the experimental energy levels, calculated eigenvalues, resulting LS-percentage of first and second components of the wave functions, and the corresponding LS-term designations are given. In this table experimental Landé g_l-factors are compared to those deduced from the eigenvector compositions. In this study we confirm what we previously mentioned: the two doublets b ²D et c ²D are inverted, i.e. b ²D belongs rather to $4d5s^2$ instead of $4d^3$ and c ²D belongs rather to $4d^3$ instead of $4d5s^2$.

Usually odd-parity level fs analysis is rather more difficult to perform than even-parity level one, due to presence of very complex mixing concerning odd-parity configurations: in this case the levels of 4d5s5p overlap levels from both the $4d^25p$ and $5s^25p$ configurations. Furthermore, Zr II odd-parity level fs has never been experimentally studied during these last 6 decades. We decided to fit 65 levels, whose energies do not exceed 60.000 cm^{-1} for many reasons: we planned in this work to study oscillator strengths of transitions linking mainly levels of the two lowest odd configurations even if for determination of eigenvector level compositions we need to consider a set of the 6 lowest configurations. Moreover, there are experimental Landé-factor values only up to 55,000 cm⁻¹ for each *J*-matrix. In absence of g_I value it is more difficult to assign levels. At least if there are hyperfine structure or/and isotope shift data we can compensate

T - 1	- 1	-	2
La	nı	e	-
	~		~

	Fine structure parameter values adopted for odd-par	ty configurations in the oscillator strength	parametrization method. All values are given in cm	1 ⁻¹ .
--	---	--	--	-------------------

4d ² 5p	4d5s5p	5s ² 5p	4d ² 6p	5s ² 6p
36,801 (19)	44,245 (35)	61,379 (320)	66,075	85,000
36,142 (114)			35,000	
22,128 (105) 6604 (47)	8660 (222)		23,000	
0094 (47)	10 906 (370)		1280	
2677 (83)	2048 (450)		1180	
	22,108 (345)			
10,643 (92)	15,606 (134)		3340	
379 (21)	435 (31)		375	
890 (52)	944 (63)	1065 (272)	230	254
38	38			
-8	-8			
D^2	R^2	R^4	E^1	
-8290 (74)	- 15,751 (110)		-9234 (68)	
4556	10,079 (151)		1400	
-9866 (180)			– 15,120 (138)	
- 1866			-2862	
	4d ² 5p 36,801 (19) 36,142 (114) 22,128 (165) 6694 (47) 2677 (83) 10,643 (92) 379 (21) 890 (52) 38 -8 D ² -8290 (74) 4556 -9866 (180) -1866	$\begin{array}{ccc} 4d^25p & 4d5s5p \\ \hline 36,801 (19) & 44,245 (35) \\ 36,142 (114) & & \\ 22,128 (165) & & \\ 6694 (47) & 8660 (233) \\ 10,906 (370) & \\ 2677 (83) & 2048 (450) \\ 22,108 (345) & \\ 10,643 (92) & 15,606 (134) \\ 379 (21) & 435 (31) & \\ 890 (52) & 944 (63) & \\ 38 & 38 & \\ -8 & -8 & \\ D^2 & R^2 & \\ \hline -8290 (74) & -15,751 (110) \\ 10,879 (131) & \\ 4556 & \\ -9866 (180) & \\ -1866 & \\ \end{array}$	4d ² 5p 4d5s5p 5s ² 5p 36,801 (19) 44,245 (35) 61,379 (320) 36,142 (114) - - 22,128 (165) - - 6694 (47) 8660 (233) 10,906 (370) - 2677 (83) 2048 (450) 22,108 (345) - 10,643 (92) 15,606 (134) - 379 (21) 435 (31) 1065 (272) 38 38 - -8 -8 - D ² R ² R ⁴ -8290 (74) -15,751 (110) 10,879 (131) - 4556 -9866 (180) -1866 - -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

these deficiencies. In this study the following configurations are involved: $4d^25p$, 4d5s5p, $5s^25p$, $4d^26p$ and $5s^26p$. We give in Table 3 the fs parameters for this set. In Table 4 we give for the first time calculated eigenvalues, resulting *LS*-percentage of first and second components of the wave functions, the corresponding *LS*-term designations and calculated Landé *g*_J-factors, recurring to the level eigenvector composition.

2.2. Oscillator strength and transition probability determination

As in case of our previous study devoted to Hf II [15] we looked first into electric dipole transitions. We had recourse to a semi-empirical method for parameterization of oscillator strengths. The complete details of this method were described for the first time in a paper presented by Rucz-kowski et al. [16]; nevertheless let us mention once more that we transformed angular coefficients of the transition matrix from SL coupling to intermediate one, using the determined fine structure eigenvector amplitudes.

For the electric dipole transitions, the weighted oscillator strength gf is related to the line strength **S** [17]:

$$gf = 8\pi^2 m c a_0^2 \frac{\sigma}{3h} \mathbf{S} = 303.76 \times 10^{-8} \sigma \mathbf{S},$$
 (1)

where a_0 is the Bohr radius, $\sigma = |E(\gamma) - E(\gamma')|/hc$ and h is Planck's constant. Let us point out that $E(\gamma)$ is the energy of the initial state. The quantities with primes refer to the final state.

The electric dipole line strength is defined by

$$\mathbf{S} = |\langle \gamma J || \mathbf{P}^1 || \gamma' J' \rangle|^2, \tag{2}$$

The tensorial operator P^1 in the reduced matrix element represents the electric dipole moment.

For multiconfiguration system, the wavefunctions $|\gamma J >$ and $|\gamma' J' >$ are expanded in terms of a set of basis functions $|\psi SLJ >$ and $|\psi'S'L'J' >$, respectively:

$$|\gamma J\rangle = \sum_{i} c_{i} |\psi SLJ\rangle, \ |\gamma' J'\rangle = \sum_{j} c_{j}^{'} |\psi' S'L'J'\rangle$$
(3)

The square root of the line strength may be written in the following form:

$$S_{\gamma\gamma'}^{1/2} = \sum_{i} \sum_{j} c_i c_j' < \psi SLJ ||\mathbf{P}^1||\psi'S'L'J' >$$

$$\tag{4}$$

From Eqs. (2) and (4), we can express the *gf*-values as a linear combination:

$$(gf)^{1/2} = \sum_{nl,n'l'} (303.76\sigma \times 10^{-8})^{1/2} \\ \times \sum_{i} \sum_{j} c_{i}c_{j}^{'} < \psi SLJ ||\mathbf{P}^{1}||\psi'S'L'J' > ,$$
(5)

and the sum is over all possible transitions $(ns \leftrightarrow n'p, nd \leftrightarrow n'p)$ and presently studied for odd-parity levels.

The weighted transition probability is [18]

$$gA = (2j'+1)A = 64\pi^4 e^2 a_0^2 \sigma^3 \mathbf{S} / 3h = 2.0261$$
$$\times 10^{-6} \sigma^3 \mathbf{S}$$
(6)

where σ is given in cm⁻¹ and **S** in atomic units of $e^2a_0^2$ Using Eqs. (1) and (6) one obtains in s⁻¹:

$$gA = 0.66702\sigma^2 gf$$
 (7)

As regards determination of radial transition integrals one can notice that our method differs totally from the Kurucz's one. Kurucz [19] uses Thomas–Fermi–Dirac method to compute transition integral values. In many approximate methods, the statistical one founded by Thomas and Fermi and later modified by Dirac is sufficient to treat problems concerning bulky properties of the atom and is very useful, especially for the atoms or ions with large atomic number. This is unfortunately not the case of Zr II which is a medium Z (=40) element.

Here we have recurring to Eq. (5) where beforehand we computed angular part of the electric dipole moment with

Table 4

Comparison of the observed and calculated odd-parity energy levels and g_j -factors (see text). Experimental data are taken from [12].

J	E_{exp} (cm ⁻¹)	E_{calc} (cm ⁻¹)	g _{exp}	gcalc	1st LS component (%)	2nd LS component (%)
1/2	31,981.25	32,045.20	0.016	0.009	86.3 4d ² (³ F)5p ⁴ D	11.6 4d5s(³ D)5p ⁴ D
	34,810.03	34,610.09	1.956	1.973	91.7 $4d^{2}(^{3}P)5p^{2}S$	$3.6 \ 4d^2(^{3}P)5p^{4}P$
	36.196.57	36,102,46	0.610	0.577	$60.9 \ 4d^{2}(^{1}D)5p^{2}P$	$18.1 \ 4d^2(^{3}P)5p^{4}D$
	36.237.04	36.224.01	0.144	0.177	$62.4 \ 4d^{2}(^{3}P)5p^{4}D$	$16.8 \ 4d^2(^1D)5p^2P$
	38.063.40	37,933,73	2.448	2.550	$74.7 4d^{2}(^{3}P)5p ^{4}P$	$16.8 4d5s(^{3}D)5p^{4}P$
	38 934 37	38 874 75	0.055	0.062	$6814d5s(^{3}D)5p^{4}D$	$16.7 4d^{2}(^{3}P)5p^{4}D$
	40 727 26	41 017 15	0.677	0.664	$55.2 4d^2(^{3}\text{P})5 ^{2}\text{P}$	$12.2 4d5s(^{3}D)5n^{2}P$
	10,727.20	12 884 67	2 632	2 636	815 4d5s ⁽³ D)5p ⁴ P	16.7
	42,703.24	45 750 80	0.724	0.685	$51.3 4d5s(^{1}D)5p^{-2}P$	$23.0 \ 4d^2(^{3}P)5p^{-2}P$
	52 595 90	52 558 07	0.724	0.005	$42.4 \ 4d^2(^{1}S) = 2D$	$20.9 4d_{5}(^{1}D)_{5}D^{2}D$
	52,565.60	52,556.57	0.039	0.007	43:4 4d (3)3p P	50.8 4035(D)5p P
3/2	29,777.60	29,719.29	0.700	0.644	43.3 4d ² (³ F)5p ² D	41.1 4d ² (³ F)5p ⁴ F
	30,435.38	30,476.14	0.589	0.607	46.4 4d ² (³ F)5p ⁴ F	19.7 4d ² (³ F)5p ² D
	32,256.71	32,278.26	1.166	1.161	78.1 4d ² (³ F)5p ⁴ D	9.7 4d5s(³ D)5p ⁴ D
	32,983.73	32,983.53	0.810	0.826	28.3 4d5s(³ D)5p ² D	26.5 4d ² (¹ D)5p ² D
	35,914.81	35,703.26	1.340	1.307	75.0 4d ² (¹ D)5p ² P	5.9 4d5s(1D)5p 2P
	36,638.50	36,428.56	1.038	0.980	59.6 $4d^{2}(^{3}P)5p^{4}D$	$26.7 4d5s(^{3}D)5p {}^{4}F$
	36.451.79	36.539.13	0.579	0.641	$66.3 4d5s(^{3}D)5p {}^{4}F$	21.5 $4d^{2}(^{3}P)5p^{4}D$
	37.681.75	37.868.73	1.908	1.918	$75.1 \text{ 4d}^2(^{3}\text{P})5p ^{4}\text{S}$	$16.4 \ 4d^2(^{3}P)5p^{4}P$
	38 133 50	38 405 32	1 734	1 756	$58.9 4d^2(^{3}P)5p ^{4}P$	$20.3 \text{ 4d}^2(^{3}\text{P})5\text{ p}^{-4}\text{S}$
	39,192,35	39.170.63	1.209	1.219	$67.3 \text{ 4d5s}(^{3}\text{D})5\text{p}^{4}\text{D}$	$15.7 4d^2(^{3}P)5p ^{4}D$
	41 337 36	41 255 82	1 326	1 325	$65.2 4d^2(^{3}\text{P})5n^{-2}\text{P}$	$12.2 \text{ 4d5s}(^{3}\text{D})5\text{ m}^{2}\text{P}$
	41 467 72	41 586 48	0.821	0.829	$70.2 4d^2(^{3}\text{P})5 ^{2}\text{D}$	$14.2 4d5s(^{1}D)5p^{-1}$
	42 893 54	42 889 78	1 710	1 707	$76.3 \ 4d5s(^{3}D)5n^{4}P$	17.8
	45 054 87	45 171 90	0.870	0.851	$42.5 4d^2(^{1}D)5p^{-2}D$	$29.6 4d5s(^{3}D)5n^{2}D$
	45,568,21	45,171.50	1140	1 300	$\frac{12.5}{10}$ $\frac{10}{10}$ $$	$111 4d^{2}(^{3}D)5p^{-2}D$
	52 876 80	52 864 10	1 3 1 8	1 326	$45.6 445s(^{1}S)5p^{-2}P$	$210 4d5c(^{1}D)5p^{-2}P$
	55 835 53	55 757 03	1.510	0.808	$70.8 \ 4d5c(^{3}D)5p^{-2}D$	21.3 4035(D)5p 1 9.9 $4d^{2}(^{3}E)6p ^{2}D$
	55,055,55	55,757.05		0.000	70.0 4033(D)5p D	5.5 4d (1)0p D
5/2	27,983.83	28,053.13	0.664	0.660	71.4 4d ² (³ F)5p ⁴ G	16.7 4d ² (³ F)5p ² F
	29,504.97	29,609.64	0.841	0.879	31.3 4d ² (³ F)5p ² F	24.7 4d ² (³ F)5p ⁴ G
	30,551.48	30,511.99	1.046	1.035	76.1 4d ² (³ F)5p ⁴ F	8.6 4d ² (³ F)5p ² D
	31,160.04	31,189.12	1.117	1.110	31.5 4d ² (³ F)5p ² D	13.9 4d ² (³ F)5p ⁴ F
	32,614.71	32,588.06	1.342	1.343	75.7 4d ² (³ F)5p ⁴ D	8.7 4d5s(³ D)5p ⁴ D
	33,419.45	33,527.50	1.195	1.202	30.6 4d5s(³ D)5p ² D	30.2 4d ² (³ F)5p ² D
	36,869.00	36,774.69	1.091	1.034	28.1 4d ² (¹ D)5p ² F	20.9 4d ² (³ P)5p ⁴ D
	37,171.22	37,032.39	1.140	1.229	58.0 4d ² (³ P)5p ⁴ D	14.0 4d ² (¹ D)5p ² F
	37,346.31	37,183.96	0.975	1.003	73.0 4d5s(³ D)5p ⁴ F	11.5 4d ² (¹ D)5p ² F
	38,482.64	38,482.48	1.606	1.580	73.1 4d ² (³ P)5p ⁴ P	19.8 4d5s(³ D)5p ⁴ P
	39,640.08	39,668.16	1.370	1.379	67.1 4d5s(³ D)5p ⁴ D	16.9 4d ² (³ P)5p ⁴ D
	41,676.82	41,459.74	1.184	1.208	70.0 4d ² (³ P)5p ² D	10.5 4d5s(1D)5p 2D
	42,860.72	42,890.47	0.887	0.881	77.1 4d ² (¹ G)5p ² F	10.0 4d5s(³ D)5p ² F
	43,202.45	43,098.77	1.561	1.551	69.3 4d5s(³ D)5p ⁴ P	19.5 4d ² (³ P)5p ⁴ P
	45,186.05	45,317.18	1.226	1.215	45.8 4d ² (¹ D)5p ² D	34.4 4d5s(³ D)5p ² D
	47,881.88	47,864.81	0.871	0.866	74.9 4d5s(1D)5p ² F	13.7 4d ² (¹ D)5p ² F
	56,569.44	56,554.08	1.160	1.147	61.7 4d5s(³ D)5p ² D	12.7 4d5s(3D)5p 2F
	57,062.00	57,120.42		0.910	66.2 4d5s(³ D)5p ² F	11.4 4d5s(³ D)5p ² D
7/2	28 000 04	28 040 20	0.008	1 002	$90.2 4d^2(^{3}E)5p ^{4}C$	$6.4.4d^{2}(^{3}E)5p^{2}E$
1/2	20,909.04	20,940.20	0.996	1.002	69.2 40 (T) 5p G	0.440 (r) $5p$ r $20.64d^2(1p)$ = $2p$
	21,240,29	21 172 67	1.152	1.159	59.5 40 (T) 5p F $02.4 4d^{2}(^{3}E) 5p ^{4}E$	20.040 (D)5p F 2.744 (C)5p F
	31,249.20	21,172.07	1.250	1.250	92.440(F)5pF	3.74035(D)5p r
	32,899.40	32,787.32	1.408	1.412	83.8 40 (F)50 D	9.2 405(3D)5p D
	34,485.42	34,342.74	0.889	0.897	79.840 (F) $5p$ G	17.5 40 (G) p G
	37,429.76	37,342.00	1.266	1.253	29.0 4d ² (³ P)5p ³ D	27.5 4d ² (1D)5p ² F
	37,787.59	37,795.89	1.212	1.232	81.9 405s(°D)5p 'F	6.5 40 ⁻ (*D)5p ⁻ F
	38,041.49	38,057.21	1.306	1.323	48.0 4d ² (³ P)5p ³ D	17.5 4d ² (³ D)5 ⁴ D
	40,238.55	40,279.73	1.408	1.425	69.1 4d5s(³ D)5p ³ D	20.3 4d ² (³ P)5p ⁴ D
	40,852.74	40,986.54	0.915	0.923	68.9 4d ² ('G)5p ² G	17.8 4d ² (³ F)5p ² G
	42,504.11	42,470.33	1.134	1.116	71.8 4d ² ('G)5p ² F	10.0 4d ² (¹ G)5p ² G
	48,344.91	48,526.63	1.142	1.144	78.6 4d5s('D)5p ² F	13.3 4d ² ('D)5p ² F
	57,741.16	57,747.69	1.240	1.143	82.2 4d5s(°D)5p ² F	8.8 4d ² (¹ G)5p ² F
9/2	29,839.87	29,856.52	1.164	1.174	98.2 4d ² (³ F)5p ⁴ G	1.4 4d ² (³ F)5p ⁴ F
- / -	31.866.49	31.771.61	1.321	1.324	91.8 4d ² (³ F)5p ⁴ F	3.3 4d5s(³ D)5n ⁴ F
	35.185.64	35.179.51	1.109	1.118	77.1 4d ² (³ F)5p ² G	$18.5 \text{ 4d}^2({}^1\text{G})5\text{ p}^2\text{G}$
	38.644.12	38.774.78	1.321	1.334	96.2 4d5s(³ D)5p ⁴ F	3.7 4d ² (³ F)5n ⁴ F
	40.878.25	40.918.70	1.083	1.021	$44.5 4d^{2}({}^{1}G)5p^{2}H$	$40.9 \ 4d^2({}^1G)5n^2G$
	41.738.21	41.697.88	0.954	1.001	$54.7 \text{ 4d}^2({}^{1}\text{G})5\text{ p}^{-2}\text{H}$	$39.6 \text{ 4d}^{2}({}^{1}\text{G})5n {}^{2}\text{G}$
		- 1,007,000				
11/2	30,795.74	30,813.02	1.275	1.273	99.8 4d ² (³ F)5p ⁴ G	0.1 4d ² ('G)5p ² H
	42,409.93	42,287.84	1.080	1.091	99.9 4d²('G)5p ² H	0.1 4d²(°F)5p ⁴ G

Table 5

Zr II transition radial integrals obtained in the fitting procedure used in the oscillator strength parametrization method.

Transition	Value	Uncertainty
$\begin{array}{l} < 5p r^1 5s>(4d^25p-4d^25s)\\ < 5p r^1 4d>(4d^25p-4d^3)\\ < 5p r^1 6s>(4d^25p-4d^26s)\\ < 5p r^1 5d>(4d^25p-4d^26s)\\ < 4d r^1 5p>(4d^25p-4d^25d)\\ < 4d r^1 5p>(4d^25p-4d^25s)\\ < 5p r^1 4d>(4d5s5p-4d^25s)\\ < 5p r^1 5p>(4d5s5p-4d5s^2)\\ < 5p r^1 4d>(5s^2p-4d5s^2)\\ < 5p r^1 4d>(5s^2p-4d5s^2)\\ < 6p r^1 5s>(4d^26p-4d^25s)\\ < 6p r^1 5s>(4d^26p-4d^3)\\ \end{array}$	- 3.1522 1.7605 - 1.481 2.289 1.584 1.408 - 2.995 - 7.88 1.267 - 0.03 0.25	0.02 0.01 0.79 0.01 0.01 0.01 0.02 0.04 0.01 0.02 0.01 0.02 0.01

Table 6

Optimized radial parameter values (in $\mbox{cm}^{-1})$ adopted in the $\mbox{HFR}+\mbox{CPOL}$ model.

Configuration	Parameter	Ab initio value	Fitted value	Ratio
Even parity				
4d ² 5s	Eav	8394	8185	
	$F^{2}(4d, 4d)$	48,301	36,089	0.747
	$F^{4}(4d, 4d)$	31,255	23,579	0.754
	α		- 13	
	β		345	
	ζ4d	404	377	0.933
	G ² (4d,5s)	15,827	13,124	0.829
4d5s ²	Eav	17,393	16,265	
	ζ _{4d}	458	445	0.972
4d ³	Eav	13,048	12,076	
	F ² (4d,4d)	44,605	32,982	0.739
	F ⁴ (4d,4d)	28,637	19,489	0.681
	α		3	
	β		354	
	ζ4d	352	317	0.901
Odd parity				
dd ² Ep	E	26 627	27 407	
4u Sp	E_{av} $E^2(Ad Ad)$	40.221	27,437	0.750
	Γ (40,40) Γ^{4} (4d,4d)	49,201	21,222	0.759
	г (40,40)	51,924	21,090	0.080
	ß		315	
	р 7	/15	200	0.040
	54d	620	974	1 /10
	$F^{2}(Ad 5n)$	17387	13 30/	0.770
	$C^{1}(4d,5p)$	9035	7302	0.770
	$G^{3}(4d5n)$	6944	4784	0.689
4d5s5n	G (40,5p) F	42 524	44 836	0.005
lussop	Lav (A)	467	432	0 925
	54a	776	834	1075
	$F^{2}(4d 5n)$	18 831	17,090	0.908
	$G^{2}(4d5s)$	15,417	11,695	0.759
	$G^{1}(4d5n)$	9031	8672	0.960
	$G^{3}(4d.5p)$	7204	4857	0.674
	$G^{1}(5s.5p)$	34.180	24.825	0.726
$4d^{2}5p-4d5s5p$	$R^{2}(4d4d.4d5s)$	- 18.830	- 13.797	0.733
	$R^{2}(4d5p.5s5n)$	- 16,560	- 12.133	0.733
	$R^{1}(4d5p,5s5p)$	- 16,663	- 12,209	0.733

help of Racah algebra and level eigenvectors. We then treat the radial integrals: $\int_0^\infty R_{nl}(r)rR_{n'l'}(r)dras$ free parameters in the least squares fit to experimental oscillator strength values as in [20]. We give the main extracted values in

Table 5. The values of the six remaining integrals are fixed to zero since they do not play any influent role in fitting procedure and then are subject inevitably to high uncertainties.

3. Pseudo-relativistic Hartree–Fock calculations

In order to assess the reliability of the results obtained with the oscillator strength parametrization approach, a second method was used for modelling the atomic structure and computing the radiative data in Zr II. This latter was the pseudo-relativistic Hartree-Fock (HFR) method, originally described by Cowan [18] and modified for taking corepolarization effects into account (HFR+CPOL, see e.g. [21,22]). For the present calculations, we adopted the same model as the one used in our previous study dedicated to the same ion [4]. The computational procedure included the following configurations: 4d5s², 4d5p², 4d5d², 4d4f², 4d5f², 4d5s6s, 4d5s5d, 4d5s6d, 4d5p4f, 4d5p5f, 4d²5s, 4d²6s, 4d²5d, 4d²6d, 4d³, 5s²6s, 5s²5d, 5s²6d (even parity) and 4d5s5p, 4d5s6p, 4d5s4f, 4d5s5f, 4d5p5d, 4d5d4f, 4d5d5f, 4d²5p, 4d²6p, $4d^{2}4f$, $4d^{2}5f$, $5s^{2}5p$, $5s^{2}6p$, $5s^{2}4f$, $5s^{2}5f$ (odd parity). A Zr^{4+} ionic core of the type 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶ was considered with a value for the dipole polarizability, α_d , equal to 2.98 a_0^3 [23] and a cut-off radius, $r_c = 1.35a_0$, which corresponds to the HFR expectation value of $\langle r \rangle$ for the outermost core orbital (4p). In addition, the final wavefunctions were obtained by a parametric fit of the radial energy parameters using the experimental energy levels. More precisely, the 35 even-parity levels reported by Moore [12] as belonging to 4d5s², 4d²5s and 4d³ were used to adjust the numerical values of the average energies (E_{av}) , the electrostatic integrals (F^k, G^k) and the spinorbit parameters (ζ_{nl}) together with the effective interaction parameters (α , β) corresponding to these three configurations. For the odd parity, the 68 experimental levels taken from the same compilation were used to optimize all the radial parameters, including the interaction configuration integrals (R^k) , corresponding to the 4d5s5p and 4d²5p configurations. The standard deviations of the fitting process were found to be equal to 46 cm⁻¹ for the even parity and 177 cm⁻¹ for the odd parity. The numerical values of the radial parameters adopted in our HFR+CPOL calculations are given in Table 6. All the other electrostatic integrals (not adjusted in the semi-empirical process) were reduced to 80% of their ab initio values, as suggested by Cowan [18], while the spin-orbit parameters were kept to their ab initio values.

4. Results and discussion

The radiative lifetimes computed using our HFR+CPOL model for all the 68 experimentally known odd-parity energy levels in Zr II were already reported in a previous paper [4]. In the latter, it was shown that an overall good agreement, within about 15% on average, was reached when comparing our results to available experimental data, if we except the $y \, {}^{2}F_{7/2}$ level at 37,787.59 cm⁻¹, the $z \, {}^{4}P_{3/2}$ level at 38,133.50 cm⁻¹, the $x \, {}^{2}P_{3/2}$ level at 45,568.21 cm⁻¹ for which unexplained larger discrepancies (up to a factor of 3) were found. In view of this general good agreement, we can expect the calculated HFR+CPOL radiative transition rates to be accurate to within 15–20%

Table 7
Oscillator strengths for selected transitions (log gf (HFR+CPOL) < -1.0) in Zr II.

λ (Å) ^a	Lower level ^b			Upper level ^b		log gf (Exp)	log gf (this wo	log gf (this work)	
	<i>E</i> (cm ⁻¹)		J	<i>E</i> (cm ⁻¹)		J	[5]	OSP	HFR+CPOL
1878.440	4506	(e)	2.5	57,741	(0)	3.5			-0.24
1893.448	4248	(e)	1.5	57,062	(0)	2.5			-0.54
1902.714	4506	(e)	2.5	57,062	(0)	2.5			-0.93
1911.273	4248	(e)	1.5	56,569	(o)	2.5			-0.76
1920.715	4506	(e)	2.5	56,569	(o)	2.5			-0.27
1938.464	4248	(e)	1.5	55,836	(o)	1.5			-0.22
1948.177	4506	(e)	2.5	55,836	(o)	1.5			-0.62
1948.973	5753	(e)	2.5	57,062	(o)	2.5			-0.22
1950.323	6468	(e)	3.5	57,741	(0)	3.5			-0.31
1981.857	6112	(e)	1.5	56,569	(0)	2.5			-0.68
1995.935	6468	(e)	3.5	56,569	(0)	2.5			0.17
1996.701	5753	(e)	2.5	55,836	(0)	1.5			-0.07
2015.951	8153	(e)	4.5	57,741	(0)	3.5			-0.33
2030.865	7838	(e)	3.5	57.062	(0)	2.5			-0.45
2064.031	13.429	(e)	1.5	61.862	(0)	1.5			-0.91
2095.814	14.163	(e)	2.5	61.862	(0)	1.5			0.06
2109 659	13 429	(e)	15	60.815	(0)	0.5			-0.20
2121 186	14 733	(e)	2.5	61.862	(0)	15			-0.38
2127.100	6112	(e)	15	52 877	(0)	1.5			-0.82
2137.073	14 299	(e)	1.5	60,815	(0)	0.5			-0.71
2791 111	13 429	(c) (e)	1.5	57.062	(0)	2.5			0.16
2201.111	14 163	(c) (a)	2.5	57 7/1	(0)	2.5			0.10
2204.015	14,100	(c) (a)	2.5	57 7/1	(0)	3.5			0.30
2233.400	13 /20	(e)	4.5	56 560	(0)	2.5			0.12
2317.272	14 722	(e)	1.5	57 741	(0)	2.5			-0.05
2324.440	14,755	(e)	2.5	57,741	(0)	3.5			-0.44
2324.740	14,000	(e)	3.5	57,002	(0)	2.5			0.08
2330.330	14,103	(e)	2.3	57,002	(0)	2.5			-0.10
2337.734	14,299	(e)	1.5	57,062	(0)	2.5			-0.97
2351.686	14,060	(e)	3.5	50,569	(0)	2.5			-0.86
2357.378	13,429	(e)	1.5	55,836	(0)	1.5			0.07
2357.406	14,163	(e)	2.5	50,569	(0)	2.5			0.07
2372.940	5/53	(e)	2.5	47,882	(0)	2.5			-0.61
2387.201	6468	(e)	3.5	48,345	(0)	3.5			-0.60
2392.669	20,080	(e)	1.5	61,862	(0)	1.5			-0.27
2398.926	14,163	(e)	2.5	55,836	(0)	1.5			-0.95
2426.391	19,614	(e)	0.5	60,815	(0)	0.5			-0.60
2441.993	4248	(e)	1.5	45,186	(0)	2.5			-0.97
2449.844	4248	(e)	1.5	45,055	(0)	1.5			-0.14
2457.433	4506	(e)	2.5	45,186	(o)	2.5			0.02
2487.300	8153	(e)	4.5	48,345	(o)	3.5			-0.50
2496.491	7838	(e)	3.5	47,882	(o)	2.5			-0.73
2503.354	0	(e)	1.5	39,934	(o)	0.5			-0.10
2532.481	763	(e)	3.5	40,239	(0)	3.5	-0.69	-0.68	-0.60
2542.122	315	(e)	2.5	39,640	(o)	2.5	-0.64	-0.55	-0.46
2550.753	0	(e)	1.5	39,192	(o)	1.5	-0.64	-0.64	-0.54
2568.891	1323	(e)	4.5	40,239	(o)	3.5	0.32	0.32	0.39
2571.400	315	(e)	2.5	39,192	(o)	1.5	0.04	-0.01	0.10
2571.468	763	(e)	3.5	39,640	(0)	2.5	0.23	0.16	0.26
2583.410	4506	(e)	2.5	43,202	(0)	2.5			-0.83

Table 2	7 (cont	inued)
---------	---------	--------

λ (Å) ^a	Lower level ^b			Upper level ^b			$\log gf(Exp)$	log gf (this work)	
	<i>E</i> (cm ⁻¹)		J	<i>E</i> (cm ⁻¹)		J	[5]	OSP	HFR+CPOL
2589.066	4248	(e)	1.5	42,861	(0)	2.5			-0.67
2609.647	19,433	(e)	3.5	57,741	(o)	3.5			-0.68
2630.891	4506	(e)	2.5	42,504	(o)	3.5			-0.42
2639.082	763	(e)	3.5	38,644	(o)	4.5	-0.67	-0.95	-0.77
2662.525	19,515	(e)	2.5	57,062	(o)	2.5			-0.86
2678.646	1323	(e)	4.5	38,644	(o)	4.5	0.28	0.08	0.25
2681.747	763	(e)	3.5	38,041	(o)	3.5		-0.79	-0.50
2691.991	19,433	(e)	3.5	56,569	(o)	2.5			-0.32
2692.594	8058	(e)	2.5	45,186	(o)	2.5			-0.80
2693.522	315	(e)	2.5	37,430	(o)	3.5	-0.98	- 1.21	-0.75
2694.052	5753	(e)	2.5	42,861	(0)	2.5			-0.67
2699.593	315	(e)	2.5	37,346	(0)	2.5	- 1.17	-0.83	-0.61
2700.139	763	(e)	3.5	37,788	(0)	3.5	-0.08	-0.36	-0.76
2711.502	0	(e)	1.5	36,869	(0)	2.5	-0.80	- 1.12	-0.94
2712.418	315	(e)	2.5	37,171	(0)	2.5	-0.99	-0.90	-0.49
2722.610	1323	(e)	4.5	38,041	(0)	3.5	0.06	-0.60	-0.46
2726.491	763	(e)	3.5	37,430	(0)	3.5	-0.22	-0.50	-0.04
2726.937	25,202	(e)	0.5	61,862	(0)	1.5			-0.25
2728.561	0	(e)	1.5	36,639	(0)	1.5		-0.65	-0.73
2734.845	315	(e)	2.5	36.869	(0)	2.5	-0.06	-0.43	-0.35
2739.731	20.080	(e)	1.5	56,569	(0)	2.5			-0.58
2741.569	1323	(e)	4.5	37,788	(0)	3.5	-0.90	-0.51	-0.23
2742.538	0	(e)	1.5	36.452	(0)	1.5	-0.14	-0.59	-0.24
2745.854	763	(e)	3.5	37.171	(0)	2.5	-0.31	-0.45	-0.60
2752.200	315	(e)	2.5	36.639	(0)	1.5	-0.15	- 1.13	-0.46
2752.438	19.515	(e)	2.5	55.836	(0)	1.5			-0.44
2758.792	0	(e)	1.5	36.237	(0)	0.5	-0.56	-0.91	-0.58
2759.938	19.614	(e)	0.5	55.836	(0)	1.5			-0.83
2766.421	315	(e)	2.5	36.452	(0)	1.5		-0.74	-0.75
2768.740	1323	(e)	4.5	37,430	(0)	3.5	-0.93	- 1.35	-0.42
2768.839	763	(e)	3.5	36.869	(0)	2.5		-2.29	-0.31
2774.145	6468	(e)	3.5	42,504	(0)	3.5			-0.57
2796.899	5724	(e)	0.5	41,468	(0)	1.5			-0.66
2799.135	5753	(e)	2.5	41,468	(0)	1.5			-0.94
2807.142	25.202	(e)	0.5	60.815	(0)	0.5			-0.73
2810 916	6112	(e)	15	41 677	(0)	2.5			-0.41
2818.738	7736	(e)	1.5	43.202	(0)	2.5			-0.06
2825.555	7513	(e)	0.5	42.894	(0)	1.5			-0.07
2833 909	7513	(e)	0.5	42,789	(0)	0.5			-0.79
2839 331	6468	(e)	3.5	41 677	(0)	2.5			-0.78
2843 506	7736	(e)	15	42,894	(0)	15			-0.53
2844 576	8058	(e)	2.5	43 202	(0)	2.5			0.29
2848 180	5753	(e)	2.5	40.853	(0)	3.5			-0.61
2851 967	7736	(e)	15	42,789	(0)	0.5			-0.08
2869 802	8058	(e)	2.5	42,894	(0)	1.5			-0.08
2883 794	7838	(e)	3.5	42 504	(0)	3.5			-0.94
2901 623	13 429	(e)	15	47 882	(0)	2.5			-0.60
2905 227	6468	(e)	3.5	40.878	(0)	45			-0.59
2910 245	8153	(e)	45	42 504	(0)	3.5			-0.93
2915 973	3758	(e)	45	38 041	(0)	3.5	-0.50	-0.80	-0.29
2010.070	5750	(0)	1.5	30,011	(0)	3.5	0.50	0.00	0.23

2918.246	8153	(e)	4.5	42,410	(0)	5.5			-0.10
2924.660	14,163	(e)	2.5	48,345	(0)	3.5			-0.66
2927.019	14,190	(e)	4.5	48,345	(0)	3.5			0.45
2936.286	3300	(e)	3.5	37,346	(0)	2.5	-0.88	- 1.20	-0.99
2937.730	3758	(e)	4.5	37,788	(0)	3.5		-0.81	-0.65
2948.950	7838	(e)	3.5	41,738	(0)	4.5			-0.26
2951.465	3300	(e)	3.5	37,171	(0)	2.5	-0.77	-0.71	-0.40
2955.781	14,060	(e)	3.5	47,882	(0)	2.5			0.31
2962.673	2895	(e)	2.5	36.639	(o)	1.5	-0.57	-0.60	-0.46
2969.592	2572	(e)	1.5	36.237	(0)	0.5	-0.70	-0.74	-0.66
2976.614	8153	(e)	4.5	41,738	(0)	4.5			-0.39
2981.001	4506	(e)	2.5	38.041	(0)	3.5	-0.80	-0.39	-0.48
3003.743	4506	(e)	2.5	37.788	(0)	3.5	-0.55	- 1.52	-0.39
3005.444	19.614	(e)	0.5	52.877	(0)	1.5			-0.96
3020.450	4248	(e)	1.5	37,346	(0)	2.5	-0.56	-0.47	-0.48
3028 045	7838	(e)	3.5	40.853	(0)	35			-0.01
3036.514	4248	(e)	1.5	37.171	(0)	2.5	-0.96	-2.53	-0.95
3048.219	20.080	(e)	1.5	52.877	(0)	1.5			-0.53
3054 837	8153	(e)	4.5	40.878	(0)	4 5			0.08
3057 221	8153	(e)	45	40.853	(0)	3.5			-0.93
3083 458	7513	(e)	0.5	39 934	(0)	0.5			-0.47
3095.073	315	(e)	2.5	32,615	(0)	2.5	-0.84	-0.61	-0.72
3099 231	0	(e)	1.5	32,257	(0)	15	-0.96	-0.73	-0.85
3106 581	8058	(e)	2.5	40 239	(0)	3.5	0.09	0.14	0.00
3110 871	763	(e)	3.5	32,800	(0)	3.5	- 0.90	-0.64	-0.68
3125 926	0	(e)	1.5	31 981	(0)	0.5	-0.70	-0.54	-0.60
3129 153	4748	(e)	1.5	36 197	(0)	0.5	-0.70	-0.50	-0.00
3129.763	315	(e)	2.5	32 257	(0)	1.5	_0.54	_ 0 39	-0.49
3133 480	7736	(e)	1.5	30,640	(0)	2.5	0.19	0.08	0.00
3139,683	763	(e)	3.5	32,615	(0)	2.5	0.37	0.00	0.00
3155 684	703	(e)	0.5	30 102	(0)	2.5	-0.57	-0.25	0.34
3156 996	4248	(e)	1.5	35,152	(0)	1.5	-0.93	-0.88	-0.58
3164 303	5753	(e)	2.5	37 346	(0)	2.5	-0.33	-0.24	-0.05
3165.452	8058	(e)	2.5	39,640	(0)	2.5	-0.69	-0.87	-0.59
3165 001	1323	(e)	4.5	32,800	(0)	3.5	0.13	0.01	0.00
3166 258	6468	(e)	3.5	32,033	(0)	3.5	0.51	0.01	0.00
3178 091	7736	(e)	1.5	30,041	(0)	1.5	-0.62	-0.61	-0.46
3181 938	5753	(e)	2.5	37171	(0)	2.5	-0.75	_ 2 32	-0.40
3182 849	4506	(e)	2.5	35,915	(0)	1.5	0.01	0.07	0.13
3101 027	6468	(e)	3.5	37 788	(0)	3.5	-0.52	- 2.00	-0.17
3214 190	763	(e)	3.5	31,866	(0)	45	-0.40	-0.38	-0.30
3231 692	315	(e)	2.5	31,000	(0)	3.5	-0.47	-0.42	-0.33
3236.631	14 299	(e)	1.5	45 186	(0)	2.5	0.17	0.12	_0.91
32/1 0/2	315	(e)	2.5	31 160	(0)	2.5	0.57		-0.51
3241.042	14 733	(e)	2.5	45 568	(0)	1.5	-0.57		0.88
3250 /36	14,755	(e)	2.5	45,508	(0)	1.5			- 0.88
3264 800	7513	(e)	0.5	39 137	(0)	1.5	1 21	0.57	- 0.04
3204.003	1212	(e)	1.5	34 810	(0)	0.5	- 1.21	-0.57	0.05
2271.125	4248	(e)	1.5	20 551	(0)	0.5			- 0.85
2272.221	1222	(e)	1.5	21 966	(0)	2.5	0.20	0.22	-0.49
3273.007	1323	(E) (a)	4.5	31,000	(0)	4.5	0.50	0.55	0.33
2797 9200	1/1 733	(e)	2.5	J 1,249 15 186	(0)	2.5	0.12	0.10	0.15
3202.037	14,735	(0)	2.5	40,100	(0)	2.3	0.27	0.45	0.17
3204.703 2205 772	U 11 09 /	(e) (a)	1.5	30,433 42,410	(0)	1.0	-0.57	-0.45	- 0.41
3283.113	11,984	(e)	4.5	42,410	(0)	5.5			-0./1
3283.88U	8008 7726	(e)	2.5	20,483 20,124	(0)	2.5	0.20	0.42	-0.4/
3288./99 3306.401	//30	(e)	1.5	38,134	(0)	1.5	-0.38	-0.42	-0.29
3290.401	//30	(e)	1.5	38,003	(0)	0.5			-0.87

Tabl	e 7	(continued)
------	-----	------------	---

λ (Å) ^a	Lower level ^b			Upper level ^b			log gf (Exp)	log gf (this work)	
	<i>E</i> (cm ⁻¹)		J	<i>E</i> (cm ⁻¹)		J	[5]	OSP	HFR+CPOL
3302.661	9969	(e)	2.5	40,239	(0)	3.5	- 1.01	- 1.33	-0.78
3305.153	315	(e)	2.5	30,562	(0)	3.5	-0.65	-0.82	-0.76
3306.275	315	(e)	2.5	30,551	(0)	2.5			-0.17
3314.488	5753	(e)	2.5	35,915	(o)	1.5	-0.79	-0.71	-0.63
3322.974	6112	(e)	1.5	36,197	(0)	0.5			-0.54
3324.027	8058	(e)	2.5	38,134	(0)	1.5		-2.41	-0.64
3326.800	12,360	(e)	5.5	42,410	(0)	5.5			-0.03
3334.228	8058	(e)	2.5	38,041	(0)	3.5	-0.35	-0.50	-0.22
3334.607	4506	(e)	2.5	34,485	(0)	3.5	-0.69	-0.78	-0.66
3337.955	7838	(e)	3.5	37,788	(0)	3.5	-1.54	- 5.13	-0.92
3340.574	1323	(e)	4.5	31,249	(0)	3.5	-0.57	-0.47	-0.45
3344.785	8153	(e)	4.5	38.041	(0)	3.5	-0.35	-0.10	-0.37
3354.390	6112	(e)	1.5	35,915	(0)	1.5	-0.92	-0.83	-0.71
3356.087	763	(e)	3.5	30,551	(0)	2.5			-0.39
3357.264	0	(e)	1.5	29.778	(0)	1.5	-0.66	-0.50	-0.48
3359 955	11 984	(e)	4 5	41 738	(0)	45			-0.28
3362.704	8058	(e)	2.5	37,788	(0)	3.5	-1.04	-0.43	-0.51
3373 443	8153	(e)	4 5	37 788	(0)	3.5	-0.44	-2.29	-0.02
3374 719	8058	(e)	2.5	37.682	(0)	15	-0.19	-011	-0.19
3387 873	7838	(e)	3.5	37 346	(0)	2.5	-0.14	-0.09	-0.02
3388 287	, 656	(e)	1.5	29 505	(0)	2.5	-0.41	-0.62	-0.53
3301.082	1323	(c) (e)	4.5	30 796	(0)	5.5	0.57	0.56	0.61
3303 122	315	(c) (e)	2.5	29 778	(0)	1.5	-0.74	-0.63	-0.61
3396 318	7736	(e)	1.5	37171	(0)	2.5	-0.63	_0.05	_0.43
3396 662	13 429	(c) (e)	1.5	42.861	(0)	2.5	-0.05	-0.45	-0.45
3300 330	2572	(c) (a)	1.5	31 081	(0)	0.5	0.72	0.64	0.55
3402 867	12 360	(c) (e)	5.5	41 738	(0)	4.5	-0.72	-0.04	0.04
3403 673	8058	(c) (a)	2.5	37/30	(0)	3.5	0.60	0.32	0.00
3403.075	2805	(e)	2.5	37,450	(0)	1.5	- 0.00	- 0.32	-0.35
2409.006	7020	(e)	2.5	27171	(0)	1.5	-0.45	- 0.40	-0.53
2410 226	2200	(e)	3.5	27,171	(0)	2.5	-0.00	- 3.32	-0.32
3410.230	3758	(e)	5.5	32,015	(0)	2.5	-0.31	-0.22	-0.22
2421 552	7726	(e)	4.5	32,035	(0)	3.5	- 0.10	- 0.05	-0.04
2421.332	7750	(e)	1.5	20,009	(0)	2.5	-0.93	-0.70	-0.95
2422.234	7,515	(e)	0.5	27171	(0)	1.5	-0.72	-0.70	- 0.04
2422.900	5724	(e)	2.5	24,910	(0)	2.5	-0.89	-0.72	-0.72
2427.120	5724	(e) (a)	0.5	20,840	(0)	0.5	0.41	0.40	-0.41
2457549	705	(e)	3.5	29,840	(0)	4.5	0.41	0.40	0.45
2457.548	4506	(e)	2.5	35,419	(0)	2.5	0.48	0.54	-0.41
3458.920	//30	(e)	1.5	36,639	(0)	1.5	-0.48	-0.54	-0.45
3459.960	11,984	(e)	4.5	40,878	(0)	4.5			-0.76
3463.018	11,984	(e)	4.5	40,853	(0)	3.5			0.38
3471.112	14,060	(e)	3.5	42,861	(0)	2.5			-0.44
34/8.495	9/43	(e)	1.5	38,483	(0)	2.5	0.07	0.75	-0.85
34/9.028	4248	(e)	1.5	32,984	(0)	1.5	-0.67	-0.75	-0.61
34/9.383	5753	(e)	2.5	34,485	(0)	3.5	0.18	0.12	0.22
3480.368	7513	(e)	0.5	36,237	(0)	0.5	-0.78	-0.65	-0.64
3481.136	6468	(e)	3.5	35,186	(0)	4.5			0.34
3483.526	6112	(e)	1.5	34,810	(0)	0.5			-0.37
3496.191	315	(e)	2.5	28,909	(0)	3.5	0.26	0.24	0.29
3505.482	12,360	(e)	5.5	40,878	(0)	4.5			0.28

3505.682	1323	(e)	4.5	29,840	(0)	4.5	-0.39	-0.39	-0.31
3506.047	9969	(e)	2.5	38.483	(o)	2.5			-0.68
3514 631	14 060	(e)	3.5	42 504	(0)	3.5			-0.82
3521 273	07/3	(e)	1.5	38 13/	(0)	1.5	1 20	1 /1	0.02
2525.202	2805	(e)	1.5	21 240	(0)	1.5	- 1.55	- 1.41	-0.73
3525.805	2895	(e)	2.5	51,249	(0)	5.5	-0.96	-0.86	-0.85
3527.422	14,163	(e)	2.5	42,504	(0)	3.5			-0.17
3529.989	9743	(e)	1.5	38,063	(0)	0.5			-0.96
3530.855	14,190	(e)	4.5	42,504	(o)	3.5			-0.34
3542.639	14,190	(e)	4.5	42,410	(0)	5.5			0.44
3549.511	9969	(e)	2.5	38,134	(0)	1.5	-0.72	-0.35	-0.21
3551.938	763	(e)	3.5	28,909	(0)	3.5	-0.36	- 0.35	-0.29
3554.079	9553	(e)	0.5	37,682	(0)	1.5	-0.81	- 0.57	-0.57
3556.585	3758	(e)	4.5	31.866	(0)	4.5	0.07	0.13	0.17
3565 415	13 429	(e)	15	41 468	(0)	15			-0.58
3572 472	15,125	(e)	1.5	27.084	(0)	2.5	0.03	0.06	0.50
2572.972	2572	(e)	1.5	27,504	(0)	2.5	0.05	0.00	0.10
2576.042	2372	(e)	1.5	21,240	(0)	2.5	0.12	0.02	-0.91
3370.842	5500	(e)	5.5	51,249	(0)	5.5	=0.12	-0.02	0.05
35/8.211	9743	(e)	1.5	37,682	(0)	1.5	-0.66	-0.49	-0.65
3587.943	2572	(e)	1.5	30,435	(0)	1.5	-0.80	-0.98	-0.96
3611.889	14,060	(e)	3.5	41,738	(o)	4.5			0.27
3612.309	25,202	(e)	0.5	52,877	(0)	1.5			-0.09
3613.102	315	(e)	2.5	27,984	(o)	2.5	-0.58	-0.57	-0.51
3614.765	2895	(e)	2.5	30,551	(0)	2.5			-0.14
3629.025	14,190	(e)	4.5	41,738	(0)	4.5			-0.80
3633.488	14.163	(e)	2.5	41.677	(0)	2.5			-0.55
3650 697	25 202	(e)	0.5	52 586	(0)	0.5			-0.31
3662 127	13 429	(e)	1.5	40 727	(0)	0.5			-0.45
2671 265	5752	(c)	1.5	22.094	(0)	1.5	0.58	0.42	0.52
2674.606	3733	(e)	2.5	32,564	(0)	1.5	-0.58	-0.43	-0.32
3074.090	2572	(e)	1.5	29,778	(0)	1.5	-0.51	-0.59	-0.55
36/8.8/8	14,163	(e)	2.5	41,337	(0)	1.5			-0.16
3679.607	14,299	(e)	1.5	41,468	(0)	1.5			-0.83
3697.435	3758	(e)	4.5	30,796	(0)	5.5	-0.78	-0.71	-0.65
3698.152	8153	(e)	4.5	35,186	(0)	4.5			0.25
3709.266	6468	(e)	3.5	33,419	(0)	2.5			-0.16
3710.421	14,733	(e)	2.5	41,677	(0)	2.5			-0.72
3714.794	4248	(e)	1.5	31,160	(0)	2.5	-0.96		-0.93
3727.711	14.060	(e)	3.5	40.878	(o)	4.5			-0.28
3731.260	14.060	(e)	3.5	40.853	(0)	3.5			0.01
3745 966	14 190	(e)	45	40.878	(0)	45			0.12
3751.606	7838	(e)	3.5	34 485	(0)	3.5	0.00	0.02	0.10
3766 705	3300	(c) (e)	3.5	20.840	(0)	4.5	0.83	0.02	0.10
2706 402	9153	(e)	J.J 4 E	24,495	(0)	4.J 2.F	0.80	-0.77	-0.70
3/90.493	8155	(e)	4.5	54,465	(0)	5.5	-0.89	-0.85	-0.74
3817.593	4248	(e)	1.5	30,435	(0)	1.5	- 1.13	-0.91	-0.80
3836.762	4506	(e)	2.5	30,562	(0)	3.5	-0.12	- 0.10	-0.03
3842.995	2895	(e)	2.5	28,909	(0)	3.5	-0.94	-0.89	-0.81
3881.971	19,433	(e)	3.5	45,186	(0)	2.5			-0.47
3914.313	19515	(e)	2.5	45,055	(0)	1.5			-0.52
3915.959	4248	(e)	1.5	29,778	(0)	1.5	-0.85	- 1.12	-0.92
3929.499	19,614	(e)	0.5	45,055	(0)	1.5			-0.91
3934.094	2572	(e)	1.5	27,984	(0)	2.5	-1.08	- 1.03	-0.95
3934.791	5753	(e)	2.5	31.160	(0)	2.5	-0.91		-0.81
3958 230	4248	(e)	15	29 505	(0)	2.5	-0.32	-030	-0.22
3982 025	20.080	(e)	1.5	45 186	(0)	2.5	0.52	0.50	-0.84
2001 152	£112	(c)	1.5	21 160	(0)	2.5	0.21		- 0.04
2000.054	0112	(e)	1.5	31,100	(0)	2.5	-0.51	0.40	-0.18
3998.954	4506	(e)	2.5	29,505	(0)	2.5	-0.52	-0.49	-0.40
4024.417	8058	(e)	2.5	32,899	(0)	3.5	- 1.13	- 1.16	-0.92
4029.684	5753	(e)	2.5	30,562	(0)	3.5	-0.78	-0.77	-0.68

Table 7	(continued)
---------	------------	---

$\lambda (\hat{A})^{a}$	Lower level ^b			Upper level ^b			log gf (Exp) log gf (this work)		
	<i>E</i> (cm ⁻¹)		J	<i>E</i> (cm ⁻¹)		J	[5]	OSP	HFR+CPOL
4045.638	5724	(e)	0.5	30,435	(0)	1.5	-0.86	-0.71	-0.60
4048.680	6468	(e)	3.5	31,160	(o)	2.5	-0.53		-0.43
4050.316	5753	(e)	2.5	30,435	(0)	1.5	-1.06	-0.86	-0.74
4149.217	6468	(e)	3.5	30,562	(o)	3.5	-0.04	-0.03	0.06
4156.276	5724	(e)	0.5	29,778	(o)	1.5	-0.78	-0.97	-0.86
4161.213	5753	(e)	2.5	29,778	(o)	1.5	-0.59	-0.69	-0.62
4179.807	13,429	(e)	1.5	37,346	(o)	2.5	-0.68	-0.92	-0.84
4191.508	14,190	(e)	4.5	38,041	(o)	3.5	-1.07	-0.82	-0.90
4208.977	5753	(e)	2.5	29,505	(o)	2.5	-0.51	-0.49	-0.42
4231.668	14,163	(e)	2.5	37,788	(o)	3.5	-0.79	-2.51	-0.74
4236.609	14,190	(e)	4.5	37,788	(o)	3.5		-2.39	-0.57
4282.206	19,515	(e)	2.5	42,861	(o)	2.5			-0.43
4289.143	14,733	(e)	2.5	38,041	(o)	3.5	-1.68	-0.88	-0.80
4293.116	14,060	(e)	3.5	37,346	(o)	2.5	-1.01	-1.08	-0.77
4333.252	19,433	(e)	3.5	42,504	(o)	3.5			-0.32
4336.381	14,733	(e)	2.5	37,788	(o)	3.5	-1.75	- 3.05	-0.42
4337.614	14,299	(e)	1.5	37,346	(o)	2.5	-1.22	-0.92	-0.54
4359.720	9969	(e)	2.5	32,899	(o)	3.5	-0.51	-0.36	-0.30
4370.819	14,299	(e)	1.5	37,171	(o)	2.5		-3.84	-0.99
4370.947	9743	(e)	1.5	32,615	(o)	2.5	-0.77	-0.67	-0.60
4379.742	12,360	(e)	5.5	35,186	(o)	4.5			-0.19
4414.539	9969	(e)	2.5	32,615	(0)	2.5	- 1.08	-1.00	-0.95
4440.452	9743	(e)	1.5	32,257	(0)	1.5	-1.04	-0.94	-0.89
4443.007	11,984	(e)	4.5	34,485	(0)	3.5	-0.42	-0.56	-0.31
4482.048	19,433	(e)	3.5	41,738	(0)	4.5			-0.98
4494.418	19,433	(e)	3.5	41,677	(0)	2.5			-0.18
4496.980	5753	(e)	2.5	27,984	(0)	2.5	-0.89	-0.97	-0.84
4553.934	19,515	(e)	2.5	41,468	(o)	1.5			-0.40
4574.502	19,614	(e)	0.5	41,468	(0)	1.5			-0.74
4601.953	19,614	(e)	0.5	41,337	(0)	1.5			-0.89
4629.079	20,080	(e)	1.5	41,677	(0)	2.5			-0.35
4661.784	19,433	(e)	3.5	40,878	(0)	4.5			-0.58
4685.185	19,515	(e)	2.5	40,853	(o)	3.5			-0.53
4703.003	20,080	(e)	1.5	41,337	(0)	1.5			-0.60
5350.089	14,733	(e)	2.5	33,419	(0)	2.5			-0.33
5350.373	14,299	(e)	1.5	32,984	(0)	1.5	- 1.16	-0.78	-0.57

204

^a The wavelengths, given in vacuum (air) below (above) 2000 Å are deduced from the experimental energy level values. ^b Experimental energy levels taken from [12].

at least for most of the strongest lines. In Table 7, we give the oscillator strengths computed in the present work using both methods described in Sections 2 and 3 for a sample of about 300 selected Zr II transitions in the spectral region from 1878 to 5350 Å. More precisely, only lines with HFR+CPOL log gf-values greater than -1.0 are reported in this table in which are also given the available numerical values deduced from experimental measurements [5]. A more comprehensive table containing the radiative parameters for 1329 Zr II lines covering the wavelength range 1616–14,746 Å is available as Supplementary file.

When looking at Table 7, we can notice that oscillator strengths computed with both methods used in the present work agree generally within 30% although much larger discrepancies (up to several orders of magnitude) are observed for some lines, such as those appearing e.g. at 3003.743, 3036.514, 3181.938, 3191.927, 3337.955, 3373.443, 3408.096, 4231.668, 4236.609 and 4336.381 Å. However, for these transitions, although non-negligible discrepancies subsist, our HFR+CPOL results tend toward better agreement with the available experimental gfvalues than those obtained with the oscillator strength parametrization approach. This is confirmed by the quite good agreement between the HFR+CPOL lifetimes and laser spectroscopy measurements previously reported [4] for the odd-parity levels involved in the corresponding transitions, i.e. those situated at 37,171 cm⁻¹ (J=5/2) and $37,788 \text{ cm}^{-1}$ (*I*=7/2).

The comparison between oscillator strengths calculated in the present work using our two semi-empirical approaches is illustrated in Fig. 1 for Zr II transitions with $\log gf < -2.0$. It is not worth making the comparison for weaker transitions since most of them were found to be affected by large cancellation effects in the HFR+CPOL line strength calculations, indicating that those results could be affected by large uncertainties. It is clear from this figure that, if a satisfactory agreement between both sets of results is found for a large number of lines, rather large discrepancies subsist in several cases, in particular for weak transitions characterized by log gf-values smaller than -1.0. Each set of our semi-empirical results is separately compared with available experimental data in Figs. 2 and 3. When looking at those figures, it is found that both the oscillator strength parametrization and the pseudo-relativistic Hartree-Fock methods lead to radiative rates of the same order of accuracy for an atomic system so complex as that of singly ionized zirconium.

5. Conclusion

Advances in the measurement of oscillator strengths are due both to the introduction of new techniques—in particular, fast-beam and laser spectroscopy—and to the technological improvement of the classical methods: a large number of astrophysically important transition probabilities have in fact been determined and moreover a notable improvement in precision has been brought; consequently the first measurements of solar abundance of most iron-group elements had been revised. Theoretically a large number of methods arised from investigations

Fig. 1. Comparison between the log *gf*-values obtained in the present work with the oscillator strength parametrization method (OSP) and the pseudo-relativistic Hartree–Fock approach including core-polarization effects (HFR+CPOL). Only transitions with log *gf* < -2 are shown in the figure.

Fig. 2. Comparison between the log *gf*-values obtained in the present work with the pseudo-relativistic Hartree–Fock approach including corepolarization effects (HFR+CPOL) and the available experimental data [5]. Only transitions with log gf < -2 are shown in the figure.

of the structure of stellar atmospheres based on reliable laboratory transition probabilities. We propose in this work two semi-empirical ways to express the strengths of Zr II optical transitions and to compare obtained data. A good agreement is observed between results obtained by these two approaches since one can see really bisecting line plots in Figs. 1–3. Furthermore these two methods confirm the well-founded basis of experimental data found in literature [5].

Fig. 3. Comparison between the log *gf*-values obtained in the present work with the oscillator strength parametrization method (OSP) and the available experimental data [5]. Only transitions with log gf < -2 are shown in the figure.

Acknowledgments

PP and PQ are, respectively, Research Director and Research Associate of the Belgian Fund for Scientific Research F.R.S.-FNRS. Financial support from this organization is gratefully acknowledged (Grant n° FC 49142). SB deeply thanks Dr. J. Ruczkowski and Dr. M. Elantkowska for providing program package for oscillator strength parametrization.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jqsrt.2015.06.011.

References

- Bouazza S, Hannaford P, Wilson M. Fine structure of the odd-parity Rydberg series of Zr I. J Phys B 2003;36:1537 and references therein.
- [2] Corliss CH, Bozman WR. Experimental transition probabilities for spectral lines of seventy elements; derived from the NBS Tables of

spectral-lines intensities. (NBS Monograph). US Department of Commerce, National bureau of Standards: Washington.

- [3] Biémont E, Grevesse N, Hannaford P, Lowe RM. Oscillator strengths for Zr I and Zr II and a new determination of the solar abundance of zirconium. Astrophys J 1981;248:867.
- [4] Malcheva G, Blagoev K, Mayo R, Ortiz M, Xu HL, Svanberg S, et al. Radiative lifetimes and transition probabilities of astrophysical interest in Zr II. Mon Not R Astron Soc 2006;367:754–62.
- [5] Ljung G, Nilsson H, Asplund M, Johansson S. New and improved experimental oscillator strengths in Zr II and the solar abundance of zirconium. Astron Astrophys 2006;456:1181.
- [6] Bogdanovich P, Tautvaisiene G, Rudzikas Z, Momkauskaite A. A simple method of accounting for correlation effects in electron transitions and its application in finding oscillator strengths and the solar abundance of zirconium. Mon Not R Astron Soc 1995;280: 95.
- [7] Adelman S. Line identifications, elemental abundances, and equivalent widths for 21 sharp lined cool peculiar A stars and two comparison standards. Astrophys J 1973;26:1.
- [8] Sadakane K. Spectroscopic study of the Ap star 73 Draconis A model atmosphere analysis. Publ Astron Soc Jpn 1976;28:469.
- [9] Kodaira K, Takada M. Differential curve-of-growth analyses of Mn-Hg stars II. Analyses of 53 Aur, HR 6997, and 112 Her, and final summary. Ann Tokyo Astron Obs, Second Ser 1978;17:79.
- [10] Sikström CM, Lundberg H, Wahlgren GM, Li ZS, Lyngå C, Johansson S, et al. New Zr II oscillator strengths and the zirconium conflict in the HgMn star yLupi. Astron Astrophys 1999;343:297.
- [11] Kiess CC, Kiess HK. Lines, terms and Zeeman effect. NBS J Res 1931;6: 621.
- [12] Moore CE. Atomic energy levels NBS circular. Washington, DC: US Government Printing office; 1971.
- [13] Meggers WF, Corliss CH, Scribner BD. Tables of spectral-line intensities, Part 1. NBS 1975;145:1.
- [14] Bouazza S. Semi-empirical hyperfine structure and ab-initio isotope shift prédictions in Zr II. Int J Quant Chem 2011;111:3000.
- [15] Bouazza S, Quinet P, Palmeri P. Semi-empirical studies of atomic transition probabilities, oscillator strengths and radiative lifetimes in Hf II. J Quant Spectrosc Radiat Transf 2015;163:39.
- [16] Ruczkowski J, Elantkowska M, Dembczynski J. An alternative method for determination of oscillator strengths. The example of Sc II. J Quant Spectrosc Radiat Transf 2014;145:20.
- [17] Sobelman II. Atomic spectra and radiative transitions. Berlin: Springer-Verlag; 1978.
- [18] Cowan RD. The theory of atomic structure and spectra. *Berkeley*: Berkeley University of California Press; 1981.
- [19] Kurucz RL. Semiempirical calculation of gf values: Sc II (3d+4s²)-(3d+4s)4p. (http://adsabs.harvard.edu/abs/1973SAOSR.351...K).
- [20] Ruczkowski J, Elantkowska M, Dembsczynski J. Semi-empirical calculations of oscillator strengths and hyperfine structure for Ti II. J Quant Spectrosc Radiat Transf 2014;149:168.
- [21] Quinet P, Palmeri P, Biémont E, McCurdy MM, Rieger G, Pinnington EH, et al. Experimental and theoretical lifetimes, branching fractions and oscillator strengths in Lull. Mon Not R Astron Soc 1999;307:934.
- [22] Quinet P, Palmeri P, Biémont E, Li ZS, Zhang ZG, Svanberg S. Radiative lifetime measurements and transition probability calculations in lanthanide ions. J Alloys Compd 2002;344:255.
- [23] Johnson WR, Kolb D, Huang KN. Electric-dipole, quadrupole, and magnetic-dipole susceptibilities and shielding factors for closedshell ions of the He, Ne, Ar, Ni(Cu⁺), Kr, Pb, and Xe isoelectronic sequences. At Data Nucl Data Tables 1983;28:333.