Title: Large-scale fire test of unprotected cellular beam acting in membrane action

Authors: O. Vassart (ArcelorMittal R&D, G.-D. of Luxembourg)
C. G. Bailey (University of Manchester, UK)
M. Hawes (ASDWestok Limited, UK)
A. Nadjai (University of Ulster, UK)
W. I. Simms (SCI, UK)
B. Zhao (CTICM, France)
T. Gernay (University of Liège, Belgium)
J.-M. Franssen (University of Liège, Belgium)
ABSTRACT

This paper describes a full scale fire test performed recently on a composite floor for analysing the possibility of tensile membrane action to develop when the unprotected steel beams in the central part of the floor are made of cellular beams.

The natural fire was created by a wood crib fire load of 700 MJ/m² and the 9 x 15 m floor survived the fire that peaked at 1000°C and lasted for 90 minutes.

Blind predictions of the air temperature development by the software Ozone and of the structural behaviour by the software SAFIR which proved quite satisfactory are also described.

![Fig. 1: Fire test and structural elements after the fire](image)

INTRODUCTION

As spans become longer, steel framed buildings become then more competitive compared with reinforced concrete framed buildings. For maximum economy, steel beams should be designed to act compositely with the floor slab. The increased use of long span composite beams leads to large open plan offices with minimal columns. However, as the span increases, the beam depth will also increase which, in turn, can lead to increased storey heights. The use of cellular beams (CB) largely overcomes this problem because ducts, pipes and other services can pass through the openings in the web. Also, as CB are constructed from hot rolled sections, the increased section depth results in added strength without additional material and thus tends to reduce the total weight of steelwork. Efficient assessment of structures in fire conditions is becoming more and more relevant and is covered by the use of numerical models. However, numerical models are based on small scale tests and experience. To date, no rigorous research into the performance of cellular beams in fire has taken place. The design assumptions are still largely based on the performance of solid web beams in standard fire tests.
A large scale composite floor using cellular beams connected to composite slabs was tested under a natural fire. The two central secondary beams were left unprotected. As cellular beams behave in a very different way compared to traditional steel beams in fire conditions, the test also provided unique experimental data on the performance of the cellular beams acting in membrane action. All the beam sections (protected and unprotected) and the slab were instrumented in order to measure the evolution of temperatures and displacements during the fire.

The fire test was conducted on the 27th of February 2010 by the University of Ulster (Figure 1). The information recorded during the test will be used to validate the natural fire safety concept and provide design rules and guidance for protected and unprotected cellular beams. The work is supported by the Research Fund for Coal and Steel and six partners are involved in this project.

The compartment covers an area of 15 by 9 m with a floor to soffit distance of 3m. It can be located near the central zone of any office building. The surrounding walls of the compartment were made of normal weight concrete block works with three 3 x 1.5 m openings in the front wall. The surrounding walls were not fixed to the composite floor at the top which allowed vertical movement of the floor without interaction with the walls. All the columns and solid beams on the opening side were protected for a standard fire of two hours using fibre boards of 20 mm. The surrounding cellular beams were also protected using ceramic fibres.

STRUCTURE

The slab is made of 51 mm deep profile of the Kingspan Multideck 50 type with a concrete cover of 69 mm on the profile, which makes a total depth of 120 mm. A steel mesh of 10 mm with a spacing of 200 mm in each direction made of S500 steel was used as reinforcement. It was located at a vertical distance of 40 mm above the steel sheets. The slab was fixed on all steel beams by means of steel studs welded on the upper flanges (full connexion). All connections from secondary beams to main beams and from beams to columns are simple connections. Horizontal bracing was provided in 4 positions leaving the slab completely free of external horizontal restraint.
DESIGN LOADS

The loads applied on the slab are those which are commonly used in the design of office buildings, see Table 1.

<table>
<thead>
<tr>
<th>description</th>
<th>Characteristics KN/m²</th>
<th>Fire Factor</th>
<th>Design Load KN/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partition</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Services & Finishes</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Live Load</td>
<td>3.5</td>
<td>0.5</td>
<td>1.75</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>3.25</td>
</tr>
</tbody>
</table>

Table 1: Design Loads

The applied load of 3.25 kN/m² was achieved using 44 sandbags of 1 ton evenly positioned over the floor plate, as shown in Figure 3a. The self weight of the slab of 120 mm thickness is about 2.90 KN/m².

FIRE LOAD

Assuming the design for an office, the fire load density would be 511 MJ/m² according to Table E.2 of EN 1991-1-2 [1]. However for this test, the fire load was increased by using 45 standard (1 m x 1 m x 0.5 m high) wood cribs, comprising 50 mm x 50 mm x 1000 mm wooden battens, positioned evenly around the compartment (Figure 3b), yielding a fire load was 40 kg of wood per square metre of ground area. The wood density provided was 510 kg/m³ with a calorific value of 17.5 MJ/kg for wood, which corresponds finally to a fire load of 700 MJ/m². This is consistent for multi-storey office accommodation [2] and allows a direct comparison with previous test carried out on the steel building at Cardington [3]. The figure is well established from the statistical data and a number of tests have been carried out considering the quantity of fire load as the variable parameter [4].

Fig. 3. a) Vertical static load, b) Wooden cribs used for the fire load
METHOD OF IGNITION AND TEMPERATURE IN THE COMPARTMENT

The fire was started from a single ignition source (Figure 4). After 5 minutes two additional ignitions sources were started in different places and the rest of cribs were left to ignite naturally. Each crib was connected to its neighbours by mild steel channel section with porous fibre board laid into the channels and, approximately 30 minutes before ignition, some 20 litres of paraffin was poured into channel.

A blind prediction of the temperature development was made using the software OZone [5, 6] with the following hypotheses:

- The fire load density: 570 MJ/m²
- Combustion model: extended fire duration
- Fuel height: 0.5 m
- RHRf: 1250 kW/m²
- Combustion heat of fuel: 17.5 MJ/kg
- Fire growth: medium
- Combustion efficiency: 0.8

As the fire test was conducted with a fire load of 700 MJ/m², a second calculation was performed with this fire load without changing other parameters. Figure 5 shows the comparison between the measured temperatures in the compartment and the OZone predictions:

![Temperature in the Middle of Compartment](image)

Figure 5: Measured temperature in the compartment Vs Ozone prediction
LONG CELLULAR BEAM BEHAVIOUR

Under fire conditions, the deflection in the steel beam is the result of two causes: the thermal bowing and the mechanical deflection. The mechanical deflection is the increase in deflection under constant load due to reduced steel strength and stiffness with increasing temperatures. It is expected that at low temperatures (less than 500°C), the beam deflection is controlled essentially by thermal bowing. At higher temperatures, mechanical deflection dominates and the beam deflection increases at a faster rate (Figure 6) with a rise in the beam temperature (Figure 7). The unprotected cellular beams became as cables with only top flange considered working at very temperature around 800°C. Therefore, the bottom flange became very weak; the vertical shear forces induced by each web post combined with longitudinal restraint provided by the concrete slab caused a rotation of the lower beam, see Figure 6.

Fig. 6: deflection of the unprotected beam and slab

Fig. 7: a) post web buckling, lateral and torsional effect, b) temperature distribution at the steel cross section
FLEXURAL STRENGTH OF THE COMPOSITE SLAB

The concrete slab had a nominal thickness of 120 mm and was constructed using normal-weight concrete. The average cube strength was 54.8 N/mm² at 28 days. The slab was exposed in an external environment and, at the time of the test, the measured moisture content of the concrete slab was 6.4% by weight. The slab reinforcement consisted of welded wire mesh reinforcement A393 (10mm diameter ribbed bars at 200mm centres) having nominal yield strength of 500N/mm². Full interaction between the slab and beam was ensured in all specimens by the use of a high density of shear connectors of 19 mm diameter studs at height 95 mm. The shear studs have been equally distributed in one row with spacing of 150 mm over the beam length. A trapezoidal steel deck with a thickness of 1.0 mm was used as sheeting.

Recorded results show very high temperatures in the steel decking, reaching the maximum of about 1100°C. The steel decking was also observed to have debonded from the concrete slab in most areas. Thus it may be assumed that the steel decking contributed very little to the slab strength at the maximum fire severity.

It was clear from the test that membrane action occurred in the floor plate supporting the current design approaches [7-10] which utilise this mode of behaviour to allow a significant number of steel beams to be left unprotected.

Fig. 8: Temperatures at the slab decking

SAFIR FINITE ELEMENT PREDICTION

A finite element model was built in the SAFIR software [11]. This model was made blind before the test in order to predict the behaviour of the structure. Figure 9 shows the numerical modelling with different types of elements.
The unprotected cellular beams were simulated using BEAM finite Element which does not allow taking into account the web post buckling instabilities. This was why the simulation was run twice, once with cellular beams modelled as the double tee section (figure 10 a) and once as only the upper tee section (figure 10 b).

Fig. 10: a) double tee section b) upper tee section

The lower curve on the Figure 11 is obtained by modelling only the upper tee of the unprotected beams, what is justified by the fact that web post buckling will appear in these sections and will prevent the bottom tee from playing any structural function. In this case the deflection at room temperature has no physical signification since the real contribution of the secondary beam is largely underestimated. But in fire situation, the results are interesting. For example, it can be observed that the deflection does not decrease when the temperature decreases, because the steel profiles do not recover their stiffness. This model can be considered as a reasonable model for a simulation of such type of floor system in the fire situation since the cellular beams, after the web post buckling, will probably not be able to recover their initial stiffness when the temperature decreases.
Figure 11: Influence of the model of the unprotected beams and comparison with test results

Figure 11 shows a good correlation between the FEM model and the real behaviour of the test. Of course, some parameters of the finite element model can be adapted in order to fit with the real properties of the material used during the test, the real measured temperatures in the element, etc.… But it already gives some confidence that this model is capable of predicting the fire behaviour of such type of floor system with a satisfying level of accuracy.

It would also be possible to model the steel cellular beams in detail with shell elements, but such model would be too large for practical applications.

CONCLUSION

This fire test provided a unique opportunity to study the behaviour of long cellular steel beams in a complete compartment office in building structure under realistic fire conditions. The test was very successful, fire was more intense and of longer duration that assumed in the initial studies yet the structure performed as predicted. The test results are still being intensively analysed by partner researchers, thus it is not yet possible to draw a comprehensive list of conclusions at this stage. It appears anyway clear already that the fact to use cellular beams to support the composite slab does not jeopardise the tensile membrane action that develops in the slab in a fire situation.

The Ozone model provides a rather estimation of the fire development, provided that the correct amount of fire load is introduced.

The SAFIR model was capable of predicting with an acceptable level of accuracy the complex behaviour of cellular beams acting in membrane action.
ACKNOWLEDGEMENTS

The authors thank Mr Seamus O’Connor, Martin Cox and Thomas Farrell from the Fire Direct Glass and Mr Sam Kelly from the composite decking and Kingspan ltd.

REFERENCES