Title: Induction of photosynthetic carbon fixation in anoxia relies on hydrogenase activity and PGRL1-mediated cyclic electron flow in *Chlamydomonas reinhardtii*.

Short Title: Photosynthesis induction in anoxic Chlamydomonas

Damien Godaux¹, Benjamin Bailleul¹, Nicolas Berne¹, Pierre Cardol¹

Author affiliation: ¹Genetics and Physiology of microalgae, PhytoSYSTEMS, Department of Life Sciences, University of Liège, B-4000 Liège, Belgium.

To whom correspondence should be addressed:
Pierre Cardol. Bvd du Rectorat, 27, B22, Institute of Botany, Dept of Life Sciences, University of Liège, 4000 Liège, Belgium. pierre.cardol@ulg.ac.be. Tel: +32 (0)43663840. ORCIDs, 0000-0001-9799-0546

Estimate of the length: 9 pages
ABSTRACT

The model green microalga *Chlamydomonas reinhardtii* is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in PGRL1-dependent cyclic electron flow around photosystem I (PSI-CEF), we demonstrate the sequential contribution of these alternative electron flows (AEF) in the reactivation of photosynthetic carbon fixation during a shift from dark-anoxia to light. At light onset, hydrogenase activity sustains a linear electron flow (LEF) from photosystem II (PSII) which is followed by a transient PSI-CEF in wild type. By promoting ATP synthesis without net generation of photosynthetic reductants, the two AEF are critical for restoration of the capacity for carbon dioxide fixation in the light. Our data also suggest that the decrease in hydrogen evolution with time of illumination might be due to competition for reduced ferredoxins between ferredoxin-NADPH oxidoreductase (FNR) and hydrogenases, rather than due to the sensitivity of hydrogenase activity to oxygen. Finally, the absence of the two alternative pathways in a double mutant *pgrl1 hydg-2* is detrimental for photosynthesis and growth, and cannot be compensated by any other AEF or anoxic metabolic responses. This highlights the role of hydrogenase activity and PSI-CEF in the ecological success of microalgae in low-oxygen environments.

One sentence summary

Photosynthesis and growth in anoxia critically depends at least on hydrogenase-dependent linear electron flow or PGRL-dependent PSI-cyclic electron flow in the green alga *Chlamydomonas reinhardtii*.

Keywords: Hydrogenase, Cyclic electron flow, Chlamydomonas, Anoxia
INTRODUCTION

Unicellular photosynthetic organisms like the green alga *Chlamydomonas reinhardtii* frequently experience anoxic conditions in their natural habitat, especially during the night when the microbial community consumes the available oxygen. Under anoxia, lack of ATP synthesis by F$_1$F$_0$ ATP synthase due to the absence of mitochondrial respiration is compensated by the activity of various plant-type and bacterial-type fermentative enzymes that drive a sustained glycolytic activity (Mus et al., 2007; Terashima et al., 2010; Grossman et al., 2011; Yang et al., 2014). In *C. reinhardtii*, upstream glycolytic enzymes including the reversible glyceraldehyde 3-phosphate dehydrogenase are located in the chloroplast (Johnson and Alric, 2012). This last enzyme is shared by the glycolysis (oxidative activity) and the Calvin-Benson-Bassham (CBB) cycle (reductive activity) (Johnson and Alric, 2013). In dark anoxic conditions, the CBB cycle is inactive thus avoiding wasteful using up of available ATP and depletion of the required intermediates for glycolysis. On the other side, ability of microalgae to perform photosynthetic carbon fixation when transferred from dark to light in the absence of oxygen might also be critical for adaptation to their environment. In such conditions, not only the LEF to RubisCO but also AEF towards oxygen (chlororespiration, Mehler reaction, mitochondrial respiration) (reviewed in (Cardol et al., 2011; Miyake, 2010; Peltier et al., 2010)) are impaired. Thus, cells need to circumvent a paradoxical situation: the activity of the CBB cycle requires the restoration of the cellular ATP but the chloroplastic CF$_1$F$_0$ ATP synthase activity is compromised by the impairment of most of the photosynthetic electron flows that usually generate the proton motive force in oxic conditions. Other AEF, specific to anoxic conditions, should therefore be involved to promote ATP synthesis without net synthesis of NADPH and explain the light-induced restoration of CBB cycle activity.

Among enzymes expressed in anoxia, the oxygen-sensitive hydrogenases (HYDA1 and HYDA2 in *Chlamydomonas*) catalyse the reversible reduction of protons into molecular hydrogen from the oxidation of reduced ferredoxins (FDX) (Florin et al., 2001). Although hydrogen metabolism in microalgae has been largely studied in the last 15 years in perspective of promising future renewable energy carriers (e.g. (Melis et al., 2000; Kruse et al., 2005; Ghirardi et al., 2009)), the physiological role of such an oxygen-sensitive enzyme linked to the photosynthetic pathway has been poorly considered. The forty-years ago proposal that H$_2$ evolution by hydrogenase is involved in induction of photosynthetic electron transfer after anoxic incubation (Kessler, 1973; Schreiber and Vidaver, 1974) has been only recently demonstrated in *C. reinhardtii*. Gas exchange measurements indeed showed that H$_2$ evolution occurs prior CO$_2$ fixation upon illumination (Cournac et al., 2002). At light onset after a prolonged period in dark anoxic conditions, the photosynthetic electron flow is mainly a LEF towards hydrogenase (Godaux et al., 2013) and lack of hydrogenase activity in *hydEF* mutant strain
deficient in hydrogenases maturation (Posewitz et al., 2004) induces a lag in induction of PSII activity (Ghysels et al., 2013). In cyanobacteria, the bidirectional Ni-Fe hydrogenase might also work as an electron valve for disposal of electrons generated at the onset of illumination of cells (Cournac et al., 2004) or when excess electrons are generated during photosynthesis, preventing the slowing of the electron transport chain under stress conditions (Carrieri et al., 2011; Appel et al., 2000). The bidirectional Ni-Fe hydrogenase could also dispose of excess of reducing equivalents during fermentation in dark anaerobic conditions, helping to generate ATP and maintaining homeostasis (Barz et al., 2010). A similar role for hydrogenase in setting the redox poise in the chloroplast of *Chlamydomonas reinhardtii* in anoxia has been recently uncovered (Clowez et al., 2015).

Still, the physiological and evolutionary advantages of hydrogenase activity have not been demonstrated so far and the mechanism responsible for the cessation of hydrogen evolution remains unclear. In this respect, at least three hypotheses have been formulated: (i) the inhibition of hydrogenase by O$_2$ produced by water photolysis (Ghirardi et al., 1997; Cohen et al., 2005), (ii) the competition between FNR and hydrogenase activity for reduced FDX (Yacoby et al., 2011), and (iii) the inhibition of electron supply to hydrogenases by the proton gradient generated by another AEF, the cyclic electron flow around PSI (Tolleter et al., 2011). Firstly described by Arnon in the middle 1950’s (Arnon, 1955), PSI-CEF consists in a reinjection of electrons from reduced FDX or NADPH pool in the plastoquinone (PQ) pool. By generating an additional trans-thylakoidal proton gradient without producing reducing power, this AEF thus contributes to adjust the ATP/NADPH ratio for carbon fixation in various energetic unfavourable conditions including anoxia (Tolleter et al., 2011; Alric, 2014), high light (Tolleter et al., 2011; Johnson et al., 2014), or low CO$_2$ (Lucker and Kramer, 2013). In *C. reinhardtii* two pathways have been suggested to be involved in PSI-CEF: (i) a type II NAD(P)H dehydrogenase (NDA2) (Jans et al., 2008) driving the electrons from NAD(P)H to the PQ pool, and (ii) a pathway involving Proton Gradient Regulation (PGR) proteins where electrons from reduced ferredoxins return to PQ pool or cytochrome $b_6$$f$. Not fully understood, this latter pathway comprises at least PGR5 and PGRL1 proteins (Tolleter et al., 2011; Johnson et al., 2014; Iwai et al., 2010) and is the major route for PSI-CEF in *C. reinhardtii* cells placed in anoxia (Alric, 2014).

In the present work, we took advantage of specific *C. reinhardtii* mutants defective in hydrogenase activity and PSI-CEF to study photosynthetic electron transfer after a period of dark-anoxic conditions. Based on biophysical and physiological complementary studies, we demonstrate that at least hydrogenase activity or PSI-CEF is compulsory for the activity of CBB cycle and for the survival of the cells submitted to anoxic conditions in their natural habitat.
RESULTS AND DISCUSSION

In anoxia, induction of PSII electron flow requires at least hydrogenase activity or PSI-cyclic electron flow.

To explore the interplay between hydrogenase activity, PSI-CEF and CBB cycle activity in *Chlamydomonas reinhardtii* in anoxia, we resorted to *pgrl1* mt- nuclear mutant defective in PSI-CEF (Tolleter et al., 2011) and to *hydg-2* mt+ nuclear mutant deprived of hydrogenase activity due to the lack of HYDG maturation factor (Godaux et al., 2013). We also isolated double mutants impaired in both AEF by crossing the *pgrl1* and *hydg-2* single mutants (Supplemental Figure 1). Results will be shown for one meiotic product (B1-21), named by convenience *pgrl1 hydg-2* in this report, but every double mutant meiotic product had the same behavior (Supplemental Figure 1). Similarly, both wild-type strains from which derived the single mutants have been compared for each parameter assessed in the present work and did not show any difference (Tables 1 and 2). Data presented refer to the parental wild-type strain of *hydg-2* mutant.

Induction of photosynthetic electron transfer in the wild type and the three mutant strains (*pgrl1*, *hydg-2*, *pgrl1 hydg-2*) was investigated. As an exciting light intensity, we choose a near saturating light intensity (250 µmol photons · m⁻² · s⁻¹) corresponding to ~100 e⁻ · s⁻¹ · PSII⁻¹ in oxic conditions (Table 1). In this range of light intensities, growth and photosynthesis of aerated cultures were similar for all the strains (Table 1). After one hour of acclimation to dark and anoxia, a time required for proper expression and activity of hydrogenases (Forestier et al., 2003; Godaux et al., 2013) (Supplemental Figure 2), we measured the hydrogen production rate (*J₂*), the yield of PSII and PSI (φPSII, φPSI), as well as the mean photochemical rate based on electrochromic shift (ECS) measurements (*Rₚₚ*) at the onset of light (10 seconds) (Table 2). In the two wild-type strains, in the *pgrl1* mutant and in the *PGRL1* complemented strain, *Rₚₚ* was about 20 e⁻ · s⁻¹ · PS⁻¹ and *J₂* was about 20 e⁻ · s⁻¹ · PSI⁻¹, which represents about 40 % of the maximal capacity measured for hydrogenase (Godaux et al., 2013). In wild-type, 20 e⁻ · s⁻¹ · PSI⁻¹ corresponds to an H₂ production rate of 0.58 µmoles H₂ · mg chlorophyll⁻¹ · min⁻¹, which is compatible with recent published values of ~0.25-0.36 µmoles H₂ · mg chlorophyll⁻¹ · min⁻¹ (Tolleter et al., 2011; Clowez et al., 2015). On the contrary, in the two mutants lacking hydrogenase activity (*hydg-2* and *pgrl1 hydg-2*), neither hydrogen production, nor significant photosynthetic activity was detected after 10 seconds of illumination (Table 2). The lack of PSII-driven electron flow in hydrogenase mutants (*hydg-2* and *pgrl1 hydg-2*) and the similar activities in wild type and *pgrl1* indicate that in this time range the activities of PSI and PSII are mainly dependent on the presence of the hydrogenases, in agreement with our previous results (Godaux et
Table 1. Growth rate, photosynthetic features and starch content in oxic conditions.

<table>
<thead>
<tr>
<th></th>
<th>Growth rate</th>
<th>Φ_{PSII}</th>
<th>ETR_{PSII}</th>
<th>PSI/PSII</th>
<th>Starch content</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt (1^α)</td>
<td>0.54 ± 0.04</td>
<td>0.50 ± 0.02</td>
<td>100 ± 4</td>
<td>1.35 ± 0.23</td>
<td>0.68 ± 0.19</td>
</tr>
<tr>
<td>wt (137C)</td>
<td>0.56 ± 0.03</td>
<td>0.51 ± 0.02</td>
<td>102 ± 4</td>
<td>1.21 ± 0.18</td>
<td>1.95 ± 0.68</td>
</tr>
<tr>
<td>pgrl1</td>
<td>0.58 ± 0.08</td>
<td>0.49 ± 0.03</td>
<td>98 ± 6</td>
<td>1.16 ± 0.29</td>
<td>1.87 ± 0.65</td>
</tr>
<tr>
<td>hyg-2</td>
<td>0.50 ± 0.07</td>
<td>0.50 ± 0.01</td>
<td>100 ± 3</td>
<td>1.33 ± 0.21</td>
<td>0.59 ± 0.10</td>
</tr>
<tr>
<td>pgrl1 hydg-2</td>
<td>0.54 ± 0.05</td>
<td>0.51 ± 0.02</td>
<td>102 ± 4</td>
<td>1.11 ± 0.15</td>
<td>1.99 ± 0.22</td>
</tr>
</tbody>
</table>

Growth rate (μ, day$^{-1}$) in mixotrophic conditions (TAP, acetate, continuous light). Φ_{PSII}, PSII quantum yield. ETR_{PSII}, PSII electron transfer rate (e$^-$ · s$^{-1}$ · PSII$^{-1}$). A Φ_{PSII} of 0.5 corresponds to an ETR_{PSII} of \sim 100 e$^-$ · s$^{-1}$ · PSII$^{-1}$. PSI/PSII stoichiometry, the ratio between active PSI and PSII centers was estimated as described in Cardol et al., 2009 (see methods for further information). Starch content (pg · cell$^{-1}$). All measurements were performed at 250 µmol photons · m$^{-2}$ · s$^{-1}$ at least in triplicate ($n \geq 3$) and data are presented as means ± SD. Wild type 1^α derives from 137c reference wild-type strain and is the parental strain of hydg-2 (Godaux et al., 2013). Wild type 137c is the parental strain of pgrl1 (Tolleter et al., 2011).
Accordingly, we assumed that the values of Φ_{PSII} and Φ_{PSI} after 10 seconds of illumination correspond to 20 e$^{-}$ s$^{-1}$ PS$^{-1}$ and used these values as a ruler to calculate the electron transfer rates through PSI (ETR$_{PSI}$ in e$^{-}$ s$^{-1}$ PSI$^{-1}$) and PSII (ETR$_{PSII}$ in e$^{-}$ s$^{-1}$ PSI$^{-1}$) for longer times (see methods for further details).
When the wild type was illuminated for a longer time, the hydrogen production dropped to zero after about 200 seconds, followed by an increase of ETR$_{\text{PSII}}$ (Figure 1A). In hydg-2 strain, J$_{H_2}$ and ETR$_{\text{PSII}}$ were below detection during the first two minutes of illumination (Figure 1C), as previously reported (Godaux et al., 2013; Ghysels et al., 2013), but ETR$_{\text{PSII}}$ increased later. In the pgrl1 mutant, J$_{H_2}$ decreased very slowly, in agreement with previous observations (Tolleter et al., 2011), together with a slow increase of ETR$_{\text{PSII}}$ (Figure 1B). Thus, after 10 minutes of illumination, photosynthetic activity partially recovered in wild type and single mutants. In contrast, ETR$_{\text{PSII}}$ in pgrl1 hydg-2 double mutants remained null for the duration of the experiment (Figure 1D and Supplemental Figure 3).

Such an increase of ETR$_{\text{PSII}}$ is usually ascribed to the activation of the CBB cycle (Cournac et al., 2002). However some electrons originated from PSII might also be rerouted towards O$_2$ reduction (PSI-Mehler reaction, mitochondrial respiration, etc). To test these possibilities, we added prior to illumination, glycolaldehyde, an effective inhibitor of phosphoribulokinase (Sicher, 1984) or carbonyl cyanide m-chlorophenyl hydrazone (CCCP), an uncoupler of membrane potential preventing ATP synthesis in mitochondria and chloroplasts. In the presence of these inhibitors, both J$_{H_2}$ and ETR$_{\text{PSII}}$ remained stable in wild type as well as in single mutants for the duration of the experiment (Figure 2). These results confirm that (i) the hydrogenase is the main electron sink for PSII-originated electrons when CBB cycle is inactive, (ii) the increase of ETR$_{\text{PSII}}$ corresponds to the redirection of the LEF to CBB cycle activity at the expense of hydrogenase activity and (iii) this increase depends on the presence of an electrochemical proton gradient for ATP synthesis.

As a consequence, we can reasonably assume that the divergence between J$_{H_2}$ and ETR$_{\text{PSII}}$ is mainly indicative of an electron flux towards CBB cycle (i.e. CO$_2$ fixation through NADP$^+$ reduction, J_{CO_2} in e$^-\cdot$s$^{-1}\cdot$PSI$^{-1}$). More formally, ETR$_{\text{PSII}}$ is the sum of only two components: (i) ETR$_{\text{PSII}}$ towards H$_2$ evolution (J$_{H_2}$) and (ii) ETR$_{\text{PSII}}$ towards CO$_2$ fixation (J$_{\text{CO}_2}$). Thus J_{CO_2} = ETR$_{\text{PSII}}$ - J$_{H_2}$ (Figures 1 and 2). Such an indirect calculation of J_{CO_2} is correct only if PSI/PSII ratio is 1, which is not the case for all strains (Table 1). In an attempt to simplify calculations, we assumed in the following that PSI/PSII stoichiometry is 1. This indicates that in wild type and single mutants, electrons from PSII are progressively routed towards CO$_2$ fixation (Figure 1).

We also performed calculations taking into account PSI/PSII stoichiometry measured in Table 1. For wild type 1’, that has the largest PSI/PSII ratio (~1.3), photosynthetic electron flows are modified at most by 15% (see methods for further information).

Transitory induction of PGRL1-dependent PSI-CEF upon illumination in anoxia.
As indicated by the previous results, the presence of PGRL1 is necessary for the reactivation of the CBB cycle, in the absence of hydrogenase activity. It is generally acknowledged that the PGRL1 protein participates to PSI-CEF both in *Chlamydomonas* and *Arabidopsis* (DalCorso et al., 2008; Tolleter et al., 2011; Hertle et al., 2013; Johnson et al., 2014; Iwai et al., 2010). By generating an...
additional proton motive force, PSI-CEF is proposed to enhance ATP synthesis in the illuminated chloroplast (Allen, 2003) and/or to trigger photoprotection of the photosynthetic apparatus (Joliot and Johnson, 2011; Tikkanen et al., 2012). Occurrence of PSI-CEF has been a matter of debate during the last decade, mainly because most experiments have been performed in non-physiological

Figure 2. Activities of PSII, hydrogenases and CBB upon a shift from dark-anoxia (1 hour) to light (250 µmol photons · m⁻² · s⁻¹) in wild type (A, B), hydg-2 (C, D) and pgrl1 (E, F) in conditions of inhibition of the CBB cycle. Glycolaldehyde (GA, 10mM) (A, C, E), or carbonyl cyanide m-chlorophenyl hydrazone (CCCP, 20µM) (B, D, F) were added prior illumination. ETR, electron transport rate. Dark circles, PSII electron transfer rate (ETRpsii, e⁻ · s⁻¹ · PSII⁻¹); gray squares, hydrogen evolution rate (jH2, e⁻ · s⁻¹ · PSI⁻¹); open triangle, electron flow towards carbon fixation (jCO2, e⁻ · s⁻¹ · PSI⁻¹) calculated as follow: jCO2 = ETRpsii − jH2 (see text for further information). All measurements were performed at least in triplicate (n ≥ 3) and data are presented as means ± SD.
conditions (e.g. in the presence of PSII inhibitor DCMU) (Johnson, 2011; Leister and Shikanai, 2013). Two strategies are commonly accepted to provide physiological evidence for PSI-CEF activity: (i) comparing electron transport rates of PSII (ETR$_{PSII}$) and PSI (ETR$_{PSI}$) (Harbinson et al., 1990) and (ii) comparing electron transport rate of PSII (ETR$_{PSII}$) and mean photochemical rate based on ECS.

![Figure 3. PSI cyclic electron flow upon a shift from dark-adapted (1 hour) to light in wild type (A, E), ppr1 (B, F), hydg-2 (C, G) and ppr1 hydg-2 (D, H). ETR, electron transport rate. Dark circles, PSI electron transfer rate (A-H) (ETR$_{PSI}$, $e^{-s^{-1}}$). Open circles, PSII electron transfer rate (A-H) (ETR$_{PSII}$, $e^{-s^{-1}}$). Gray circles, photophysical rate (E-H) (R$_{m}$, $e^{-s^{-1}}$). Gray diamonds, PSI cyclic electron flow (K$_{cd}$) calculated as follows: R_{m} = ETR$_{PSI}$ + ETR$_{PSII}$ (see text for further information) (A-H) (K$_{cd}$, $e^{-s^{-1}}$). Gray diamonds, PSI cyclic electron flow (K$_{cd}$) calculated as follows: R_{m} = 2 R_{m} – ETR$_{PSII}$ (see text for further information) (E-H) (K$_{cd}$, $e^{-s^{-1}}$). All measurements were performed at least in triplicate (n = 3) and data are presented as means ± SE.)
measurement (R_{ph}) (Joliot and Joliot, 2002). In case of a pure linear electron flow, all enzyme complexes are expected to operate at the same rate. R_{ph}, ETR_{PSII} and ETR_{PSI} should thus be equal in the absence of PSI-CEF and should follow the same temporal dependence. This is clearly the case in the $pgrl1$ and $pgrl1 hydg-2$ mutants (Figures 3B, 3D, 3F and 3H). On the contrary, an increase of R_{ph} and ETR_{PSI} (ETR_{PSII} remaining constant) reflected the onset of PSI-CEF in the wild type and $hydg-2$ mutant within the first 200 seconds of illumination (Figures 3A, 3C, 3E and 3G). In order to quantify the contribution of PSI-CEF (J_{CEF} in $e^{-} \cdot s^{-1} \cdot PSI^{-1}$) to photosynthesis reactivation, we considered that PSI electron transfer rate is the sum of two components: $ETR_{PSI} = ETR_{PSII} + J_{CEF}$. Thus $J_{CEF} = ETR_{PSI} - ETR_{PSII}$ (Figures 3A-D). Given that $ETR_{PSI} (e^{-} \cdot s^{-1} \cdot PSI^{-1}) + ETR_{PSII} (e^{-} \cdot s^{-1} \cdot PSII^{-1}) = 2 \cdot R_{ph} (e^{-} \cdot s^{-1} \cdot PS^{-1})$ [which we confirmed experimentally (Supplemental Figure 4)], we can also write that $J_{CEF} = 2 \cdot (R_{ph} - ETR_{PSII})$ (Figures 3E-H). Again, those equations are valid if PSI/PSII ratio is 1 (see above and methods for further information). These two methods gave very similar estimations of PSI-CEF (Figure 3): J_{CEF} is null in the $pgrl1$ and $pgrl1 hydg-2$ mutants, whereas it increases during the first 200 seconds of illumination in wild type and $hydg-2$ mutant before almost disappearing after ~5-6 minutes.

To our knowledge, these are the first measurements of PSI-CEF rate in physiological conditions (i.e. in the absence of inhibitors) in C. reinhardtii. The maximal rate for PSI-CEF achieved in wild type and $hydg-2$ was $20 \cdot e^{-} \cdot s^{-1} \cdot PSI^{-1}$, a rate corresponding to half the capacity of PGRL1-dependent PSI-CEF previously measured in high light in the presence of DCMU (Alric, 2014). PSI-CEF is induced in our conditions when LEF towards CBB cycle is still impaired due to a lack of ATP. When PSI-CEF reaches its maximal value after ~120 s of illumination (Figure 3), the PSI-CEF/LEF ratio (i.e. J_{CEF}/ETR_{PSII} ratio) is about 1.3 and 3.5 in wild type and $hydg-2$, respectively. Similarly, the PSI-CEF/LEF ratio also increased (up to four fold increase) when CBB cycle is impaired due to carbon limitation in oxic conditions (Lucker and Kramer, 2013). These finding are in good agreement with the proposal that PSI-CEF contributes to adjust the ATP/NADPH ratio for photosynthetic carbon fixation in various energetic unfavourable conditions (Allen, 2003). In anoxia, both PQ and PSI acceptor pools are almost fully reduced (Bennoun, 1982; Ghysels et al., 2013; Takahashi et al., 2013; Godaux et al., 2013), which might hamper the putative limiting step of PSI-CEF electron transfer (i.e. NADPH to PQ; Alric, 2014), as well as the PSI electron transfer due to acceptor side limitation (Takahashi et al., 2013). It is tempting to propose that hydrogenase activity, by partially reoxidizing the PQ pool and FDX, might directly contribute to set the redox poise allowing the PSI-CEF to operate. However, the fact that PSI-CEF operate at the same rate in wild type and $hydg-2$ (Figure 3) suggests that another factor might be responsible for its activation.

Reduction of the PQ pool also triggers state transitions, a process consisting in the phosphorylation and migration of part of light harvesting complexes (LHC) II from photosystem (PS) II
to PSI (reviewed in Lemeille and Rochaix, 2010). Since State 2 facilitates induction of PSII activity in the absence of hydrogenase (Ghysels et al., 2013), we propose that the increase of PSI antenna size upon state 2 might enhance PSI-CEF rate (as earlier suggested in Cardol et al., 2009; Alric, 2010; Alric, 2014), and therefore promote ATP synthesis and CBB cycle activity. Nevertheless, the attachment of LHC-II to PSI in state 2 has been recently called into question (Unlu et al., 2014; Nagy et al., 2014). In this respect, the involvement of state transitions could be to decrease PSII-reductive pressure on PQ pool that might impact PSI-CEF rate (see above). In any cases, the transition from State 2 to State 1 did not seem to occur in our range of time as there was no major change in the Fm’ value (Supplemental Figure 5). Incidentally, our measurements of a transient PSI-CEF under state II provide the first in vivo support to the occurrence of PSI-CEF without any direct correlation with state transitions (Takahashi et al., 2013; Alric, 2014).

Sequential and transient hydrogenase activity and PSI-CEF contribute to photosynthetic carbon fixation.

At this point, we can conclude that the CBB cycle is progressively active in wild type thanks to the sequential occurrence of HYDA-dependent LEF and PGRL1-dependent PSI-CEF. This is further illustrated in a schematic model of electron transfer pathways in wild type (Figure 4A). At the onset of illumination, only a hydrogenase-dependent LEF occurs (10 seconds), followed by the induction of PGRL1-dependent PSI-CEF and later CBB cycle (120 to 240 seconds). When CBB cycle has been activated by ATP, NADP⁺ pool is partially oxidized and FNR, being more efficient in competing for reduced FDX than hydrogenases (see next section) (Yacoby et al., 2011), drives rapidly the entire electron flux towards CO₂ reduction (> 360 seconds). In single mutants, increase in CBB cycle activity is only slightly delayed (Figures 4B and 4C) while lack of both AEF fully prevents photosynthetic electron transfer in pgrl1 hydg-2 double mutant (Figure 4D).
ETR did not exceed $5 \text{ e}^{-} \cdot \text{s}^{-1} \cdot \text{PSI}^{-1}$ in \textit{pgrl1 hydg-2} double mutant, and might correspond to a NDA2-driven ETR (Jans et al., 2008; Alric, 2014). The low rate measured here is in good agreement with the rate of $2 \text{ e}^{-} \cdot \text{s}^{-1} \cdot \text{PSI}^{-1}$ measured for PQ reduction by NDA2 (Houille-Vernes et al., 2011) and the rate of 50-100 nmoles $\text{H}_2 \cdot \text{mg chlorophyll}^{-1} \cdot \text{min}^{-1}$ determined for NDA2-driven H_2 production.
from starch degradation (Baltz et al., 2014), the latter value also corresponding to \(~1-2 \text{ e}^- \cdot \text{s}^{-1} \cdot \text{PSI}^1\), assuming 500 chlorophyll per photosynthetic unit (Kolber and Falkowski, 1993). Alternatively this remaining ETR in the double mutant might correspond to the activity of another chloroplastic fermentative pathways linked to ferredoxin reoxidation (Grossman et al., 2011). Regarding these
16 possibilities, we ensured that the starch content of wild types and mutants before entering anoxia does not differ between mutants and their respective wild type (Table 1). Whatever the exact nature of the remaining ETR in pgrl1 hydg-2, these results confirm that at least one of the two AEF (PSI-CEF or hydrogenase-dependent LEF) is necessary for the proper induction of PSII activity in anoxia.
Since the absence of significant ETR in \textit{pgrl1 hydg-2} applies for a given period of incubation in the dark in anoxia (1 hour) and for a given light intensity (250 µmol photons \cdot m^{-2} \cdot s^{-1}), we explored induction of PSII electron transfer (i) during a longer illumination period (up to 2 hours) (Supplemental Figure 6), (ii) after shorter (10 minutes) or longer (16 hours) periods of anoxia in the dark (Figures 5A and 5B), and (iii) upon lower and higher light intensities (120 and 1,000 µmol photons \cdot m^{-2} \cdot s^{-1}, respectively) (Figures 5C and 5D). In every condition, photosynthetic electron flow of the double mutant remained null or very low compared to the wild-type and single mutant strains. The only exception to this rule is the low ETR in \textit{pgrl1} after 10 minutes of anoxia (Figure 5A), which is probably due to the fact the hydrogenases are not yet fully expressed (Forestier et al., 2003; Pape et al., 2012), and therefore mimics the behavior of \textit{pgrl1 hydg-2}.

\textit{Competition between FNR and HYDA contributes to the observed decreased in hydrogen evolution rate.}

O₂ sensitivity of algal hydrogenases is defined as the major challenge to achieve a sustained hydrogen photoproduction. Hydrogenases are described as irreversibly inactivated after exposure to O₂, the \textit{C. reinhardtii} enzyme being the most O₂-sensitive among them (Cohen et al., 2005; Ghirardi et al., 1997). In the PGRL1-deficient mutant or in the presence of GA or CCCP (i.e. in the absence of CO₂ fixation), we observed however a sustained hydrogen evolution rate \((J_{\text{H2}})\) lasting for at least ten minutes after transfer to light (Figures 1B, 2A, 2B, 2E and 2F), and coexisting with a significant PSII activity and thus a sustained production of oxygen by water splitting. A possible explanation for this long lasting hydrogen production is that we used in these experiments glucose and glucose oxidase which efficiently reduces oxygen evolved by PSII and diffusing to the extracellular medium. We thus performed a similar experiment as presented in Figure 1 for wild type and \textit{pgrl1} mutant cells where anoxia was reached by bubbling nitrogen for 5 minutes and cells were then acclimated to dark and anoxia for 1 hour. In wild type, hydrogen evolution stops while level of dissolved oxygen is still low in the medium (~10 µM) (Figure 6A). Conversely, in \textit{pgrl1}, a sustained hydrogen evolution occurs in the presence of much higher concentrations of dissolved oxygen (up to ~80 µM) (Figure 6B). This leads us to suggest that \textit{in vivo} oxygen-sensitivity of hydrogenase activity is not the only factor that accounts for the decrease of \(J_{\text{H2}}\) in the light in wild type. It was proposed earlier that the slow-down of the hydrogenase activity in wild-type cells stems from a thermodynamic break (Tolleter et al., 2011). In this view, the PSI-CEF would generate an extra proton gradient that would slow-down the cytochrome \textit{b}_{6f} and therefore decrease the electron supply from PSII to the hydrogenase. This seems very unlikely since PSII activity \((\text{ETR}_{\text{PSII}})\) and photosynthetic carbon fixation \((J_{\text{CO2}})\) tends to increase while hydrogen activity \((J_{\text{H2}})\) decreases (Figure 1). In addition, \(\text{H}_2\) evolution rate is about the same in
presence of either a proton gradient uncoupler (CCCP) or a CCB cycle inhibitor (GA) (Figure 2), whose presence should decrease and increase the amplitude of the proton gradient, respectively. In this respect, it was recently shown that NADPH reduction by FNR prevents an efficient H₂ production by HYDA \textit{in vitro} (Yacoby et al., 2011). This might be due to the low affinity of HYDA for FDX (\(K_M = 35\))
µM; (Happe and Naber, 1993), close to 2 orders of magnitude lower than the affinity of FNR for FDX (Ke = 0.4 µM; (Jacquot et al., 1997)). To test whether competition between FNR and HYDA might contribute to decrease in JH2 in vivo in wild type, we tested the effect of the addition of GA (inhibitor of CCB cycle) on wild-type cells when JH2 was null (i.e. after few minutes of illumination). If
hydrogenase was indeed irreversibly inactivated by oxygen, J_{H2} should remain null whatever the inhibition of CBB cycle activity. Yet, upon addition of GA, J_{H2} again increases while it remains null in the absence of GA (Figure 6C). We thus propose that the competition between HYDA and FNR for reduced ferredoxin is an important factor responsible for the switch in electron transfer from hydrogenase activity (J_{H2}) towards CBB cycle activity (J_{CO2}) (Figure 1). In agreement with this, transformants displaying reduced Photosynthesis/Respiration (P/R) ratio reach anoxia in the light, express hydrogenase but evolve only small amount of H$_2$ in vivo unless Calvin cycle is inhibited (Ruhle et al., 2008).

PSII activity, besides supplying hydrogenases and CBB cycle activity in electrons, produces oxygen by water splitting. Various oxidases, such as the mitochondrial cytochrome c oxidase, might contribute to cellular ATP synthesis and in turn to CBB cycle activity by using oxygen as electron acceptor (Lavergne, 1989). In this respect, recent works have highlighted the dependence of PSI-CEF deficient mutants upon oxygen in *Chlamydomonas* and *Arabidopsis*, through an increase of mitochondrial respiration and PSI-Mehler reaction (Yoshida et al., 2011; Johnson et al., 2014; Dang et al., 2014). Regarding contribution of respiration to induction of photosynthetic electron flow in anoxia, the addition of myxothiazol, an efficient inhibitor of mitochondrial respiratory-chain cytochrome bc_1 complex (complex III) prior illumination (Supplemental Figure 7) has no effect. As shown in Figure 2A, the addition of GA fully prevents the increase of photosynthetic electron flow, which is almost exclusively driven under these conditions by hydrogenase. This indicates that, if occurring, other alternative processes (*e.g.* Mehler reaction) operate at a very low rate.

Concomitant absence of hydrogenase activity and PGRL1-dependent PSI-CEF is detrimental for cell survival.

Photosynthesis relies on a large set of alternative electron transfer pathways allowing the cells to face various changes of environmental conditions. Deficiency in some pathways can be successfully compensated by other pathways (*e.g.* (Dang et al., 2014; Cardol et al., 2009)). To check whether the lack of hydrogenase activity and/or PSI-CEF has an impact on the growth of *C. reinhardtii* in anoxia, the four strains were grown individually and submitted to 3h dark/3h light cycles in sealed cuvettes. This time scale was chosen (i) to ensure that anoxia is reached during dark cycle so that hydrogenase is expressed in wild type and in *pgrl1*, and (ii) to maximize the impact of mutations that impair photosynthesis reactivation steps. The doubling time of *pgrl1 hydg-2* cells in anoxia was much lower compared to wild-type and single mutant cells (Figure 7A). In a second experiment, wild-type and *pgrl1 hydg-2* double mutant cells were mixed in equal proportion and submitted to the same growth test. The ratio between *pgrl1 hydg-2* mutant and wild-type cells progressively decreased and
only wild-type cells were recovered after 7 days of growth in sealed cuvettes under anoxic conditions (Figure 7B). PGRL1-dependent PSI-CEF has been proposed to be crucial for acclimation and survival in anoxic conditions under a constant light regime, both in Physcomitrella and Chlamydomonas (Kukuczka et al., 2014). In our experimental conditions, growth of pgrl1 mutant was not impaired.
(Figure 7A) and Calvin cycle reactivation only slightly delayed (Figures 1B and 4C). We attribute this phenotype to hydrogenase activity that could play in anoxia the same role as the Mehler reaction in the presence of oxygen. Simultaneous absence of hydrogenase activity and PGRL1-dependent PSI-CEF however fully prevents the induction of photosynthetic electron flow (Figures 1D and 4D) and in turn growth (Figure 7). Our results thus highlight the importance for *C. reinhardtii* of maintaining at least hydrogenase activity or PSI-CEF to survive in its natural habitat where it frequently encounters oxygen limitation.

MATERIALS AND METHODS

Strains. *C. reinhardtii* wild-type strain (1’ in our stock collection) derives from 137c reference wild-type strain. The hydg-2 mutant lacking the HYDG maturation factor and deficient for hydrogenase (HYDA enzyme) was obtained in our laboratory from insertional mutagenesis carried out on 1’ strain (Godaux et al., 2013). An allelic hydg-3 mutant strain was also tested and displayed the same features (data not shown). The pgrl1 mutant defective in PSI-CEF was generated by insertional mutagenesis carried out on 137c (Tolleter et al., 2011). The wild-type strain from which derived the single pgrl1 mutant, and the complemented strain for PGRL1 (Tolleter et al., 2011) did not differ from wild-type 1’ strain (Table 1 and 2). The double mutant pgrl1 hydg-2 was obtained by crossing the pgrl1 mt− mutant with the hydg-2 mt+ mutant (see Supplemental Figure 1 for details).

Strains were routinely grown in Tris-Acetate-Phosphate (TAP) or eventually on Tris-Minimal-Phosphate (TMP) medium at 25°C under continuous light of 50 µmol photons ∙ m⁻² ∙ s⁻¹ either on solid (1.5 % agar) or in liquid medium. For experimentation, cells were harvested (3,000 g for 2 minutes) during exponential growth phase (2-4.10⁶ cells ∙ ml⁻¹) and re-suspended in fresh TAP medium at a concentration of 10 µg chlorophyll ∙ ml⁻¹. 10 % (w/v) Ficoll was added to prevent cell sedimentation during spectroscopic analysis.

Chlorophyll and starch contents. For the determination of chlorophyll concentration, pigments were extracted from whole cells in 90 % methanol and debris were removed by centrifugation at 10,000 g. Chlorophyll a + b concentration was determined with a lambda 20 spectrophotometer (Perkin Elmer, Norwalk, CT). Starch was extracted according to (Ral et al., 2006). Starch amounts were determined spectrophotometrically using the Starch Kit, Roche, R-Biopharm.

Biophysical analyses. In all experiments cells were acclimated to dark and anoxia for one hour before transfer to light. Unless otherwise stated, anoxic condition was reached by sealing cell suspension in spectrophotometric cuvettes in the presence of catalase (1000 U ∙ ml⁻¹), glucose (10 mM), and glucose oxidase (2 mg ∙ ml⁻¹).
In vivo chlorophyll fluorescence measurements were performed at room temperature on cell liquid suspensions using a JTS-10 spectrophotometer (Biologic, France). In most experiments, an actinic light of 250 µmol photons · m⁻² · s⁻¹ was provided by a 640-nm LED light sources. This light intensity corresponds to ~100 e⁻ · s⁻¹ · PSII⁻¹ in oxic conditions (Table 1). The effective photochemical yield of Photosystem II (ΦPSII) was calculated as (Fₘ'ₗ-Fₗ)/Fₘ', where Fₗ is the actual fluorescence level excited by actinic light and Fₘ'ₗ is the maximum fluorescence emission level induced by a 150 ms superimposed pulse of saturating light (3,500 µmol photons · m⁻² · s⁻¹).

P₇₀₀ absorption changes were assessed with a probing light peaking at 705-nm. Actinic light of 250 µmol photons · m⁻² · s⁻¹ was provided by a 640-nm LED light sources, which was switched off very briefly while measuring light transmission at 705-nm. In order to remove unspecific contributions to the signal at 705-nm, absorption changes measured at 740-nm were subtracted. The quantum yield of photochemical energy conversion by PSI (ΦPSI) was calculated as (Pₘ'ₗ-Pₗ)/(Pₘ-P₀) (Klughammer and Schreiber, 2008). P₀ is the absorption level when P₇₀₀ are fully reduced, Pₘ is the absorption level when P₇₀₀ are fully oxidized in presence of 20 µM DCMU and 5 mM DBMIB (to prevent P₇₀₀ rereduction by cytochrome b₆f complex activity) upon saturating continuous illumination, Pₗ is the absorbance level under continuous illumination and Pₘ'ₗ is the maximal absorption level reached during a 200 ms saturating light pulse (3,500 µmol photons · m⁻² · s⁻¹) on top of the actinic light. P₇₀₀ concentration was estimated by using Pₘ value (ε₇₀₅nm for P₇₀₀ = 105 mM⁻¹ cm⁻¹; (Witt et al., 2003)).

ECS analyses. The generation of an electrochemical proton gradient induces a shift in the absorption spectra of some photosynthetic pigments, resulting in the so-called ElectroChromic Shift. The use of the ECS signal to study photosynthetic apparatus and a detailed description of the different application is reviewed in (Bailleul et al., 2010). The relaxation kinetics of the carotenoid electrochromic bandshift was measured at 520-nm and corrected by subtracting the signal at 546-nm. Photochemical rates (Rₚₚ) were measured by following the relaxation of the ECS during the first 2 ms after switching off the actinic light (Joliot and Joliot, 2002). Results were expressed as e⁻ · s⁻¹ · PS⁻¹ upon normalization to the amplitude of ECS signal upon excitation with a saturating flash (5 ns laser pulse) that lead to one single charge separation per PS (Bailleul et al., 2010).

In this report, we calculated photosynthetic electron flows assuming that PSI/PSII stoichiometry is about 1 in all our strains. Doing so, we attempted to simplify calculations and make the study accessible for non-specialists. The ratio between active PSI and PSII centers was however estimated as described in (Cardol et al., 2009). Briefly, the amplitude of the fast phase (1 ms) of ECS signal (at 520-546-nm) was monitored upon excitation with a laser flash. The contribution of PSII was calculated from the decrease in the ECS amplitude after the flash upon the addition of the PSII
inhibitors DCMU (20 µM) and HA (1 mM), whereas the contribution of PSI corresponded to the amplitude of the ECS that was insensitive to these inhibitors.

When taking into account PSI/PSII stoichiometry measured in Table 1, \(J_{\text{CO2}} \) can be calculated according the following equation:

\[
J_{\text{CO2}} = \text{ETR}_{\text{PSII}} \times (1/b) - J_{\text{H2}},
\]

where \(b \) is the ration between PSI and PSII active centers. Similarly, \(J_{\text{CEF}} = \text{ETR}_{\text{PSI}} - \text{ETR}_{\text{PSII}} \times (1/b) \) and

\[
J_{\text{CEF}} = (1+b) \times (R_{\text{ph}} - \text{ETR}_{\text{PSII}}) / b.
\]

R_{\text{ph}} calculated in this manner is equal to half the sum of ETR_{PSII} and ETR_{PSII} when PSI/PSII stoichiometry is about 1 (Supplemental Figure 4). For wild type 1', that has the largest PSI/PSII ratio (Table 1), photosynthetic electron flows are modified at most by 15%.

The calculation of ETR_{PSII} and ETR_{PSII} usually also requires the quantification of the absorption cross sections of PSII (\(\sigma_{\text{PSII}} \)) and PSI (\(\sigma_{\text{PSI}} \)), which can change with time through the process of state transitions (Alric, 2014; Wollman and Delepelaire, 1984). However, we could show that the PSII cross sections did not change in our conditions by monitoring Fm’ (Supplemental Figure 5). Moreover only a hydrogenase-dependent LEF occurs at the onset of light, which allowed us to use the photochemical rates measured by ECS, fluorescence and \(P_{700} \) at the initial onset of light as a ruler to determine ETR_{PSII} and ETR_{PSII} based on the sole PS quantum yields measurements. At the onset of light, \(\phi_{\text{PSII}} = 0.12 \) and \(\phi_{\text{PSI}} = 0.21 \) (Table 2). This leads to \(\text{ETR}_{\text{PSII}} (t=0) = \phi_{\text{PSII}} \times I \times \sigma_{\text{PSII}} = 20 \cdot e^{-} \cdot s^{-1} \cdot \text{PSII}^{-1} \) and to \(\text{ETR}_{\text{PSI}} (t=0) = \phi_{\text{PSI}} \times I \times \sigma_{\text{PSI}} = 20 \cdot e^{-} \cdot s^{-1} \cdot \text{PSI}^{-1} \), where \(I \) is the actinic light intensity. We therefore calculated \(\text{ETR}_{\text{PSII}} \) \((e^{-} \cdot s^{-1} \cdot \text{PSII}^{-1})\) as \((20/0.12) \cdot \phi_{\text{PSII}}\) and \(\text{ETR}_{\text{PSI}} \) \((e^{-} \cdot s^{-1} \cdot \text{PSI}^{-1})\) as \((20/0.21) \cdot \phi_{\text{PSI}}\).

Oxygen and hydrogen exchange rates were measured at 25°C using an oxygen-sensitive Clark electrode (Oxygraph, Hansatech Instruments), eventually modified to only detect hydrogen (Oxy-Ecu, Hansatech Instruments). Actinic light was provided by a home-made light system composed of white and green LEDs. Oxygen solubility in water is about 258 µM at 25°C. For hydrogen evolution measurements (nmoles \(H_2 \cdot \mu g \text{ chloro}^{-1} \cdot s^{-1} \)), the entire set-up was placed in a plastic tent under anoxic atmosphere (N₂) to avoid contamination of anoxic samples by oxygen while filling the measuring cell. Hydrogen evolution rates (\(J_{\text{H2}} \)) were calculated on the basis of first derivative of hydrogen production curves (data not shown) and expressed in \(e^{-} \cdot s^{-1} \cdot \text{PSI}^{-1} \) according to the following calculation: (nmoles \(H_2 \cdot \mu g \text{ chloro}^{-1} \cdot s^{-1} \)) \cdot 2 \cdot (\mu g \text{ chloro} \cdot \text{pmoles} \ P_{700})\), assuming 2 \(e^{-} \) per \(H_2 \) evolved.

Growth experiments. Doubling time at 250 µmol photons \cdot m^{-2} \cdot s^{-1} \) in TMP medium was determined from \(DO_{750nm} \), cell number and chlorophyll content (initial cell density of \(2.10^5 \cdot 10^6 \) cells \cdot ml^{-1} \). We did not investigated higher light intensities because the PGRL1-defective strains are high-light sensitive (Dang et al., 2014; Tolleter et al., 2011).
Wild-type and pgrl1 hydg-2 strains were mixed together at equal concentration of 5×10^5 cells \cdot ml$^{-1}$ in fresh TAP medium. Aliquots of the liquid culture were then collected every 24 hours and about 300 cells were plated on solid TAP media in the light to allow the growth of single-cell colonies. The proportions of each phenotype were analyzed on the basis of peculiar hydrogenase-deficient related chlorophyll fluorescence kinetic by video-imaging according to (Godaux et al., 2013). Ratio of pgrl1 hydg-2 was plotted against time.

During growth experiments in anoxia, catalase (1000 U \cdot mL$^{-1}$), glucose (10 mM), and glucose oxidase (2 mg \cdot mL$^{-1}$) were added at the beginning of the experiment. Glucose (10mM) was subsequently added every 24 hours to ensure that glucose oxidase consume oxygen evolved during the light periods, so that oxygen did not inhibit hydrogenase expression.

Acknowledgements.

René Matagne is warmly acknowledged for careful reading of the manuscript and help in genetics experiments. We also thank C. Remacle, F. Franck and F. Rappaport for their critical comments during the preparation of this manuscript. PC acknowledged financial support from the Belgian Fonds de la Recherche Scientifique F.R.S.-F.N.R.S. (F.R.F.C. 2.4597.11, CDR J.0032.15 and Incentive Grant for Scientific Research F.4520) and University of Liège (SFRD-11/05). DG is supported by the Belgian FRIA F.R.S.-FNRS. BB and PC are Short Term Foreign Postdoctoral Fellow and Research Associate from F.R.S.-FNRS, respectively.

Author Contributions. DG, BB, PC designed the research and wrote the paper; DG, BB, NB, PC performed research and analyzed data.

Figure Legends

Figure 1. Activities of PSII, hydrogenases and CBB upon a shift from dark-anoxia (1 hour) to light (250 μmol photons \cdot m$^{-2}$ \cdot s$^{-1}$) in wild type (A), pgrl1 (B), hydg-2 (C), and pgrl1 hydg-2 (D). ETR, electron transport rate. Dark circles, PSII electron transfer rate (ETR$_{PSII}$, e^- \cdot s$^{-1}$ \cdot PSII$^{-1}$); grey squares, hydrogen evolution rate (J_{H2}, e^- \cdot s$^{-1}$ \cdot PSI$^{-1}$); open triangle, electron flow towards carbon fixation (J_{CO2}, e^- \cdot s$^{-1}$ \cdot PSI$^{-1}$) calculated as follow: $J_{CO2} = ETR_{PSII} - J_{H2}$ (see text for further information). All measurements were performed at least in triplicate ($n \geq 3$) and data are presented as means \pm SD.
Figure 2. Activities of PSII, hydrogenases and CBB upon a shift from dark-anoxia (1 hour) to light (250 µmol photons • m⁻² • s⁻¹) in wild type (A, B), hydg-2 (C, D) and pgrl1 (E, F) in conditions of inhibition of the CBB cycle. Glycolaldehyde (GA, 10mM) (A, C, E), or carbonyl cyanide m-chlorophenyl hydrazone (CCCP, 20µM) (B, D, F) were added prior illumination. ETR, electron transport rate. Dark circles, PSII electron transfer rate (ETR_{PSII}, e⁻ • s⁻¹ • PSII⁻¹); open squares, hydrogen evolution rate (J_{H2}, e⁻ • s⁻¹ • PSI⁻¹); open triangle, electron flow towards carbon fixation (J_{CO2}, e⁻ • s⁻¹ • PSI⁻¹) calculated as follow: J_{CO2} = ETR_{PSII} - J_{H2} (see text for further information). All measurements were performed at least in triplicate (n ≥ 3) and data are presented as means ± SD.

Figure 3. PSI cyclic electron flow upon a shift from dark-anoxia (1 hour) to light in wild type (A, E), pgrl1 (B, F), hydg-2 (C, G) and pgrl1 hydg-2 (D, H). ETR, electron transport rate. Dark circles, PSII electron transfer rate (A-H) (ETR_{PSII}, e⁻ • s⁻¹ • PSII⁻¹); open circles, PSI electron transfer rate (A-D) (ETR_{PSI}, e⁻ • s⁻¹ • PSI⁻¹); gray circles, photochemical rate (E-H) (R_{ph}, e⁻ • s⁻¹ • PS⁻¹); gray diamonds, PSI cyclic electron flow (J_{CEF}) calculated as follow: J_{CEF} = ETR_{PSI} - ETR_{PSII} (see text for further information) (A-D) (J_{CEF}, e⁻ • s⁻¹ • PSI⁻¹); grey diamonds, PSI cyclic electron flow (J_{CEF}) calculated as follow: J_{CEF} = 2 (R_{ph} - ETR_{PSII}) (see text for further information) (E-H) (J_{CEF}, e⁻ • s⁻¹ • PSI⁻¹). All measurements were performed at least in triplicate (n ≥ 3) and data are presented as means ± SD.

Figure 4. Schematic model of photosynthetic electron transfers (ETR) in C. reinhardtii upon a shift from dark-anoxia (1 hour) to light in wild type (A), hydg-2 (B), pgrl1 (C), and pgrl1 hydg-2 (D). PSI-CEF (J_{CEF}), hydrogen evolution rate (J_{H2}), and electron transport rate towards CO2 fixation (J_{CO2}) refer to electron rates (e⁻ • s⁻¹ • PSI⁻¹) taken from Figures 1 and 3. FDX, ferredoxin; HYDA, hydrogenase; FNR, ferredoxin-NADP⁺ oxidoreductase; PGRL1, proton-gradient regulation like1 protein; NDA2, type II NAD(P)H dehydrogenases; PC, plastocyanin; Cyt b₆f, cytochrome b₆f complex; CBB, Calvin-Benson-Bassham cycle; PQ/PQH₂, plastoquinone pool; PSI and PSII, photosystems I and II; CF₁F₀, chloroplastic ATP synthase.

Figure 5. PSII electron transfer rate (ETR_{PSII}, e⁻ • s⁻¹ • PSII⁻¹) in wild type, pgrl1, hydg-2 and pgrl1 hydg-2 (A) upon a shift from dark anoxia (10 minutes) to light (250 µmol photons • m⁻² • s⁻¹); (B) upon a shift from dark anoxia (16 hours) to light (250 µmol photons • m⁻² • s⁻¹); (C) upon a shift from dark anoxia (1 hour) to light (120 µmol photons • m⁻² • s⁻¹); (D) upon a shift from dark anoxia (1 hour) to light (1,000 µmol photons • m⁻² • s⁻¹). All measurements were performed at least in triplicate (n ≥ 3) and data are presented as means ± SD.
Figure 6. In vivo hydrogenase activity. (A-B) Concomitant measurements of hydrogen evolution rate (grey squares, J_{H_2}, e$^-$·s$^{-1}$·PSI$^{-1}$) and dissolved oxygen concentration (dark triangles, µMO$_2$) in (A) wild type and (B) pgrl1 upon a shift from dark anoxia (1 hour) to light. Anoxia was reached by bubbling with nitrogen for 5 minutes prior incubation in the dark for 1 hour. (C) Hydrogen evolution rate (J_{H_2}, e$^-$·s$^{-1}$·PSI$^{-1}$) upon a shift from dark anoxia (1 hour) to light. Arrow, when hydrogen evolution stops, CBB activity is inhibited by addition of glycolaldehyde (GA, 10mM, dark squares). After 2 minutes of incubation in the dark, light is switched on for at least 6 extra minutes. All measurements were performed at least in triplicate ($n \geq 3$) and data are presented as means ± SD.

Figure 7. Growth in anoxic conditions. (A) Specific growth rate (μ, day$^{-1}$) of wild type and mutants in 3h dark/3h light cycles in TMP liquid medium. (B) Proportion of pgrl1 hydg-2 mutant within a co-culture of pgrl1 hydg-2 and wild-type cells in 3h dark/3h light cycle in TAP liquid medium (see material and method section for further details). Dark squares, aerated culture; grey squares, anoxic sealed culture. All measurements were performed at least in triplicate ($n \geq 3$) and data are presented as means ± SD.
Supplemental Figure 1. Isolation of pgrl1 hydg-2 double mutants by a double chlorophyll fluorescence screen. Double mutant pgrl1 hydg-2 were obtained by crossing the pgrl1 mt− mutant with the hydg-2 mt+ mutant and meiotic progeny was selected on TAP medium containing 25 mg/l hygromycin-B and 10 mg/l paromomycin. Both parental strains have been isolated on the basis of peculiar chlorophyll fluorescence kinetics, respectively in oxic conditions for pgrl1 (A) (1) and in anoxic conditions for hydg-2 (B) (2). Out of 78 meiotic products screened for both specific fluorescence signatures using a fluorescence imaging system (Speedzen, Beambio, France) described in details in (3), 19 meiotic products (24%) displayed the pgrl1 signature (data not shown), and 17 meiotic products (23%) displayed the hydg-2 signature (data not shown). We isolated five colonies (6% of the meiotic products) defective in PSI-CEF and hydrogenase activity (C and D). (E) Molecular
characterization of b1-21 meiotic product. We next determine if those meiotic products properly possess insertions of the resistance cassettes in PGRL1 and HYDG genes. Total nucleic acids were prepared according to (4). PCR fragments were amplified from total DNA using Taq polymerase according to standard protocols. PCR analysis for detecting the presence of interrupted PGRL1 (APHVIII paromomycin resistance cassette at the level of first exon of the PGRL1 gene as indicated in (1) and HYDG (APHVII hygromycin resistance cassette between nucleotide 48 and 153 of the HYDG gene as indicated in (2) genes in the wild type, the parental strains and the pgrl1 hydg-2 double mutant (see material and method section for further details). (left) Amplification of an independent genomic fragment of similar size order (600 bp) is used as a positive control for DNA quality and reaction conditions. (middle) Amplification of a genomic fragment of HYDG gene yields an 800bp fragment in wild type. (right) Amplification of a genomic fragment of PGRL1 gene yields an 900 bp fragment in wild type.
Supplemental Figure 2. Chlorophyll fluorescence kinetics of *Chlamydomonas reinhardtii pgrl1* (open diamonds), *hydg-2* (dark triangles) and *pgrl1 hydg-2* (open triangles) mutants compared to wild type (dark diamonds) after one hour of dark anoxic conditions. According to (1), it indicates that hydrogenase is well expressed in wild type and *pgrl1*.
Supplemental Figure 3. Photosystem II electron transfer rate upon a shift from dark-anoxia (1 hour) to light in four double mutant meiotic products. $\text{ETR}_{\text{PSII}} \left(\text{e}^- \cdot \text{s}^{-1} \cdot \text{PSII}^{-1} \right)$ remains null in every double mutants.
Supplemental Figure 4. Relationship between photochemical rate (R_{ph}) and ETR ($ETR_{PSII} + ETR_{PSI}$) of four strains (values taken from Figures 1 and 3). This relationship demonstrates that $ETR_{PSII} + ETR_{PSI} \sim 2 \times R_{ph}$.

$y = 0.8646x$

$R^2 = 0.9134$
Supplemental Figure 5. Maximal fluorescence yield (Fm’) upon a shift from dark-anoxia to light as a mean of assessing the occurrence of state transitions wild type (dark diamonds), pgrl1 (open diamonds), hydg-2 (dark triangles), and pgrl1 hydg-2 (open triangles). All measurements were performed at least in triplicate (n ≥ 3) and data are presented as means ± SD. Fm’ value at the onset of light was normalized to 1 (r.u. relative units).
Supplemental Figure 6. PSII electron transfer rate \((E_{\text{TR}_{\text{PSII}}} \text{ e}^- \cdot \text{s}^{-1} \cdot \text{PSII}^{-1})\) upon a shift from dark-anoxia (1 hour) to light in \textit{pgrl1 hydg-2}. No significant PSII-driven electron flow could be detected even after 2 hours of illumination. All measurements were performed at least in triplicate \((n \geq 3)\) and data are presented as means ± SD.
Supplemental Figure 7. (A) Oxygen concentration (µmol O₂ · mg⁻¹ chlorophyll) and (B) PSII electron transfer rate (ETR₉₂, e⁻ · s⁻¹ · PSII⁻¹) upon a shift from dark anoxia (1 hour) to light in wild type. Anoxia is reached by bubbling with nitrogen for 5 minutes prior incubation in the dark and, when needed, myxothiazol (myxo, 10µM) is added prior illumination. All measurements were performed at least in triplicate (n ≥ 3) and data are presented as means ± SD.
Supplemental information

Supplemental Figure 1. Isolation of pgrl1 hydg-2 double mutants by a double chlorophyll fluorescence screen. Double mutant pgrl1 hydg-2 were obtained by crossing the pgrl1 mt− mutant with the hydg-2 mt+ mutant and meiotic progeny was selected on TAP medium containing 25 mg/l hygromycin-B and 10 mg/l paromomycin. Both parental strains have been isolated on the basis of peculiar chlorophyll fluorescence kinetics, respectively in oxic conditions for pgrl1 (A) (1) and in anoxic conditions for hydg-2 (B) (2). Out of 78 meiotic products screened for both specific fluorescence signatures using a fluorescence imaging system (Speedzen, Beambio, France) described in details in (3), 19 meiotic products (24%) displayed the pgrl1 signature (data not shown), and 17 meiotic products (23%) displayed the hydg-2 signature (data not shown). We isolated five colonies (6% of the meiotic products) defective in PSI-CEF and hydrogenase activity (C and D). (E) Molecular characterization of b1-21 meiotic product. We next determine if those meiotic products properly possess insertions of the resistance cassettes in PGRL1 and HYDG genes. Total nucleic acids were prepared according to (4). PCR fragments were amplified from total DNA using Taq polymerase according to standard protocols. PCR analysis for detecting the presence of interrupted PGRL1 (APHVIII paromomycin resistance cassette at the level of first exon of the PGRL1 gene as indicated in (1) and HYDG (APHVII hygromycin resistance cassette between nucleotide 48 and 153 of the HYDG gene as indicated in (2) genes in the wild type, the parental strains and the pgrl1 hydg-2 double mutant (see material and method section for further details). (left) Amplification of an independent genomic fragment of similar size order (600 bp) is used as a positive control for DNA quality and reaction conditions. (middle) Amplification of a genomic fragment of HYDG gene yields an 800bp fragment in wild type. (right) Amplification of a genomic fragment of PGRL1 gene yields an 900 bp fragment in wild type.

Supplemental Figure 2. Chlorophyll fluorescence kinetics of Chlamydomonas reinhardtii pgrl1 (open diamonds), hydg-2 (dark triangles) and pgrl1 hydg-2 (open triangles) mutants compared to wild type (dark diamonds) after one hours of dark anoxic conditions. According to (1), it indicates that hydrogenase is well expressed in wild type and pgrl1.

Supplemental Figure 3. Photosystem II electron transfer rate upon a shift from dark-anoxia (1 hour) to light in four double mutant meiotic products. ETR_{PSII} (e·s⁻¹·PSII⁻¹) remains null in every double mutants.
Supplemental Figure 4. Relationship between photochemical rate \((R_{ph})\) and ETR \((ETR_{PSII} + ETR_{PSI})\) of four strains (values taken from Figures 1 and 3). This relationship demonstrates that \(ETR_{PSII} + ETR_{PSI} \approx 2 R_{ph}\).

Supplemental Figure 5. Maximal fluorescence yield \((Fm')\) upon a shift from dark-anoxia to light as a mean of assessing the occurrence of state transitions wild type (dark diamonds), \(pgrl1\) (open diamonds), \(hydg-2\) (dark triangles), and \(pgrl1\ hydg-2\) (open triangles). All measurements were performed at least in triplicate \((n \geq 3)\) and data are presented as means ± SD. \(Fm'\) value at the onset of light was normalized to 1 (r.u. relative units).

Supplemental Figure 6. PSII electron transfer rate \((ETR_{PSII}, e^- \cdot s^{-1} \cdot PSII^{-1})\) upon a shift from dark-anoxia (1 hour) to light in \(pgrl1\ hydg-2\). No significant PSII-driven electron flow could be detected even after 2 hours of illumination. All measurements were performed at least in triplicate \((n \geq 3)\) and data are presented as means ± SD.

Supplemental Figure 7. (A) Oxygen concentration (µmol O\(_2\) · mg\(^{-1}\) chlorophyll) and (B) PSII electron transfer rate \((ETR_{PSII}, e^- \cdot s^{-1} \cdot PSII^{-1})\) upon a shift from dark anoxia (1 hour) to light in wild type. Anoxia is reached by bubbling with nitrogen for 5 minutes prior incubation in the dark and, when needed, myxothiazol (myxo, 10µM) is added prior illumination. All measurements were performed at least in triplicate \((n \geq 3)\) and data are presented as means ± SD.

