Classical analogy for the deflection of flux avalanches by a metallic layer

Alejandro V. Silhanek

Experimental physics of nanostructured materials Physics Department, University of Liège BELGIUM

Collaborators

J Brisbois, O-A Adami, B Vanderheyden, N D Nguyen Université de Liège, BE

B Hackens, Université Catholique de Louvain, BE

F Colauto, M Motta, W A Ortiz, *Universidade Federal de Saõ Carlos, BR*

J Fritzsche, Chalmers University of Technology, SE

Magnetic flux avalanches

R. G. Mints and A. L. Rakhmanov, *Rev. Mod. Phys.* 53, 551 (1981)

Cu coating of superconducting solenoids

Kim Y B, Stephen M J and Parks R D 1969 Superconductivity vol 2

Suppression of flux avalanches

"The clear sensitivity of dendritic avalanches to the thickness of the gold layer suggests a thermal origin for the instability"

M. Baziljevich, *Physica C* 369 (2002) 93–96; Choi et al. Appl. Phys. Lett. 87, 152501 (2005)

Deflection of flux avalanches

 \checkmark Change of propagation direction depending on the incident angle.

 \checkmark The gold capping reduces the velocity v of the avalanches.

✓The propagation of an avalanche gives rise to large electric fields according to Faraday's law that cause high currents in the gold film.

Magnetic braking of flux avalanches

"Flux jumps are strongly suppressed when a metallic layer is located close—but not necessarily in contact. The effect is due to eddy currents induced in the metal preventing by electromagnetic braking large-scale vortex avalanches to develop."

Magnetic braking of vortices in semiconductor/superconductor hybrids

"significant additional damping of vortex motion caused by the eddy currents generated in the 2D electron gas"

$$\frac{F_D}{v} = \eta_T = \eta_{SC} + \eta_{2DEG} \approx \eta_{SC} + \frac{\sigma_{2DEG}}{\sigma_n d}$$

Danckwerts et al. (2000) Phys. Rev. Lett. 84, 3702; Baker and Rojo (2001) Phys. Rev. B 64, 14513

Research objectives

- ✓ What if the metallic layer is not covering the superconductor's borders ?
- May a single vortex also undergo deflection when entering the region covered by the metallic layer ?
- Can we think of a classical model mimicking the observed behavior ?

Avalanche exclusion

- ✓ No thermal shunt at the nucleation point of the avalanches
 ✓ Exclusion of flux avalanches by the Cu layer
- ✓ In the smooth (critical state) flux penetration regime, there is no difference between the sample with or without the Cu triangle

Brisbois et al. arXiv:1408.2420v1

Eddy currents and image method

Eddy currents and image method

Rossing T D and Hull J R 1991 *Phys. Teach.* **29** 552-562 | W.M.Saslow, *Am J. Phys.* **60**, 693 (1992)

$$F_L = (\mu_0 q^2 / 16\pi z_0^2) [1 - w / (v^2 + w^2)^{1/2}]$$

$$F_D = (w/v) F_L$$

Brisbois et al. arXiv:1408.2420v1

W.M.Saslow, Am J. Phys. 60, 693 (1992)

Borcherts R H and Davis L C 1972 J. Appl. Phys. 43 2418

Boundary effect

Borcherts R H and Davis L C 1972 J. Appl. Phys. 43 2418 | Davis L C and Reitz J R 1971 J. Appl. Phys. 42 4119

17

Vortex trajectories

Conclusion

- We are able to explain in classical terms the deflection of magnetic flux by a conducting layer
- ✓ Our classical analogy suggests a non-monotonous $F_D(v)$ relation
- ✓ Typical MOI experiments need an Al mirror of about 200nm. Does this mirror influence the measurements?
- Next step: what about replacing the Cu layer by a superconducting film?
- ✓ How LO instabilities are affected by a metallic layer?

Thank you

Université de Liège

Supplementary slides