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Abstract
Osteoarthritis (OA) is associated with a local inflammatory process. Dyslipidemia is known

to be an underlying cause for the development of OA. Therefore, lipid and inflammatory lev-

els were quantified ex vivo in blood and synovial fluid of OA patients (n=29) and compared

to those of rheumatoid arthritis (RA) patients (n=27) or healthy volunteers (HV) (n=35). The

role of apolipoprotein A-I (ApoA1) was investigated in vitro on inflammatory parameters

using human joint cells isolated from cartilage and synovial membrane obtained from OA

patients after joint replacement. Cells were stimulated with ApoA1 in the presence or not of

serum amyloid A (SAA) protein and/or lipoproteins (LDL and HDL) at physiological concen-

tration observed in OA synovial fluid. In our ex vivo study, ApoA1, LDL-C and total cholester-

ol levels were strongly correlated to each other inside the OA joint cavity whereas same

levels were not or weakly correlated to their corresponding serum levels. In OA synovial

fluid, ApoA1 was not as strongly correlated to HDL as observed in OA serum or in RA syno-

vial fluid, suggesting a dissociative level between ApoA1 and HDL in OA synovial fluid. In
vitro, ApoA1 induced IL-6, MMP-1 and MMP-3 expression by primary chondrocytes and fi-

broblast-like synoviocytes through TLR4 receptor. HDL and LDL attenuated joint inflamma-

tory response induced by ApoA1 and SAA in a ratio dependent manner. In conclusion, a

dysregulated lipidic profile in the synovial fluid of OA patients was observed and was corre-

lated with inflammatory parameters in the OA joint cavity. Pro-inflammatory properties of

ApoA1 were confirmed in vitro.

Introduction
Osteoarthritis (OA) is one of the most common chronic joint diseases causing substantial
health deficits and becoming increasingly more prevalent as the population ages. Obesity is
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a major risk factor for developing OA and recent data suggest that there will be soon an epi-
demic of obesity-related osteoarthritis in the general population [1].

OA is characterized by a dysregulation of the normal joint homeostasis that leads to intra-
articular cartilage degradation, attempted repair and a local inflammatory process. Articular
cartilage is a specific connective tissue covering joint surfaces. It has a glistening, white appear-
ance. Microscopically, it is composed of water, collagen, proteoglycan and a wide range of ma-
trix proteins and lipids. Chondrocyte is a unique cell type in articular cartilage tissue and is
essential for producing a large amount of extracellular matrix. The synovial membrane is a
layer of connective tissue that covers joint cavities and makes lubrication of articular cartilage.
It is composed of fibroblast-like synoviocytes. In OA, catabolic hyperactivity of chondrocytes is
observed. The synovial membrane and chondrocytes start to secrete inflammatory mediators
(cytokines and metallo-proteinases) enhancing extracellular matrix degradation in cartilage.
Furthermore, anabolic activities of chondrocytes that regulate the synthesis of extracellular ma-
trix components and maintain the functional integrity of joints are decreased, thereby imped-
ing any cartilage repair. OA was recently considered as part of the metabolic syndrome rather
than only due to aging or mechanical stress [2]. Several evidences point to the direction of an
altered lipid metabolism as an underlying contributing factor for the development of OA. First,
it is a systemic disorder in which homeostatic dysregulation within the joint structure might be
due to adipokines activities [3]. Second, many researches have demonstrated that overweight
people [4], people with diabetes [5] or people with elevated serum cholesterol [6] had a much
greater risk to develop OA compared to healthy persons. Third, excess fat mass, particularly
central or visceral adipose tissue enhances insulin resistance, hyperinsulinemia, glucose intoler-
ance, hypertension, dyslipidemia and cardiovascular disorders, symptoms that can be linked to
OA [7, 8]. Fourth, lipid deposition in the joint is observed at the early stages of OA [9]. Finally,
several similarities between OA and atherosclerosis in their underlying aetiopathogenic factors
have suggested chondrocytes as potential foam cells in OA [10].

Recently, we have studied the role played by an apolipoprotein, the acute phase serum amy-
loid A (A-SAA), as a pro-inflammatory marker in OA joints [11]. Under non-inflammatory con-
ditions, A-SAA protein is associated with high-density lipoprotein (HDL) in plasma [12]. Liver
predominantly produces A-SAA, and its concentration in blood may increase up to 1000 fold
during the acute phase of inflammation. A-SAA levels in serum of OA patients are significantly
higher to those in corresponding synovial fluid, but both levels are closely correlated to each
other. A-SAA serum levels are also correlated with the Kellgren & Lauwrence score, a radiologi-
cal score of severity in OA [11]. We therefore concluded that A-SAA in the synovial fluid of OA,
but also of rheumatoid arthritis (RA) patients, was mainly due to an increased level of A-SAA in
blood and probably due to the diffusion process into the joint cavity even though fibroblast-like
synoviocytes (FLS) and chondrocytes can also contribute to a local production [11]. Increased
level of A-SAA in blood or synovial fluid can significantly affect interactions between HDL and
apolipoprotein A-I (ApoA1) and therefore affect properties of these lipoproteins [13, 14]. Indeed,
ApoA1 is a major protein component of HDL cargo molecules in plasma and both are known to
play a central role in the back transport of cholesterol from peripheral tissues to the liver.

In this study, ApoA1 levels and other lipidic/inflammatory parameters were quantified in
synovial fluid and blood samples of OA patients, and were compared to those of RA patients
(for blood and synovial fluid) and of healthy volunteers (HV) (for blood only). We also investi-
gated the role played by ApoA1 compared to A-SAA on inflammatory parameters using
human joint cells, primary chondrocytes and FLS, provided from OA patients. Because HDL is
known to exert anti-inflammatory effects against a wide range of inflammatory agents, we
sought to investigate whether HDL attenuates joint inflammatory responses in the presence of
apolipoproteins such as ApoA1 and A-SAA.
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Materials and Methods

Patients
Twenty-nine patients with OA and 27 with RA recruited through hospital outpatient clinics
took part in this study. All patients fulfilled established diagnostic criteria for their respective
diseases [15, 16]. None of the OA patients were on intra-articular steroid. Among the 27 RA
patients, 11 (40%) received concomitant methotrexate at a mean dosage of 9.4 mg/week (range
6–15) and 15 (55%) prednisolone at a mean dosage of 8.9 mg/day (range 5–20). Thirty-five
healthy volunteers (HV), matched for age [median (range) yr: 56 (50–64)], gender (56% of fe-
male) and BMI [median (range) Kg/m2: 25 (19–31)] served as the control group (Table 1). HV
were qualified for entry into the study considering the following exclusion criteria: any prior
history of knee trauma, joint pain, chronic inflammatory or autoimmune disease, cardiovascu-
lar disease, diabetes, corticosteroid injection or NSAID use. Subjects on lipid lowering agents
or impaired hepatic function were also excluded. OA and RA patients were matched for the
BMI of HV. None had been taking statins in the last 3 months of sample collection.

Table 1. Demographical characteristics.

HV OA RA

Number of subjects 35 29 27

Female (%) 57 55 70

Age, median (range) 56 (50–64) 67 (53–86) 57 (19–73)

BMI, median (range) Kg/m2 25 (19–31) 27 (18–32) 25 (19–30)

MTX (%) [Mean dosage (range)] 0 0 40 [9.4 mg/week (6–15)]

Prednisolone (%) 0 0 55 [8.9 mg/week (5–20)]

[Mean dosage (range)]

ApoA1 (g/L)—SF / 0.52 (0.38–0.91) 0.80 (0.57–1.20)

ApoA1 (g/L)—Serum 1.64 (1.27–2.47) 1.65 (1.14–2.50) 1.57 (0.96–2.3)

A-SAA (μg/mL)—SF / 3.5 (0.7–17) 31.1 (0.5–1832)

A-SAA (μg/mL)—Plasma 19 (5–88) 38 (6–123) 333 (13–4651)

HDL-C (g/L)—SF / 0.26 (0.17–0.44) 0.32 (0.22–0.55)

HDL-C (g/L)—Serum 0.62 (0.34–1.03) 0.49 (0.28–1.00) 0.54 (0.28–0.9)

LDL-C (g/L)—SF / 0.43 (0.06–0.98) 0.52 (0.26–1.26)

LDL-C (g/L)—Serum 1.23 (0.62–2.42) 1.46 (0.75–2.26) 1.23 (0.74–1.98)

anti—Ox LDL Ab (UI/L)—SF / 76 (37–406) 126 (37–1200)

anti—Ox LDL Ab (UI/L)—Serum 171 (37–1139) 113 (37–929) 213 (37–1200)

Total Cholesterol (g/L)—SF / 0.70 (0.28–1.42) 0.91 (0.48–1.65)

Total Cholesterol (g/L)—Serum 2.19 (1.58–3.03) 2.30 (1.43–2.95) 2.04 (1.32–2.74)

IL-6 (ng/mL)—SF / 0.12 (0.01–4.09) 6.2 (0.04–125.2)

IL-6 (ng/mL)—Serum <0.009 <0.009 0.03 (0.0015–0.183)

MMP-1 (ng/mL)—SF / 49 (5–1115) 553 (7–4104)

MMP-1 (ng/mL)—Serum 1.34 (0.62–7.15) 1.14 (0.41–4.04) 3.53 (0.88–23.23)

MMP-3 (ng/mL)—SF / 1292 (224–19238) 25144 (493–106173)

MMP-3 (ng/mL)—Serum 10.71 (5.79–37.87) 16 (5.9–63.18) 75 (19.08–293.63)

Apolipoprotein A-I (ApoA1), serum amyloid A (A-SAA), lipoproteins (LDL, HDL), anti-oxidized LDL

antibodies, total cholesterol levels and inflammatory parameters in synovial fluids (SF) and serum (or

plasma) of osteoarthritis (OA) and rheumatoid arthritis (RA) patients compared to those in matched healthy

volunteers (HV). Values are median (range) otherwise indicated.

doi:10.1371/journal.pone.0122904.t001
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Samples
Blood samples were collected from HV after an overnight fast. Similarly, blood samples and sy-
novial fluids were collected together from each OA and RA patients after an overnight fast.
Blood samples were allowed to coagulate in plain glass tubes during 30 minutes. Serum, plasma
(EDTA tubes) and synovial fluid were obtained by centrifugation at 3000 rpm for 10 min. Su-
pernatants were aliquoted and immediately frozen at −80°C until required for experiments.

Ethics Statement
The research was carried out according to The Code of Ethics of the World Medical Associa-
tion (Declaration of Helsinki).

The institutional review boards (Research Ethics Committee) of the University Hospital,
CHU de Liège, Belgium, approved both the study protocol and the use of verbal informed
consent to allow research procedures on biologic samples or tissues collected in out- and in-
patients during their passage or stay at the CHU de Liège, as explained in the institutional in-
formation booklet written by the hospital and provided to each patient. Clinicians gave to
patients an oral statement about our research. This statement included basic elements of our
informed consent. Then, clinicians informed patients about authorizations obtained from the
local Research Ethics Committee to perform studies and showed documents to those who
wanted to read it. Clinicians gave sufficient time to patients to consider whether or not they
wanted to participate in the research. After allowing the potential subject sufficient time, clini-
cians answered to any additional questions patients might have. Then clinicians obtained pa-
tient’s verbal consent to participate in the research. Strict data management retained
anonymity of participants.

Lipoproteins, anti-oxidized LDL antibodies, total cholesterol and ApoA1
quantification
Total cholesterol, HDL-cholesterol (HDL-C) and LDL-cholesterol (LDL-C) were measured in
serum on a Roche Modular P Chemistry Analyzer (Roche Diagnostics) using a cholesterol oxi-
dase enzymatic method, a direct magnesium/dextran sulfate method and a homogeneous enzy-
matic colorimetric assay (Roche Diagnostics GmbH, Mannheim, Germany), respectively.

Serum levels of ApoA1 were determined by an immunonephelometric method on a BNII
nephelometer (Dade Behring/Siemens) with specific antibodies (Siemens, Marburg, Germany).
Anti-oxidized LDL antibodies (anti-Ox LDL Ab) were measured by a kit based on an enzyme
immunoassay for the quantitative determination of human IgG autoantibodies against oxi-
dized low density lipoprotein in serum (Biomedica Medizin GmbH,Vienna, Austria). This
assay was realized on an ETIMAX 3000 (Diasorin, Italy).

Human primary chondrocytes and FLS
Primary chondrocytes and FLS were isolated from human cartilage and synovial tissue, respec-
tively, of OA patients after surgical joint resection as described in [17–19]. Informed consents
were obtained and experiments approved by the ethics committee of our academic hospital
(CHU, Liège, Belgium). Briefly, primary chondrocytes (2x105 cells/0.5ml of DMEMmedium
containing 10% FBS) were seeded in 24-well plates (BD Biosciences, USA) in triplicate and
stimulated after 5 days of culture. FLS (5x104 cells/0.5ml of DMEMmedium containing 10%
FBS) were used between passages 2–6. After a defined culture time, cellular supernatants were
collected for ELISA tests and cells were harvested for protein extraction.
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Culture reagents
Culture reagents were purchased as follows: purified human ApoA1, purified human high den-
sity lipoprotein (HDL), purified human low density lipoprotein (LDL) (human source, Milli-
pore, CA, USA), recombinant human ApoA1 (rhApoA1, E. Coli source, #350–11, Peprotech,
USA), recombinant human SAA (rhSAA, E. Coli source, #300–13, Peprotech, USA), predniso-
lone (Sigma-Aldrich, St Louis, MI, USA), IgG rabbit polyclonal control, IgG1 mouse monoclo-
nal (Santa Cruz, CA, USA), anti-RAGE IgG rabbit polyclonal (Abcam, UK, #ab37647),
anti-CLA1/SR-B1 (BD Biosciences, USA, #610883), lipoxin A4 (Cayman Chemical, Biocon-
nect, NL), TAK242 (CLI-095, InvivoGen, CA, USA), sulfo-N-succinimidyl oleate (SSO, Santa
Cruz, CA, USA), and polymyxin B (Calbiochem Novabiochem Corp., CA, USA).

ELISA
A commercially available sandwich enzyme-linked immunosorbent assay was used for IL-6,
MMP-1 and MMP-3 (R&D Systems, Minneapolis, MN, USA), and A-SAA (Invitrogen, Bel-
gium) quantification in serum or plasma (for A-SAA), in synovial fluid and in the cell superna-
tant according to manufacturer’s instructions.

Endotoxin contamination
Lonza Company (Vervier, Belgium) quantified endotoxin level in ApoA1, HDL, LDL (human
source, Millipore, CA, USA), rhSAA and rhApoA1 (E. Coli source, #300–13 and #350–11,
Peprotech, USA) proteins. Endotoxin level was measured at 0.1 ng per μg of ApoA1, 0.02 pg
per μg of HDL, 0.03 pg per μg of LDL, 2.5 pg per μg of rhSAA and 0.03 ng/μg of rhApoA1.

The highest endotoxin level was detected in ApoA1 (human source) at 0.1 ng/μg, which was
equivalent to 3ng/mL (or 30 EU/mL) endotoxin level when 30 µg of ApoA1 (1μM) was supplied
to 1 mL of in vitro culture medium. For in vitro experiments, polymyxin B (MW = 1.4 kDa) was
used for complexing and inactivating endotoxin at a molar concentration equivalent to ApoA1
(MW= 28kDa): 1μM. Efficacy of polymyxin B at 1μMwas tested with 10–1–0.1 ng/mL of LPS
on fibroblast-like synoviocytes and chondrocytes. Polymyxin was first incubated with LPS,
ApoA1, rhApoA1 or rhSAA during 45 min at 37°C before stimulation of in vitro cells.

Statistical analysis
Values in Table 1 are median (range) otherwise indicated. Correlation coefficients were ob-
tained by the Spearman rank correlation test in Tables 2 and 3. Statistical analysis was per-
formed by GraphPad Prism software version 4.01 for Windows. Graphs in Figs 1, 2, 3 and 4
represent means of triplicates from three independent experiments (n = 3); error bars indicate
standard errors of the means (SEM). P-values were obtained using the Mann-Whitney U-test.
A P-value< 0.05 was considered as statistically significant.

Results

Ex vivo ApoA1 level in serum and synovial fluid of OA and RA patients
Blood samples were provided from healthy volunteers (n = 35), OA (n = 29) and RA (n = 27)
patients, and synovial fluids were collected from OA and RA patients only. Synovial fluid from
HV was in too small quantity to be taken safely and was therefore not collected. Demographical
characteristics were summarized in Table 1. Age, BMI and gender of patients in the HV, OA
and RA groups were not significantly different. ApoA1 level was measured in blood and syno-
vial fluid and compared to other lipidic and inflammatory parameters.
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Ex vivo-ApoA1 status in OA synovial fluid
ApoA1 level inside the OA joint cavity is independently modulated from its correspond-

ing serum level. Of interest, ApoA1, LDL-C and total cholesterol levels in synovial fluid were
weakly correlated to their serum levels in OA [r = 0.43 (P = 0.035), 0.44 (P = 0.025) and 0.40
(P = 0.045), respectively] whereas strong correlations were observed for HDL-C (r = 0.68,
P = 0.0001), A-SAA (r = 0.86, P<0.0001) and anti-OxLDL antibody (r = 0.80, P<0.0001) levels
(Table 2). Similar results were observed in the RA group. These results suggest that ApoA1,
LDL-C and total cholesterol levels in the OA and RA joint cavity are not only due to passive
diffusion from blood to synovial fluid but are submitted to local modulation inside the cavity.

Correlations between ApoA1 levels and other lipidic and inflammatory parameters in
OA synovial fluid. Unexpectedly, ApoA1 levels were highly correlated to total cholesterol
(r = 0.72; P<0.0001) and LDL levels (r = 0.64, P<0.0001) inside the OA joint cavity but not in-
side their corresponding OA serum [r = 0.11 (P = 0.56); r = -0.08 (P = 0.68)] or inside RA syno-
vial fluid [r = 0.33 (P = 0.14); r = -0.33 (P = 0.9)] (Table 3). Furthermore, correlation between
ApoA1 and HDL inside the OA joint cavity was slightly decreased (r = 0.58, P<0.003) com-
pared to its corresponding correlation inside OA serum (r = 0.91, P<0.0001). These data sug-
gest that ApoA1 levels inside the OA joint cavity are altered; becoming significantly correlated
to the total cholesterol and LDL levels but less significantly correlated to HDL levels. ApoA1

Table 2. Synovial fluid vs. blood levels.

OA samples r P-value

ApoA1 0.43 0.035 *

LDL-C 0.44 0.025 *

Tot. Cholesterol 0.40 0.045 *

HDL-C 0.68 0.0001 ***

A-SAA 0.86 P<0.0001 ***

anti-OxLDL Ab 0.80 P<0.0001 ***

IL-6 NA NA NA

MMP-1 0.37 0.046 *

MMP-3 0.40 0.04 *

RA samples

ApoA1 0.56 0.020 *

LDL-C 0.33 0.14 NS

Tot. Cholesterol 0.08 0.71 NS

HDL-C 0.63 0.0016 **

A-SAA 0.94 P<0.0001 ***

anti-OxLDL Ab 0.71 P<0.0001 ***

IL-6 0.51 0.009 **

MMP-1 0.14 0.052 NS

MMP-3 0.57 0.0031 **

Correlations between synovial fluid and serum lipoproteins, anti-oxidized LDL antibodies, total cholesterol,

apolipoprotein A-I and inflammatory parameters in the whole group of osteoarthritis (OA) or rheumatoid

arthritis (RA) patients. Correlation coefficients (r) were obtained by the Spearman rank correlation test. NS;

non-significant. NA; not applicable.

*P�0.05

**P�0.01

***P�0.001

doi:10.1371/journal.pone.0122904.t002
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and LDL-C levels were also weakly but significantly correlated to IL-6 levels [r = 0.41
(P = 0.04); r = 0.52 (P = 0.006)], and ApoA1 to MMP-3 levels (r = 0.34, P = 0.047), another un-
common characteristic of OA synovial fluid suggesting a local dysregulated process within the
lipidic and inflammatory parameters (Table 3).

Pro-inflammatory properties of ApoA1 in vitro
ApoA1, A-SAA, HDL and LDL were estimated at a median level of 520 μg/mL, 3.5 μg/mL,
260 μg/mL and 430 μg/mL in OA synovial fluid (Table 1). Accordingly, similar concentrations
were used, in vitro, to stimulate human primary chondrocytes and fibroblast-like synoviocytes,
except for ApoA1 that was used at lower concentrations (56μg/mL or 30μg/mL), due to the too
low initial commercialized ApoA1 concentration. Nevertheless, in vitro ApoA1 molar concen-
tration (56 μg/mL, MW = 28kDa, 2μM) remained largely in excess compared to other mole-
cules [HDL (260 μg/mL, MW = 200kDa, 1.3μM); LDL (180 μg/mL, MW = 2000kDa, 0.1μM)
or to rhSAA (3.5 μg/mL, MW = 11.7kDa, 0.3μM)], as observed in OA
pathophysiological conditions.

ApoA1 induced IL-6 expression in human primary chondrocytes. Human primary
chondrocytes were stimulated with purified human ApoA1 (human source) or rhApoA1
(E.Coli source) proteins during 24h at a concentration of 30 μg/mL (Fig 1A). Both purified
ApoA1 proteins (human and E. Coli source) induced IL-6 secretion by human primary chon-
drocytes in their respective cell medium (Fig 1A). Presence of polymyxin B (PB), a cationic

Table 3. Correlations between parameters detected in serum and synovial fluid.

HV OA RA

Serum SF Serum SF Serum SF

r P value r P value r P value r P value r P value r P value

ApoA1 vs. Tot.
Cholest

0.12 0.5 NA NA 0.11 0.56 0.72*** <0.0001 0.51** 0.01 0.33 0.14

ApoA1 vs. LDL-C -0.34* 0.041 NA NA -0.08 0.68 0.64*** <0.0001 0.11 0.64 -0.03 0.9

ApoA1 vs. HDL-C 0.94*** <0.0001 NA NA 0.91*** <0.0001 0.58** 0.003 0.83*** <0.0001 0.79*** <0.0001

LDL-C vs. HDL-C -0.44** 0.008 NA NA -0.07 0.7 0.4* 0.04 0.11 0.64 0.21 0.3

Tot.
Cholest.

vs. HDL-C -0.02 0.92 NA NA 0.09 0.63 0.51** 0.007 0.47** 0.01 0.47** 0.01

Tot.
Cholest.

vs. LDL-C 0.76*** <0.0001 NA NA 0.92*** <0.0001 0.96*** <0.0001 0.82*** <0.0001 0.86*** <0.0001

ApoA1 vs. IL-6 NA NA NA NA NA NA 0.41* 0.04 -0.26 0.23 0.21 0.35

ApoA1 vs. MMP-1 -0.23 0.18 NA NA -0.60*** <0.0001 0.22 0.3 -0.1 0.63 0.05 0.83

ApoA1 vs. MMP-3 -0.49** 0.003 NA NA -0.34* 0.047 0.34* 0.047 -0.21 0.32 -0.07 0.76

Tot.
Cholest.

vs. IL-6 NA NA NA NA NA NA 0.5** 0.008 0.16 0.47 0.4* 0.04

LDL-C vs. IL-6 NA NA NA NA NA NA 0.52** 0.006 0.28 0.19 0.27 0.18

HDL-C vs. IL-6 NA NA NA NA NA NA 0.08 0.7 -0.3 0.17 -0.08 0.7

Correlation coefficients (r) between levels of lipoproteins, apolipoproteins A-I, total cholesterol and IL-6. Correlation coefficients (r) were obtained by the

Spearman rank correlation test.

*P�0.05

**P�0.01

***P�0.001

HV = healthy volunteers; OA = osteoarthritis; RA = rheumatoid arthritis; SF = synovial fluid; NA = not applicable

doi:10.1371/journal.pone.0122904.t003
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Fig 1. ApoA1-induced IL-6 expression after 24h using primary human chondrocytes. A) IL-6 expression after stimulation by ApoA1 (30μg/mL) in the
presence or not of polymyxin B (PB) (1μg/mL). B) Dose response with ApoA1 (human source; 50-15-3μg/mL) and rhSAA (5–2.5μg/mL). C) ApoA1 (human
source; 56–5.6μg/mL) with or without HDL (260-50-3μg/mL). D) rhSAA (3.5μg/mL) with or without HDL (260-50-3μg/mL). E) ApoA1 (human source; 56–
5.6μg/mL) with or without LDL (180-30-2μg/mL). D) rhSAA (3.5μg/mL) with or without LDL (180-30-2μg/mL). *b,*d,*f,*h and *j statistically different to “a”,
“c”, “e”, “g” and “i”, respectively. Data were expressed as means ± SEM (n = 3). * P< 0.05 by Mann–Whitney test.

doi:10.1371/journal.pone.0122904.g001
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cyclic lipopeptide that binds stoechiometrically the lipid A moiety of LPS/endotoxin and blocks
its biological effects, did not significantly reduced ApoA1-induced IL-6 expression (Fig 1A).
Polymyxin B efficacy is further described below.

In a previous work, we had already demonstrated that rhSAA induced cytokines and MMPs
in a dose dependent manner [11]. In the following study, no synergic effect was observed when
both ApoA1 (50–15–3 μg/mL) and rhSAA (5–2.5 μg/mL) proteins were combined for stimula-
tion of human primary chondrocytes (Fig 1B).

We next analyzed whether HDL and LDL could themselves induce IL-6 secretion or modu-
late ApoA1-induced IL-6 expression. In Fig 1C, human primary chondrocytes were stimulated
with ApoA1 56 μg/mL (2μM, excess of ApoA1) or 5.6 μg/mL (0.2μM, deficit of ApoA1) com-
bined with decreasing HDL concentrations (260–50–3 μg/mL or 1.3–0.25–0.015μM). No HDL
concentration could affect ApoA1-induced IL-6 expression when ApoA1 concentration was
used in excess (56 μg/mL; 2 μM). However, HDL could significantly inhibit ApoA1-induced
IL-6 expression when HDL (260 μg/mL, 1.3 μM) was highly in excess compared to ApoA1
(5.6 μg/mL, 0.2 μM) (a vs. �b., Fig 1C).

Human primary chondrocytes (Fig 1D) were then stimulated with rhSAA (3.5 μg/mL,
0.3 μM) and decreasing HDL concentrations (260–50–3 μg/mL or 1.3–0.25–0.015μM).
RhSAA-induced IL-6 expression was reduced but only when HDL concentrations (260 μg/mL,
1.3 μM) were used in excess compared to rhSAA (c vs. �d, Fig 1D).

Similar experiments were performed using decreasing LDL concentrations (180–30–2 μg/
mL or 0.1–0.015–0.001μM) (Fig 1E). LDL 180 μg/mL (0.1 μM) significantly reduced the
ApoA1-induced IL-6 expression at both ApoA1 concentrations (56 μg/mL, 2 μM and 5.6 μg/
ml, 0.2 μM) (e vs. �f; g vs. �h; Fig 1E), whereas lower LDL concentrations had no effect.
RhSAA-induced IL-6 expressions were also significantly reduced when rhSAA 3.5 μg/ml
(0.1 μM) was mixed with the higher concentration of LDL (180 μg, 0.1 μM), whereas lower

Fig 2. Endotoxin contamination and polymyxin B efficacy using primary human chondrocytes and fibroblast-like synoviocytes (FLS). A) Primary
human chondrocytes and B) FLS were stimulated with rhApoA1 (30μg/mL) or rhSAA (3.5μg/mL) or LPS (10-1-0.1 μg/mL) in the presence or not of polymyxin
B (1μg/mL).

doi:10.1371/journal.pone.0122904.g002
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concentrations had no effect (i vs �j, Fig 1F). Both HDL and LDL had no intrinsic capacities to
stimulate IL-6 production by human primary chondrocytes, at least at concentrations tested
(260 μg/mL for the HDL and 180 μg/mL for the LDL) (Fig 1C and 1F).

Endotoxin contamination and efficacy of polymyxin B. Efficacy of PB (1μg/mL) on en-
dotoxin contamination was achieved using LPS (10–1–0.1 ng/mL) as a positive control on pri-
mary chondrocytes (Fig 2A) and fibroblast-like synoviocytes (Fig 2B). Results obtained were
compared with ApoA1 (30μg/mL) and rhSAA (3.5μg/mL) (Fig 2A and 2B). Endotoxin

Fig 3. ApoA1-induced IL6, MMP-1 andMMP-3 expressions in the presence of lipoproteins after 24h using primary human chondrocytes and
fibroblast-like synoviocytes (FLS). A) Primary human chondrocytes and B) FLS were stimulated with ApoA1 (human source) (56μg/mL), rhSAA (3.5μg/
mL), HDL (260μg/mL) and LDL (180μg/mL). Data were expressed as means ± SEM (n = 3). * P< 0.05 by Mann–Whitney test.

doi:10.1371/journal.pone.0122904.g003
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Fig 4. TAK242 reduced ApoA1-induced IL-6, MMP-1 andMMP-3 expressions in human primary chondrocytes and fibroblast-like synoviocytes
(FLS). A) Primary human Chondrocytes and B) FLS were stimulated with ApoA1 (30μg/mL) in the presence or not of several inhibitors: lipoxin A4 (LX4; 1μM),
anti-SR-B1 antibody (5μg/mL) and its isotype IgG1 control antibody (5μg/mL), anti-RAGE (10μg/mL) and its isotype IgG control antibody (10μg/mL) and
TAK242 (1μM) for FPRL1, SR-B1, RAGE and TLR4 receptors, respectively. Polymyxin B was used at a concentration of 1μg/mL. *b and *h statistically
different to “a” and “g”, respectively. Data were expressed as the means ± SEM (n = 3). * P< 0.05 by Mann–Whitney test.

doi:10.1371/journal.pone.0122904.g004
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contamination of ApoA1 and rhSAA in cell culture were estimated at 3ng/mL and 0.9ng/mL,
respectively, according to Lonza (see Mat. and Meth. section) when 30μg of proteins were di-
luted in 1mL of culture medium. LPS (10ng/mL)—but not ApoA1- or rhSAA-induced IL-6 ex-
pression was blocked when LPS was combined with PB (1μg/mL) (Fig 2A and 2B). These
results suggest that ApoA1 and rhSAA, but not LPS, was responsible for pro-inflammatory ef-
fects observed previously.

ApoA1 and rhSAA induced IL-6, MMP-1 and MMP-3 secretion by human primary
chondrocytes and fibroblast-like synoviocytes in the presence of lipoproteins at OA patho-
physiological level. We next analyzed the role of ApoA1, rhSAA, HDL, LDL and mixed con-
ditions on IL-6, MMP-1 and MMP-3 expressions by human primary chondrocytes and by
fibroblast-like synoviocytes. Selected concentrations were 56 μg/mL (2 μM) for ApoA1, 3.5 μg/
mL (0.3 μM) for rhSAA, 260 μg/mL (1.3 μM) for HDL and 180 μg/mL (0.1 μM) for LDL.

For human primary chondrocytes (Fig 3A), we have observed that ApoA1- and rhSAA-in-
duced IL-6 expression was significantly reduced but not abolished when rhSAA and/or ApoA1
were combined with [HDL and LDL] (a. vs. �b, c. vs. �d, e vs. �f). However, ApoA1- and
rhSAA-induced MMP-1 and MMP-3 expressions remained unchanged in the presence of
HDL and LDL (g. vs. h., i. vs. j. and k. vs. l.). For fibroblast-like synoviocytes (Fig 3B), we ob-
served that rhSAA-induced IL-6, MMP-1 and MMP-3 expressions were significantly reduced
but not abolished when rhSAA was combined with HDL and/or LDL (o. vs. �p). ApoA1-in-
duced IL-6 and MMP-3 expressions were significantly reduced when ApoA1 was combined
with HDL (m. vs. n.�). Finally, ApoA1- and rhSAA-induced IL-6 expression was significantly
reduced when ApoA1 and rhSAA were combined with [HDL and LDL] (q vs. r�). Clearly,
HDL, LDL or [HDL-LDL] inhibiting capacities on IL-6, MMP-1 and MMP-3 expressions in-
duced by ApoA1 and A-SAA might be related to different molar ratios observed between
ApoA1 or rhSAA and HDL or LDL.

TAK242 reduced ApoA1-induced proinflammatory signals in human primary chondro-
cytes and fibroblast-like synoviocytes. In our previous work, we demonstrated that cyto-
kines and MMPs expression induced by rhSAA was mediated through toll-like receptor 4
(TLR4) [11]. In this work, we have also investigated several receptors including FPRL1, SR-B1/
CLA1, CD36, TLR4 and RAGE. Several inhibitors were used to determine which receptor was
involved in ApoA1-induced IL-6, MMP-1 and MMP-3 expression. LX4 is a competitor for
FPRL1 binding. Anti-RAGE and anti-SR-B1 antibodies were used to block their respective re-
ceptors. They can be compared to their respective control: IgG and IgG1. SSO irreversibly in-
hibits CD36. In our in vitro system, none of these inhibitors could significantly inhibit
ApoA1-induced IL-6, MMP-1 or MMP-3 expression (Fig 4A and 4B). However, TAK242, a
small molecule known for binding selectively the intracellular domain of TLR4 among 10 dif-
ferent human TLRs [20] reduced drastically in both cell types ApoA1-induced pro-inflamma-
tory signals similarly to the glucocorticoid, prednisolone (g. vs. �h, Fig 4A and 4B). Polymyxin
B (1μg/mL) was used to avoid any LPS contamination.

Discussion
Lipid diffusion into the joint cavity is dependent on the degree of inflammation [21]. Busso et
al. have provided evidences that lipoprotein diffusion from the circulation into the synovial
fluid was dependent on the disease type and particles size, and that the permeability of the bar-
rier was increased under inflammatory conditions [22]. Apolipoproteins and lipoproteins seem
therefore able to flow through the synovial barrier to enter into the joint cavity. Although in-
flammation is largely superior in RA compared to OA, we can nonetheless hypothesize that
local inflammatory process and lipids diffusion inside OA joint cavity can also occur, as
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suggested by their detection in the synovial fluid of OA patients. Indeed, strong correlations
have been raised between blood levels versus synovial levels for HDL, A-SAA and anti-OxLDL
antibodies, suggesting that major damage of permeability can be discarded for both OA and
RA synovial membrane. However, weak correlations have been raised for ApoA1, LDL-C and
total cholesterol levels when blood levels were compared to synovial levels, enhancing the hy-
pothesis of a local dysregulated process for these molecules inside the OA joint cavity. Interest-
ingly, synovial fluid from OA patients displayed the unique characteristic of ApoA1 levels
being strongly and positively correlated to LDL and cholesterol levels, which was not observed
either in corresponding OA blood samples or RA synovial fluids. Conversely, ApoA1 was not
as strongly correlated to HDL levels in OA synovial fluid compared to OA serum or HV and
RA fluids, suggesting a dissociative level between ApoA1 and HDL inside the OA joint cavity.
Finally, ApoA1, LDL-C and total cholesterol were also correlated to a local inflammatory pro-
cess inside the OA joint cavity via IL-6 and MMP-3 parameters. Metalloproteinases are known
for their activity on matrix cartilage degradation in OA. Oliviero et al. had already observed
such correlation between ApoA1 and inflammatory markers via the white blood cell count pa-
rameter in the synovial fluid of OA patients [23].

Inflammatory properties of ApoA1
ApoA1 is usually considered as an anti-inflammatory and atheroprotective agent [24]. Howev-
er, it was recently demonstrated that high ApoA1 levels could predict the development of pre-
hypertension [25] and type-2 diabetes [26]. Presence of ApoA1 was also observed in amyloid
deposit of knee joint menisci and in acute gouty arthritis [27, 28]. The nature of ApoA1 as a co-
variate of inflammatory markers and a determinant in the metabolic syndrome (diabetes and
prehypertension) was unexpected and further suggests its reconversion in an inflammatory
apolipoprotein. Our in vitro studies confirmed the potential role of ApoA1 in inflammation by
inducing a strong IL-6, MMP-1 and MMP-3 expression by primary chondrocytes and FLS. In-
creased protein expression levels of IL-8, MCP-1, GRO-α, TNF-α (for chondrocytes only) were
also detected after 6h of ApoA1 stimulation in cells supernatants of human primary chondro-
cytes and FLS (data not shown). However, we could not detect any IL-1β protein secretion
when cells were stimulated with ApoA1, in the limits of ELISA test (data not shown). Likewise
A-SAA in our previous work [11], ApoA1-pro-inflammatory effects were mediated through
the TLR4 receptor. Preliminary results indicated that NF-κB and MAPK downstream path-
ways were affected when cells were stimulated with ApoA1. Phosphorylation of IκBα and
JNK were observed for both cell types whereas p38 phosphorylation was only observed for
chondrocytes (data not shown). ApoA1 could therefore be considered as a potential “damage-
associated molecular patterns (DAMPs)”. ApoA1 is known to play a role in the innate defense
by binding Gram-negative bacteria [29] and having a high affinity for LPS. In our in vitro stud-
ies, LPS contamination was ruled out using polymyxin B. But, we cannot completely exclude
that ApoA1/LPS complex decreased the threshold of pathogen-associated molecular patterns
(PAMPs) recognition and in turn enhanced TLR4 signaling. Presence of bacterial peptidogly-
can-polysaccharide complexes was already described in synovial tissues of patients with in-
flammatory OA [30]. These findings underline the necessity of clarifying whether ApoA1 itself
binds to TLR4 or is a carrier of other particles mediating interaction with the receptor. Outer
PAMP (such as LPS) could bind to extracellular DAMP (free ApoA1 particles) to form a com-
plex that recognizes TLRs on synovial fibroblasts or chondrocytes, initiating a signaling cascade
that leads to the secretion of inflammatory cytokines, production of tissue-destructive enzymes
and finally resulting in OA. As described by Ospelt et al., TLR3 and TLR4 are among the most
expressed receptor for TLRs1-10 in OA- and RA-synovial tissues, in normal synovial fibroblast
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and skin fibroblasts [31]. TLR4 expression was not significantly increased after ApoA1 stimula-
tion of human chondrocytes or fibroblast-like synoviocytes (data not shown). But the dysregu-
lated lipidic profile observed inside the OA joint cavity and most specifically, free ApoA1
particles could be involved, directly or indirectly, in the local inflammatory process by enhanc-
ing TLR4 activation. Onat et al. have also declared that ApoA1 could be converted into pro-
inflammatory particles by aggregation to lipoprotein (a) Lp(a) [25]. They recently observed
that low circulating Lp(a) associated with high ApoA1/HDL-C ratio were predicting factors for
hypertriglyceridemic waist phenotype, which is considered as the core of the metabolic syn-
drome in impacting coronary heart disease risk [32]. ApoA1 could therefore become further
diabetogenic, atherogenic [26, 33] and osteoarthritic.

ApoA1 and lipoproteins
ApoA1 is the major structural protein of HDL, which plays a central role to shuttle cholesterol
from peripheral tissues or cells to the liver [34]. Beside its participation in reverse cholesterol
transport, HDL is associated to a large range of activities including anti-inflammatory, anti-
pathogenic, anti-apoptotic and innate immune activities [35–38]. In our in vitro study, we have
observed that HDL (as well as LDL) did not induce any pro-inflammatory mediators. Their ac-
tion on ApoA1-induced IL-6 expression was dependent on both ApoA1 and HDL (or LDL)
concentrations. Indeed, dose-ranging concentrations of HDL (or LDL) were unable to inhibit
ApoA1-induced IL-6 expression when ApoA1 concentration was in excess (56 μg/ml), mim-
icking median OA synovial fluid levels. HDL was only able to inhibit IL-6 expression when
ApoA1 concentration was ten-times lower (5.6μg/mL). Similarly, HDL (and LDL) actions on
the rhSAA-induced IL-6 expression was also dependent on HDL (or LDL) concentrations.
Pro-inflammatory properties of ApoA1 and A-SAA seemed therefore deeply influenced by
local concentration of HDL or LDL and are [ApoA1/(HDL or LDL)] or [A-SAA/(HDL or
LDL)] ratio dependent.

Recently, ApoA1 was also reported to interact with LDL (ApoA1-LDL) [39]. Interestingly,
in this work, we have observed a high correlation between LDL and ApoA1 levels in OA syno-
vial fluid but not in RA synovial fluid or in any serum samples group (HV, OA and RA).

Several studies have also demonstrated selective remodeling of HDL impairing its stability
and functionality in inflammatory and pathological conditions [40]. Dyslipidemia, glycation
and oxidative modifications on HDL were shown to be associated with impairment in HDL
function [41].

Therefore, anti- and pro-inflammatory properties of lipoproteins (HDL and LDL) and apo-
lipoproteins (ApoA1 and A-SAA) seem to be dependent on their pathophysiological environ-
ment. Our results suggest that a tight metabolic control of ApoA1 expression as well as HDL
and LDL concentrations would influence the inflammatory properties of ApoA1 on chondro-
cytes and fibroblast-like synoviocytes, cells involved in the development of OA. Our results
strengthen the concept that OA is also a metabolic syndrome, and not only due to aging or me-
chanical stress, in which homeostatic dysregulation within the joint structure might be due to
apolipoproteins activities.
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