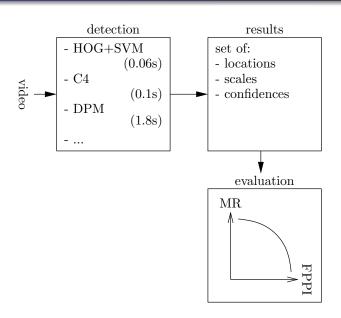
Nonlinear Background Filter to Improve Pedestrian Detection

Yi Wang¹, <u>Sébastien Piérard</u>², Song-Zhi Su³, and Pierre-Marc Jodoin¹

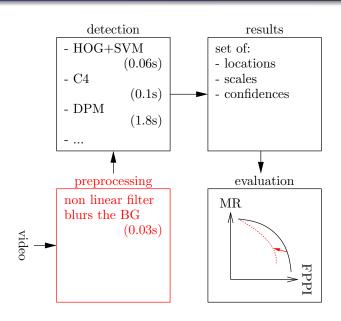
- 1: Department of Computer Science, University of Sherbrooke, Canada
- 2: INTELSIG laboratory, Montefiore institute, University of Liège, Belgium
- 3: School of Information Science and Technology, Xiamen University, China

 $\begin{array}{c} \hbox{ICIAP 2015} \ -- \ \hbox{Genova (Italy)} \ -- \ \hbox{September 8th, 2015} \\ \hbox{workshop "Scene Background Modeling and Initialization" (SBMI)} \end{array}$

Object (e.g. pedestrian) detection



Object (e.g. pedestrian) detection



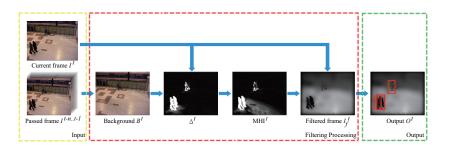
Outline

Proposed method

2 Results

3 Conclusion

Processing pipeline



- Estimation of the background image
- Performing a very simple background subtraction (soft classifier)
- Computing a motion history image (MHI)
- Estimating p (foreground |MHI)
- **o** Choosing σ

Processing pipeline: detecting motion

- Input video sequence
 It
- Estimation of the background image $B^t = \beta I^t + (1 \beta) B^{t-1}$, with $\beta = 0.016$
- Very simple background subtraction (soft classifier) $\Delta^t = \text{Euclidean distance in RGB space } (I^t, B^t)$

Processing pipeline: predicting areas likely to contain potentially moving elements

► Motion history image (*MHI*)

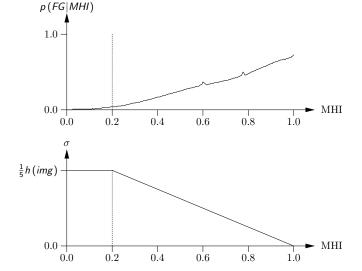
$$\begin{cases} \Delta^t & \text{if } \Delta^t \geq \textit{MHI}^{t-1} \\ \alpha \, \Delta^t + (1 - \alpha) \, \textit{MHI}^{t-1} & \text{otherwise} \end{cases}, \text{ with } \alpha = 0.8$$

input image \rightarrow motion history image

Processing pipeline: choosing the magnitude of filtering

ightharpoonup p (foreground|MHI) = ?

▶ $p(\text{foreground}|MHI) \downarrow \Rightarrow \sigma_{x,y}^t \uparrow$ $p(\text{foreground}|MHI) \uparrow \Rightarrow \sigma_{x,y}^t \downarrow$



Processing pipeline: result of the preprocessing

$$I_f^t = I^t \otimes \mathcal{G}\left(0, \, \sigma_{x,y}^t\right)$$

input image $I^t \rightarrow$

motion history image \rightarrow filtered image I_f^t

Processing pipeline: result of the preprocessing

(click here to play video)

Processing pipeline: result of the preprocessing

(click here to play video)

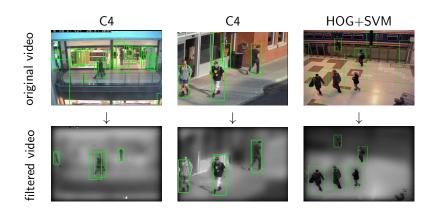
Outline

Proposed method

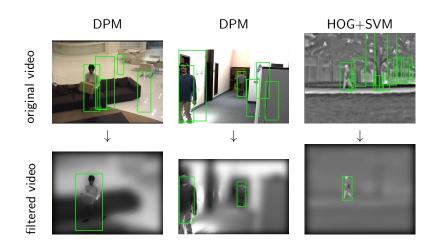
2 Results

3 Conclusion

Improvement for three pedestrian detectors



Improvement for three pedestrian detectors

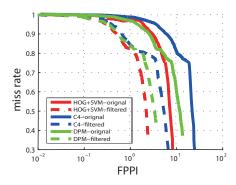


Improvement for three pedestrian detectors

Improvement shown on a video

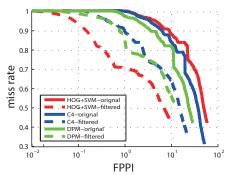
(click here to play video)

Improvement for the category "baseline"



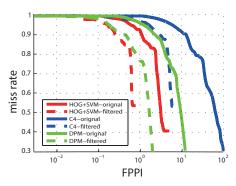
Legend: solid lines: 3 detectors applied on the original videos dashed lines: the same detectors applied on the preprocessed videos

Improvement for the category "small pedestrians"



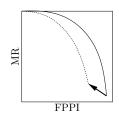
Legend: solid lines: 3 detectors applied on the original videos dashed lines: the same detectors applied on the preprocessed videos

Improvement for the category "top-down"



Legend: solid lines: 3 detectors applied on the original videos dashed lines: the same detectors applied on the preprocessed videos

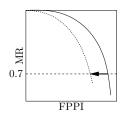
Analysis of the results: tradeoff between FPPI and MR



		Baseline		Small pedestrians		Top-down	
		MR 🗡	FPPI 📐	MR 🗡	FPPI 📐	MR 🗡	FPPI 🦤
detector	HOG+SVM	1.4	3.5	1.1	6.5	1.3	6.4
	C4	1.1	3.6	1.2	2.4	1.9	16.5
	DPM	1.2	3.8	1.3	2.5	1.5	6.8

The FPPI decreases on average by a factor of 5.8 for each detector while the miss rate increases on average by a factor of only 1.3.

Analysis of the results: systematic improvement of FPPI



Detector		Baseline	Small pedestrians	Top-down
HOG+SVM	Original	5.9	10.4	2.6
HOG+3VIVI	Filtered	1.6	0.4 (÷26)	0.6
C4	Original	18.5	6.6	35.3
C4	Filtered	3.8	2.0	5.2
DPM	Original	8.3	4.0	7.1
שרואו	Filtered	2.3	1.9 (÷2.1)	1.3

Our method systematically decreases the the FPPI (2.1 to $26\times$).

Outline

Proposed method

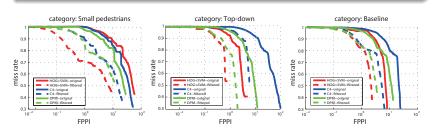
2 Results

Conclusion

Conclusion

Estimating the background allows one to compute a MHI, which is effective for predicting areas unlikely to contain potentially moving objects such as pedestrians.

Adaptive filtering to blur these areas is a preprocessing that significantly improves the detection ability of almost any exiting moving object detector (unmodified \Rightarrow black box).



We continued to work on this topic and have now other, better, results. A journal paper will follow with the explanation \dots stay tuned!