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Abstract

Surprisal analysis is increasingly being applied for the examination of transcription levels in cellular processes, towards
revealing inner network structures and predicting response. But to achieve its full potential, surprisal analysis should be
integrated into a wider range computational tool. The purposes of this paper are to combine surprisal analysis with other
important computation procedures, such as easy manipulation of the analysis results – e.g. to choose desirable result sub-
sets for further inspection –, retrieval and comparison with relevant datasets from public databases, and flexible graphical
displays for heuristic thinking. The whole set of computation procedures integrated into a single practical tool is what we
call Computational Surprisal Analysis. This combined kind of analysis should facilitate significantly quantitative
understanding of different cellular processes for researchers, including applications in proteomics and metabolomics.
Beyond that, our vision is that Computational Surprisal Analysis has the potential to reach the status of a routine method of
analysis for practitioners. The resolving power of Computational Surprisal Analysis is here demonstrated by its application to
a variety of cellular cancer process transcription datasets, ours and from the literature. The results provide a compact
biological picture of the thermodynamic significance of the leading gene expression phenotypes in every stage of the
disease. For each transcript we characterize both its inherent steady state weight, its correlation with the other transcripts
and its variation due to the disease. We present a dedicated website to facilitate the analysis for researchers and
practitioners.
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Introduction

Surprisal Analysis, in its most general sense, is a procedure to

characterize the probability of different states of a system, states

that may have a rich internal structure. Furthermore the system

may not be in a steady state. The procedure begins by assuming

that a set of a relatively small number of constraints is known.

These constraints are considered to be sufficient to characterize

the deviations of the distribution from the steady state due to the

imposed conditions on the system. If the assumed constraints are

insufficient to actually reproduce the probability distribution, one

is surprised and therefore must search for modified and/or

additional constraints.

Surprisal Analysis has its basis in the physical sciences and has

been successfully applied to a plethora of physical, chemical and

engineering problems and convincingly demonstrated to be

relevant, useful and producing verifiable results [1–4].

The present work belongs to a series of papers [5–9] whose

purpose is to show that Surprisal Analysis is also relevant and

applicable to biological phenomena, in particular cellular cancer

processes. A recent commentary on the approach in Biology is

[10]. Using surprisal analysis we identify the most stable balanced

mRNA distributions at every stage of the disease from the

experimental data and also the less stable mRNA networks that

maintain the cells away from the balanced state. These networks

underlie the process of cancer development. We compare between

the cell system/patient networks participating in cancer transfor-

mation and relate them to the networks contributing mostly to the

balanced state.

This paper has two additional specific purposes.

First, to combine Surprisal Analysis with other important

computation procedures, such as easy manipulation of the analysis

results – e.g. to choose desirable result sub-sets for further

inspection –, retrieval and comparison with relevant data sets from

public databases, and flexible graphical displays for heuristic

thinking. The whole set of computation procedures integrated into

a single practical tool is what we call Computational Surprisal
Analysis. This combined kind of analysis should be much faster for

practitioners and researchers, than having independent but

mismatched tools to be integrated into logical and practical

consistency.

Second, over a longer time-scale, our vision is to reach the status

that Computational Surprisal Analysis will be a routine analysis for

cancer diagnostics. Thus besides, imaging techniques, minimally

invasive surgery, chemotherapy, controlled radiation treatments, it
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is expected that Computational Surprisal Analysis will find its

place in clinical practice, speeding-up diagnostics.

Therefore, this paper aims to show:

N the relevance of Surprisal Analysis to the understanding of

biological phenomena, by discussing novel results in the area of

Cellular Cancer Processes in the laboratory environment;

N that Computational Surprisal Analysis indeed accelerates

Surprisal Analysis, by first describing the integrative aspects

of the tool, and then explaining the speed-up gains in

computation and in heuristic thinking;

N the applicability of Computational Surprisal Analysis to

diagnostic of Cellular Cancer Processes, by comparing results

obtained for diseased as opposed to healthy subjects.

Cellular Cancer Processes
Cancer is a highly heterogeneous disease displaying a consid-

erable phenotypic variation among patients with a same type of

cancer. Therefore understanding of the underlying oncogenic

processes, involved in the process of transformation, requires

system-level approaches allowing identification and characteriza-

tion of the system constituents.

Recent technical advances including cDNA microarrays and

mass spec analysis of the cell proteomes, enable to establish global

and quantitative functional profiles of cancer cells and tissues.

Therefore there is a growing demand for theoretical-computa-

tional tools assisting with for the deeper understanding of the data.

Using a theoretical-computational approach we analyzed

several gene expression datasets, including renal cancer patients,

HPV16 induced transformed keratinocytes and WI-38 trans-

formed fibroblasts [7,8]. Furthermore the method of analysis can

be applied not only to messenger RNAs, mRNAs as we do here

but also to microRNAs [9] and beyond to the all –omics datasets,

including proteomics and metabolomics.

In this paper we center attention on an analysis of the mRNA

levels utilizing the same quantitative principles as in non-

equilibrium multicomponent systems in physics and chemistry.

Utilizing biological systems evolving in time in response to

perturbations we aim to define the mRNA signatures at the most

stable, steady state of the system and the groups of mRNAs that

deviate from the steady state due to perturbation. For this purpose

we utilize surprisal analysis as a technique that enables us to apply

thermodynamic principles in biology [4,6,8,14].

The output of surprisal analysis includes several groups of

mRNAs, those that contribute mostly to the steady state and other

group of mRNAs contributing significantly to the deviations from

the steady state at every stage of transformation. The last group

comprises highly heterogeneous unstable transcription phenotypes

[6] underlying the process of transformation. In addition to

identification cancer specific gene/protein signatures, surprisal

analysis allows comparing of the disease mRNA phenotypes to the

most stable and resistant to perturbations steady state transcription

patterns at every stage of the disease, adding a new layer to the

characterization of varying parts in the cancer transcriptome.

Surprisal Analysis
Surprisal Analysis is based upon the principle of maximal

entropy. Entropy is a physical quantity that originated in the

discipline of Thermodynamics, then appeared in Statistical

Mechanics and later on in Information Theory. Qualitatively

speaking entropy is a measure of disorder or lack of information.

Entropy increases when the chance of a system to be in a given

state among its many possible states is more uniform. If the

probability of the system to be in a certain state is much larger

than the probabilities to be in any other state, we do not lack the

information about the system and entropy is minimal.

The approach based upon the principle of maximal entropy,

says that our information about a distribution of the system states

is obtained by maximizing the entropy under the known

information constraints. In absence of any information, the

disorder is maximal and the information is minimal.

We impose the constraints using a method introduced by

Lagrange (for further details see File S1). It requires maximizing

the expression for the Lagrangian as a function of the Lagrange

multipliers:

~Entropy{
X

a
la Constrainta ð1Þ

Each Constrainta is multiplied by a coefficient la a Lagrange

multiplier whose numerical value tells about the relative impor-

tance of the respective constraint in the particular circumstance.

All the weighted constraints are summed and constrain the

Entropy to be reduced from its absolute maximal value.

In our application of this technique to cellular cancer processes,

constraints are viewed as so-called transcription/translation

patterns/cancer signatures e.g. related to specific cellular process-

es. These biological patterns prevent cancer cells to reach the

maximal entropy that is expected to exist at the balanced state of

the biological system. Surprisal analysis identifies both states at

every stage of the disease: the balanced state and the constrained

state, where specific cancer patterns are most active [6–8]. At any

given point in time certain patterns contribute more than others.

Thereby one can infer about the relative importance of specific

cellular processes in different stages of the cancer onset. In this

analysis every transcript can participate in more than one

transcription pattern, underlying the process of cancer develop-

ment.

Computational Surprisal Analysis
In order to demonstrate the concept and obtained speed-up of

Computational Surprisal Analysis, an integrated tool was designed

and implemented, having the overall software architecture shown

in Figure 1. Its software modules (from now on called softmodules)

will be described in detail in the Methods section of the paper (for

further details see also the File S1).

In order to get the integrative flavor of the Computational
Surprisal Analysis tool, we now mention the four softmodules’

inputs and the final output of the analysis:

1. Surprisal Analysis – input is a large rectangular matrix of data

of gene expression levels obtained from measurements in a chip

array. One of the dimensions of the data matrix is much larger

than the other one (for example, 4 time stamps by

approximately 22,000 genes). A goal of the surprisal analysis

is to reduce the data matrix to manageable dimensions, viz. to

obtain a square matrix whose dimension is smaller or at most

equal to the small dimension of the data matrix;

2. Gene Profiling – input is a small matrix of data whose size is set

by the number of patterns relevant to the information

measured, say a 4 by 4 matrix, relevant to 4 time stamps in

the cellular processes;

3. DB Retrieval – input consists of sub-sets of genes obtained by

the gene profiling. Each sub-set contains the more influential

genes in the respective pattern;

Computational Surprisal Analysis
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4. Heuristic Analysis – input is data obtained in the previous

softmodules. Computation is performed to analyze, and

interactively display to further analyze heuristically.

A sample output is seen in two heat maps, describing protein

connectivity, in Figure 2.

Results

In this section we present results of our work as viewed from

three different perspectives: a- genomic characterization of cancer

processes: b- the nature of Computational Surprisal Analysis; c-

the vision of Computational Surprisal Analysis as a practical

cancer diagnosis tool.

A- Genomic Characterization of Cancer Processes
For genomic characterization of cancer processes the relevant

experimental input are the transcription levels of the different

mRNAs. The constraints a in the surprisal analysis label the

phenotypes and a suitable terminology is given by an application

and specialization of equation (1) above, as follows:

ln Xi ~{
X

a
Gai la ð2Þ

where the indices refer to gene i and to the phenotype. a~0,1,2,:::
Xi is the experimental expression level of gene i, Gai is the (time-

independent) extent of participation of a given transcript i in the

transcription pattern a and la, the Lagrange multiplier of equation

(1) is here the weight of the respective transcription pattern a. This

terminology will be further clarified in the Methods section with

particular reference to the special role of the a~0 term.

The final output of the Computational Surprisal Analysis is the

heatmaps showing the extent of participation of the transcripts in

particular transcription patterns indexed by a. These theoretical

heatmaps are compared to the experimental heatmaps describing

the functional connectivity of the examined transcripts, using the

connectivity scores from the STRING database (See Methods

section). In this way we relate Gai values to the functional

networks, having the highest STRING connectivity scores, which

were verified experimentally.

The G0i coefficients, where the index 0 refers to the zeroth

phenotype, have negative values, meaning that the transcripts

most contributing to the steady state have the lowest G0i values. G1i

values – for the first phenotype – represent the extent of

participation of a particular transcript in the most important

transcription pattern underlying the process of cellular transfor-
mation. G1i values can be both negative and positive, pointing to

the correlation or inverse correlation of the transcripts within the

transcription pattern. The transcripts are labeled according to

Gene Ontology categories.

HF1 cells – HPV16 Immortalized keratinocytes. Using

HPV-16 induced immortalized keratinocytes, we analyzed gene

expressions between different stages of HPV-16 induced transfor-

mation of keratinocytes [11]. Gene expression levels were

measured at four discrete time points, called respectively:

N K (normal cells untransformed by the papilloma virus),

N E (HPV16 transformed cells from an early stage of transfor-

mation),

N L (transformed cells from a late stage of transformation)

N BP (the cells from the late stage that were treated by

benzo[a]pyrene) [11].

Using surprisal analysis we identified the major transcription

pattern a~1 contributing at all time-points (For more details see

[8]). This transcription pattern included the transcripts responsible

for the shrinkage in the pathways controlling apoptosis and

enhancement in the cell cycle networks in the late stages of

transformation. All these signatures were validated by biochemical

means [11].

Surprisal analysis also identifies secondary transcription patterns

that are not significant at all the stages of the HF1 transformation

[8]. In this work we examine the most stable transcripts

contributing to the balanced, invariant state of the HF1 system

and compare them to the major transcription pattern involved in

the process of transformation. We use Computational Surprisal
Analysis to build symmetric matrices – in order to generate

heatmaps –, e.g. whose ij element is G0iG0j .

In Figure 3 one can see results for HF1 cells (HPV16

Immortalized keratinocytes) of Computational Surprisal Analysis
in five different forms. These are respectively:

a) Upper left – Heatmap representing G0iG0j values;

b) Upper middle – Heatmap of the same transcripts list in (a)

using STRING DB scores;

c) Upper right – Heatmap of the same transcripts list in (a) with

G1iG1j values;

d) Lower left – Connectivity Map of the most stable transcripts

in (a) using STRING DB;

e) Lower right – Connectivity Map of the highest G1i.

From Figure 3 one can observe that, the most stable transcripts

(with the lowest values of G0i belong mostly to the protein synthesis

category. There is a good correspondence between (Fig.3A) and

(Fig.3B) heatmaps, meaning that the most stable transcripts, as

defined by surprisal analysis, are more functionally connected as

shown in the STRING DB heatmap. The heatmap (Fig. 3B) is the

quantitative representation of the connectivity maps (Fig. 3D and

3E).

The (Fig. 3C) heatmap of the same gene list with G1iG1j values

is uncorrelated with the (Fig. 3A) and (Fig. 3B), meaning that the

transcripts with the largest contribution to the stable invariant state

hardly participate in the process of transformation. Those

transcripts contributing mostly to the process of transformation

generate less connected map (Fig.3B, 3E) in comparison with the

Figure 1. Computational Surprisal Analysis. Software Architecture of the integrated tool.
doi:10.1371/journal.pone.0108549.g001

Computational Surprisal Analysis
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most stable transcripts (Fig. 3B and 3D) that have very small

relative changes (the lowest values of G0i).

WI-38 cells – WI-38 transformed fibroblasts. In Figure 4

one can see results for WI-38 cells (WI-38 transformed fibroblasts)

of Computational Surprisal Analysis in the same five forms and

conventions as in Figure 3. This cellular system includes 12 stages

of cancer transformation in which different genetic alterations

were applied [12]. This cell system underwent about 12 molecular

manipulations such as hTERT insertion, cell doublings, repression

of p53 function and the insertion of oncogenic H-Ras as reported

in [12], thereby developing of the normal WI-38 immortalized

non-transformed fibroblasts into fully transformed cells. In this

cancer cellular system the balanced state was stable during all 12

time points of transformation, whereas the significance of the

transcription patterns involved in the process of transformation

varied at different time points [7].

From Figure 4 one makes the same observations as above: there

is a good fitness between (Fig. 4A) and (Fig. 4B) heatmaps; the (C)

G1iG1j values heatmap is uncorrelated with (Fig. 4A) and

(Fig. 4B). The heatmap (Fig. 4B) is the quantitative representation

of the connectivity maps (Fig. 4D and Fig. 4E). Transcripts with

the highest G0i values and the biggest absolute G1i generate less

connected maps (Fig. 4E) with several biological modules (not to

be confused with softmodules). The main network module in the

Figure 4E includes transcripts participating in the NFkB (Nuclear

factor kappa B) signaling. Interestingly this module belongs to the

additional (minor) transcription pattern a~3 that has large

weights in the last stages of cancer development [7]. This module

was validated and defined previously as ‘‘tumor-forming genetic

signature’’ in the WI-38 cancer model system [12].

One summarizes the Genomic Characterization sub-section by

the following points:

1. Stable networks (transcripts with the lowest G0i values) generate

strong functional connections according to STRING DB. Each

protein there is a hub protein, with numerous connections and

bridges that can be quantitatively visualized in the surprisal and

STRING DB heatmaps. The probability that a lethal

mutation, such as deletion, in that hub protein would lead to

a cell death is expected to be higher in comparison with the less

connected proteins.

2. Transformation networks and connectivity– transcripts with the

highest G1i values, contributing mostly to the process of

transformation, generate less connected group in all datasets.

Thus deletion of one of them or replacement by another

protein may not affect significantly the G1i network. The same

result was obtained for the transcripts with the lowest G1i

values [6]. As shown above, the G1i map usually contains

several separated networks modules (see for example Fig. 4E).

These modules can be further examined as potential targets for

the drug therapy.

B- The Nature of Computational Surprisal Analysis
Here we describe the nature of Computational Surprisal

Analysis. It essentially consists of the three following aspects: a-

synergistic integration of various kinds of computation; b-

quantitative speed-up; c- novel kind of inferences exclusively

based on surprisal analysis.

Synergistic Integration of Diverse Kinds of

Computation. Following the softmodules depicted in Figure 1,

there are two modes of operation of the Computational Surprisal
Analysis system:

1- Sequential – to concatenate the softmodules exactly as shown

in Figure 1, using each softmodule output as the input to the

next softmodule.

2- Cyclical – certain softmodules are chosen to be cyclically

repeated, with possibly varying inputs until one exits the

loop, with satisfactory results.

Figure 2. Heat Maps. The upper heat map is obtained by means of
Surprisal Analysis. The lower heat map is based upon totally
independent data obtained by DB Retrieval. The axes in both heatmaps
are identical, viz. they contain the same transcription names in the same
order. As usual for heatmaps, colors stand for relative intensities
(numerical scales seen above each heatmap): red is high intensity and
blue is low intensity. The regions with the same color in both heatmaps
clearly overlap, i.e. their results fit very well, implying that Computa-
tional Surprisal Analysis – in the upper heatmap - can yield predictive
information about transcriptional and protein network structures – in
the lower heatmap. White dots in the lower heatmap denote lack of
information for the specific transcripts.
doi:10.1371/journal.pone.0108549.g002

Computational Surprisal Analysis
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In both ways an efficient computation is essentially limited only

by the interactions with the human user. These interactions may

be as simple as choosing/reading input/output. They may be

more sophisticated, as for example dedicating time to heuristic

thinking and making inferences of several types.

In order to enable cyclical repetitions, one must be able to

arbitrarily start with a softmodule, independently of other

softmodules. This is indeed possible as softmodules are built such

that they can either directly receive the output of a previous

softmodule in a chain fashion or to get another external input.

There is no need to waste time on explicit data manipulation, such

as converting formats in between softmodules. This is automat-

ically done, being an intrinsic feature of the synergistic integration.

Concerning the 1st softmodule – Surprisal Analysis – we have

already seen that its output includes several groups of e.g. mRNAs:

those that participate in the steady state and others that contribute

significantly to the deviations from the steady state. The soft-

modules synergism is necessary to understand the biological

meaning of these groups, viz. we utilize e.g. STRING DB access

[15] to draw functional networks for every group.

The 2nd softmodule – Gene Profiling – is an efficient integrating

bridge between the 1st and 3rd softmodules. It allows selection of

Figure 3. HPV16 Immortalized keratinocytes. (A) A heatmap of the 100 most stable (seen in (a) in red color) and the 100 most contributing to
the main transcription pattern a~1 (highest G1i) and up-regulated transcripts (seen in (a) in blue color) as obtained by surprisal analysis. In this figure:
PS – protein synthesis, SG – Signaling and Growth. (B) A heatmap of the same transcript list in (A) using STRING DB scores. (C) The same transcripts list
was utilized to generate G1iG1j . (D) Connectivity Map of the 100 most stable transcripts as using STRING DB; the red color ellipse encloses the most
stable and connected transcripts involved in the protein synthesis. The thickness of the lines reflect the approximate probability of the protein-
protein functional link for the related transcripts as provided by the String score (see Methods sections for more details). For instance, thick lines (as
for the proteins highlighted by red stars inside the ellipse, String score = 0.999) represent high probability for the functional connectivity based on
biochemical verification, whereas thin lines (as for the proteins highlighted by black stars, in the left bottom outside the ellipse, String score = 0.507)
represent smaller probability for the functional connection. (E) Connectivity map of the 100 transcripts most contributing to the main transcription
pattern a~1 (blue color).
doi:10.1371/journal.pone.0108549.g003

Computational Surprisal Analysis
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the significant genes from surprisal analysis results to retrieve the

relevant information from publicly available databases.

Regarding the 3rd softmodule, the access to a database such as

STRING DB is done through a suitable interface – transparent to

the human user – allowing straightforward selection and retrieval

of the desired data into the softmodule, for forward computations.

The system modularity enables simple future interfaces to

additional databases of interest.

Finally, the 4th softmodule enables relating quantitatively the

output of surprisal analysis to the functional connectivity between

mRNAs. Two kinds of heatmaps are provided:

1- theoretical heatmap of connectivity using degrees of

participations of e.g. mRNAs at the steady state/deviations

from the steady state as computed by Surprisal analysis

(from the 1st softmodule) and selected by means of Gene

Profiling (the 2nd softmodule);

2- functional heatmap calculated from the STRING DB

combined scores.

These integrated procedures allow very efficient and quantita-
tive understanding of the functional connectivity between mRNAs

contributing to the different stages of transformation.

Quantitative Speed-Up Evaluation. As seen above, Com-
putational Surprisal Analysis involves diverse kinds of computa-

tion procedures. These have duration times with very different

order of magnitudes, which can be classified as follows:

N Automatic purely computational procedure – for instance the

Surprisal Analysis performed by the 1st softmodule. The

duration of such a computation can be and has actually been

measured very precisely. This duration can be certainly

shortened by efficient sequential computation in the usual

sense or say by parallelization. On the other hand, this is so

Figure 4. WI-38 transformed fibroblasts. (A) A heatmap of the 100 most stable (seen in (A) in red color) and the 100 most contributing to the
main transcription pattern a~1 (highest G1i) and upregulated transcripts (seen in (A) in blue color) as obtained by surprisal analysis. (PS – protein
synthesis, SMP – Signaling, migration, proliferation). (B) A heatmap of the same transcript list in (A) using STRING DB scores. (C) The same transcripts
list was utilized to generate G1iG1j . (D) Connectivity Map of the 100 most stable transcripts as using STRING DB; the red color ellipse encloses the
most stable and connected transcripts involved in the protein synthesis. (E) Connectivity map of the 100 transcripts most contributing to the
transcription pattern a~1 (blue color).
doi:10.1371/journal.pone.0108549.g004

Computational Surprisal Analysis
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much faster than the next procedures, that for all evaluation

purposes a rough time upper bound of the order of a few

seconds is sufficiently satisfactory.

N Human interactive procedure – for instance the Gene Profiling

of the 2nd softmodule or the slightly longer heatmaps

comparison. These are the rate determining steps of the

Computational Surprisal Analysis. Their duration could be in

principle shortened by means of human-computer interaction

analysis techniques. On the other hand, it is reasonably safe to

assume that its lower bound is limited by human capabilities,

roughly estimated to take a time of the order of minutes.

In order to evaluate the quantitative speed-up obtained by the

modules of Computational Surprisal Analysis, the above duration

times should be compared with non-synergistic performance:

N Manual data conversion and manipulation – for instance,

manually moving the data obtained from databases, while

converting them to a suitable format to a heatmap depiction

procedure. It could take a roughly estimated duration at least

of the order of tens of minutes even for expert software

engineers.

From the above estimates, one evaluates the overall quantitative

speed-up obtained by Computational Surprisal Analysis, to be of

the order of ten. This is the ratio between the longest possible

duration, viz. the manual data manipulation to the shorter rate

determining step, viz. the human interactive procedure mediated

by synergistic automatic data conversion and manipulation.

This faster turnaround enables researchers and practitioners to

use the gained time for profitable analysis. In this sense, it speeds-

up the potential heuristic thinking. Heuristic thinking has an

associative character, as was hinted to by putting side-by-side (for

instance in Figures 3 and 4 of the present paper) diverse result

displays as Surprisal Analysis generated heatmaps and connectivity

maps.

An Important Inference: Stability of the steady

state. Besides the integration of diverse types of computation

with surprisal analysis, the analysis enables new kinds of

inferences. Here we discuss the inference of the stability of the

basic, housekeeping cellular processes, such as protein synthesis.

The quantitative argument uses eq.(2) that implies that the

experimental expression levels of the transcripts with significant

(negative) G0i values and small G1i values will be well reproduced

using the steady state term only, G0il0. This means that

experimental expression levels of these transcripts are not very

much influenced by the ongoing deviation processes, as repre-

sented by {Gaila for a~1,2:::, and therefore these transcripts are

more stable. By more stable we mean that their expression level

may change but only by a fraction, since {G0il0ww{G1il1.

Figure 5 shows HF1 cells and WI-38 cells results from the

previous sub-section together, in which G0il0 values are plotted

against G1il1 values (representing extent of participation in the

carcinogenic process). One can see that the transcripts with the

biggest G0il0 values (those that have lowest values of G0i) usually

have poor participation in the ongoing oncogenic processes (their

G1il1 values are close to 0). These transcripts are usually highly

expressed in comparison with the less stable and deviating

transcripts [6].

Less stable transcripts with significant G1il1 absolute values

(transcripts contributing significantly to the deviations from the

steady state) correspond to smaller absolute G0il0 values. In

summary, stable transcripts (with the biggest absolute G0il0 values)

have much smaller fold changes and are influenced less by the

process of transformation in comparison with the unstable ones

(with G0il0 values close to 0 but significant absolute G1il1 values).

This example of stability of the steady state is interesting as it

uses exclusively Gai and la values obtained from surprisal analysis;

this kind of inference was motivated by the application of surprisal

analysis to cancer characterization.

C- Computational Surprisal Analysis as a Cancer
Diagnostic Tool

What are the advantages of Computational Surprisal Analysis as

a cancer diagnostic tool? We offer a combination of different

reasons. The first refers to types of available information; the

second refers to cancer itself as a disease and the third to cancer

patients.

Regarding available types of information, recent technical

advances enabling quantitative functional profiles of cancer cells

and tissues require generation of bio-informatics software tools

providing a deeper understanding of the data at the systems level.

Concerning understanding cancer – a very complex disease –

working with networks, and not with the individual proteins, is

appropriate since many mutations may emerge at the same time

due to molecular changes, such as gene mutations and chromo-

somal instability [16]. Cells that have spontaneous mutations with

a survival advantage would proliferate. There is no ‘‘golden list’’ of

specific proteins or pathways that provide these advantages. For

example, alterations in the ‘‘death’’ network during the transfor-

mation is a hallmark of cancer, but different proteins or pathways

may lead to that alteration that eventually would result in the same

phenotype – cell survival [17,18]. Surprisal analysis identifies

major and minor networks, as represented by transcription

patterns, participating in the process of transformation and

classifies them according to the importance of every one at each

stage of the disease [7,8].

With respect to patients, cancer is highly heterogeneous,

showing a dramatic phenotypic variation between different cancer

types and among patients with the same type of cancer [6]. Thus

Computational Surprisal Analysis has the advantage of enabling

fast identification of the patient specific protein/gene signatures

along with the characterization of the invariant stable genomic/

proteomic reference related to all patients.

As a final example, we present results of the Computational
Surprisal Analysis of renal cancer patients. We deal with

development of renal cancer in three patients [13] and surprisal

analysis is carried separately for each patient. We analyze three

stages of the disease, namely normal tissues, primary tumor and

metastases, and identify the stable balance state in each stage and

Figure 5. Homeostasis: The stability of the steady state. G0il0

values for all analyzed transcripts in HF1 cells (left-hand-side red graph)
and WI-38 cells (right-hand-side black graph) were plotted against
corresponding G1il1 values. Stable transcripts that have small relative
alterations contribute less to the process of transformation. The biggest
G0il0 values correspond to low G1il1 absolute values.
doi:10.1371/journal.pone.0108549.g005
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the deviations thereof. The major transcription pattern accounting

for the deviation from the stable state (a~1) contributed at all

stages of the disease in all patients and differentiating between

normal and tumor/metastatic tissues.

A list of the most stable (in the balance state) and least stable

transcripts (participating in the pattern a~1) was generated for the

patients with renal metastatic cancer. The most stable transcripts

(with the lowest values of G0i) belong mostly to the protein

synthesis category and have similar G0i values in all patients.

A bigger heterogeneity was observed among less stable

transcripts. As was previously mentioned the stable transcripts

remained unchanged among the patients, whereas the transcripts

participated in the process of transformation varied significantly

[6]. Similar results were obtained for two patients with colon

carcinoma and for four patients with prostate cancer [6]. Figure 6

shows the relative stability of the protein synthesis network for two

of the renal cancer patients.

Although data and respective heatmaps differ in their details,

comparison of the patients’ heatmaps with that obtained from

STRING DB data reveals good correlation. The important point

here is that in addition to fast generation of the specific cancer

phenotypes for each patient Computational Surprisal Analysis
identifies a common invariant stable network that remains

unchanged between different patients with renal cancer and other

types of cancer.

The less stable pattern that strongly contributes to the

development of renal cancer differs significantly between exam-

ined patients ([6] and Fig. 6D and 6E). This pattern includes

proteins participating in the EGFR (Epidermal growth factor

receptor) network, such as EGFR and IL6 (interleukin 6), in one

patient (Fig. 6F) but not in the other two. EGFR and IL6 are

markers of highly invasive tumors, including renal carcinoma

[19,20]. These results point to the potential usefulness of

Computational Surprisal Analysis as a candidate patient-oriented

cancer diagnostic tool.

Discussion

We discuss here the results obtained, on-going and future work,

and open issues from the three perspectives: a- genomic

characterization of cancer processes; b- usage and speed-up due

to Computational Surprisal Analysis; c- the vision of Computa-
tional Surprisal Analysis as a potential practical cancer diagnosis

tool.

Genomic Characterization of Cancer Processes
Surprisal analysis identifies a small number of independent

transcription patterns that fully describe the process of transfor-

mation. At every stage of cancer transformation the importance of

every transcription pattern can decrease or increase, thereby

giving a very descriptive picture of cancer development process

[6,8]. The most stable transcription pattern remains similar

between different cell lines or patients as was shown in this study

and earlier [6,9].

Transcripts that belong to the steady state pattern generate very

connected network maps, whereas the transcripts underlying the

process of transformation generate much less connected maps with

separated small modules. We suggest that a high connectivity of

the stable pattern does not allow a big variation between stable

patterns of model cell systems or cancer patients in comparison

with the unstable and most contributing transcription patterns

participating in the process of cancer development.

Using Computational Surprisal Analysis the invariant stable

transcription pattern along with the unstable patterns are

identified. Several small connected modules inside unstable

transcription patterns can be usually observed and further

examined as drug potential targets, such as the NFkB module

in the WI-38 cancer module system or EGFR module in the renal

cancer patient.

Usage and Speed-Up due to Computational Surprisal
Analysis

Surprisal Analysis is a formal procedure to test a priori

hypotheses about complex phenomena. If the hypotheses are

reasonable, the same procedure obtains compact descriptions of

the relevant probability distributions of the system states, by a few

parameters. If the hypotheses are not satisfactory, Surprisal

Analysis – as implied by its name – surprises us, indicating that

the hypotheses must be modified or more parameters added.

In this work we refer to genomic characterization of cancer

processes. In these systems the hypotheses being tested can be

classified by the following characteristics:

N Nature and number of intensive variables – The intensive

variables in our systems are the lambda coefficients (the

Lagrange multipliers) of the surprisal analysis. As illustrated in

the Computational Methods section, the rank of the small

matrix used to characterize the cancer process – i.e. the

number of phenotypes – is at most the number of the

respective intensive variables. Intensive variables determine the

kind of comparisons that we wish and can perform.

A typical kind of comparison refers to time points. For this case,

researchers should decide, based upon a priori biological

knowledge, in which time points to perform measurements that

are embedded into a chip-array. In such a system, the lambda

coefficients, the ‘‘potentials’’, are time dependent and constitute

the relevant intensive variables. For instance, in the HF1 cells –

HPV16 Immortalized keratinocytes – four discrete time points
have been used, therefore a maximum of four phenotypes can be

identified.

Another kind of comparison refers to patients. If we wish to

compare effects on different patients then the relevant lambda

coefficients, the ‘‘patient potentials’’, are patient dependent.

N Selection and Number of extensive variables – the common

extensive variable in this work is gene expression. Researchers

use Gene Profiling to select the suitable genes to describe the

cancer process behavior for each phenotype.

The Computational Surprisal Analysis program has been

designed, implemented and made available for remote open use

for researchers, through the Web. The program offers documen-

tation including a User’s Guide and sample input and output, and

a reasonable amount of initial support. The program and its

documentation are accessible in a Web site (see the Methods

section).

As an initial proof of concept, the Computational Surprisal
Analysis tool has been used by investigators situated in a few

locations, in Israel, Europe and the United States. The results

reported in this paper were obtained by investigators in two of the

mentioned locations. A definitive proof of concept will need much

more extensive usage in terms of cancer types, investigator and

patient numbers and time period durations.

From a speed-up point of view, Computational Surprisal
Analysis can identify within several minutes transcription/trans-

lation patterns involved in the disease in hundreds and even

thousands of cancer patients [9] and assign importance of these

Computational Surprisal Analysis
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patterns to each patient [7–9], thereby accelerating the process of

patient oriented analysis.

The Computational Surprisal Analysis tool has been built with

an extensible software architecture and implementation having in

mind our main goal to promote fast testing and heuristic thinking

in the context of characterization of cancer processes’ research.

Thus we are open to concrete suggestions, and if necessary even

consider partial redesign of the software architecture, while strictly

keeping the synergistic integration directives, for additional

softmodules such as:

N Complementary relevant algorithms;

N Data selection techniques;

N Access ways to diverse public databases;

N Different kinds of data display.

We are currently working on the development of essential

quantitative additions to the Computational Surprisal Analysis
tool. The following additions will be demonstrated in the next

version of the CSA tool:

N new softmodules to make more precise the evaluation of the

results obtained, such as: a- Error estimates for the results of

the tool procedures; b- Quantitative correlation criteria for the

correlations observed among related heatmaps.

N mobile client in a small dimension generic device, say a

smartphone, eventually enabling performance of Computa-
tional Surprisal Analysis as a diagnosis tool, as discussed next.

Vision: Computational Surprisal Analysis as a Potential Cancer

Diagnosis Tool

Figure 6. Connectivity of transcripts for Renal Cancer Patients. A list of 200 transcripts was generated for two different cancer patients (A)
and (B): a heatmap of G0iG0j values was obtained using the same list of the transcripts for the two patients. The 100 most stable transcripts (with the
lowest values of G0i) belong mostly to the protein synthesis category and have similar G0i values in both patients. (PS-protein synthesis, SCC –
Signaling and Cell Cycle). (C) A heatmap of the same list of the transcripts as in (A) and (B) was generated using STRING DB scores. A good correlation
between (A) and (B) and (C) is observed. (D) and (E) Heatmaps of G1iG1j values were obtained using 100 upregulated transcripts with the strongest
contribution to the transcription pattern a1 for the two different patients. A bigger heterogeneity was observed among these transcripts. (F)
Connectivity map of the 100 transcripts most contributing to the main transcription pattern a~1 of the patient described in (A) and (D) was
generated using STRING DB.
doi:10.1371/journal.pone.0108549.g006
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Our vision in the longer term is to enable Computational
Surprisal Analysis as a cancer diagnosis tool in routine clinical

practice (see e.g. [10]). This will demand a few intermediate goals

to be achieved.

The first goal is to accumulate results, substantially increasing

the confidence in the Computational Surprisal Analysis proce-

dures. The results obtained for the renal cancer patients are very

preliminary. These are reinforced by similar results obtained for

colon and prostate cancer patients [6]. Together, they point out to

the desired direction. But extensive use and corroboration of the

Computational Surprisal Analysis tool is still necessary.

Conclusion

The main contributions of this work are summarized as follows:

1. Genomic Characterization – by contrast with stable gene

networks, one can learn about specific groups of genes involved

in transformations within cellular cancer processes;

2. Computational Surprisal Analysis – a fast and precise approach

to genomic characterization. The obtained speed-up enables

interactive heuristic thinking for research advancement of

cellular cancer processes and opens doors for promising

potential diagnostic tools in practice.

Materials and Methods

Data sets
Datasets used in the study include HPV-16 induced immortal-

ized keratinocytes [11], WI-38 transformed fibroblasts [12],

normal renal, tumor, and metastatic cells from three patients [13].

1. HF1 cells: cDNA was prepared from three independent HF1

cultures each of K, E, L and BP cells and hybridized to the

Human Genome U133A Array (Affymetrix) as described [11],

GEO accession number: GSE15156.

2. WI-38 System: cDNA was prepared using duplicates from 12

data points. cDNA was hybridized to GeneChip Human

Genome Focus Array (Affymetrix) as described [12].

3. Renal carcinoma: cDNA was isolated from three clear renal

cell carcinomas including autologous normal tissue and

autologous metastasis and hybridized to the HG-U133_Plus2

Affymetrix Human Genome array as described [13], GEO

accession number: GSE12606.

Analysis of mRNA expression data.
The gene expression data were analyzed using the Microarray

Suite version 5.0 algorithm (Affymetrix). For each probe, a data

analysis output file contained:

N a signal quantitative metric, which represents the relative level

of expression of a transcript;

N a detection i.e. a qualitative classification of each signal as

present, marginal, or absent;

N a detection p-value, indicating the significance of every

detection call.

To compare data from different arrays, the signal of each array

was scaled to the same target intensity value. For more details see

[11–13].

After performance of Surprisal analysis the transcripts of interest

were divided into biological categories using the DAVID DB [21]

and their connectivity was examined by means of retrieved data

from the StringDB [15]. We used confidence scores for functional

connections that are derived by benchmarking the performance of

the predictions against a common reference set of trusted, true

associations [15]. The benchmarked confidence scores in

StringDB correspond to the probability of finding the linked

proteins within the same KEGG pathway [15].

Computational Methods
The Computational Surprisal Analysis program is Web-based,

meaning that it can be accessed by a remote client located

anywhere [22]. The program was designed and implemented by

an object oriented approach [23]. The implementation technology

consists of a server running on IIS (Internet Information Services)

using C#.net.

Next we provide details (for further details see File S1) about the

computation in each of the softmodules (see e.g. [24] for software

modularity concepts).

In the 1st softmodule – Surprisal Analysis – the main task is to

calculate for terms in equation (2), the values of the constraints Gai

the time-independent extent of participation of a gene transcript i

Figure 7. Input file structure sample. It has unique names and
expression levels per gene at four time points.
doi:10.1371/journal.pone.0108549.g007

Figure 8. A sample matrix of Lagrange multipliers. Screen print
of a particular case showing four phenotypes and four time points.
doi:10.1371/journal.pone.0108549.g008

Figure 9. Eigenvector values Gai for selected phenotype a.
Values are sorted in decreasing order (vertical axis) against running
index of genes (horizontal axis).
doi:10.1371/journal.pone.0108549.g009
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in the transcription pattern a and la the respective coefficient at

time t – a Lagrange multiplier – of a (see e.g. [8]).

The input, with microarray data uploaded by the user, accepts a

CSV (comma separated value) format file, a platform independent

standard. All gene names and time names should be unique.

Figure 7 shows a partial sample of the input file structure.

The values of la and the constraints Gai are determined by

singular value decomposition (SVD) (see e.g. [25] and references

therein; see also e.g. [26] for a different application of SVD to

genome data). This procedure extends the notion of matrix

diagonalization to rectangular matrices. This is necessary since the

number of input genes m may be very large – say of the order of

tens of thousands, while the number of time points t, or another

relevant intensive variable of equivalent size, is relatively small –

say of the order of ten – thus the input matrix is certainly

rectangular.

The output of the SVD procedure consists in two square

symmetric matrices whose sizes are quite large – as the number of

genes – and quite small – as the number of time points. The rank

of these matrices is at most the number of time points. To get the

eigenvectors and eigenvalues of these matrices, it is sufficient to

solve for the small matrix.

The 1st softmodule output is as follows:

1. List of genes – of length m, extracted from the input file;

2. Ga vectors – t vectors of length m, referred as eigenvectors;

3. Lagrange multipliers – a small matrix of size t*t with values of

Lagrange multipliers for each time point T and each

phenotype a.

The small matrix of Lagrange multipliers is illustrated in

Figure 8 showing a screen print of the Computational Surprisal
Analysis tool. This case has 4 phenotypes and four time points.

One can also select a phenotype to focus on.

In the 2nd softmodule – Gene Profiling – one interactively

selects a sub-set of genes relevant to a certain phenotype. One

starts by selecting a phenotype a to focus on. Once a phenotype is

selected, a graph is displayed in the client screen in which the

eigenvector values Gai are given sorted in decreasing order (in the

vertical axis) for the respective genes i (running index in the

horizontal axis). As seen in Fig. 9, most of the values are around

zero, thus not of interest.

The next interactive step is to select smaller sub-sets of genes of

interest by applying an upper bound to obtain the desired higher

values and a lower bound for the lower values. In the screen print

of Figure 10 these bounds are seen as yellow and red horizontal

Figure 10. Selected genes with eigenvector values Gai for phenotype a. This screen-print shows selected 1000 genes that are above an
upper bound (yellow horizontal line) and 800 genes below a lower bound (red line).
doi:10.1371/journal.pone.0108549.g010

Figure 11. The Heuristic Thinking Cycle. With an initial set of
concepts obtained from the surprisal analysis, one performs a
computational experiment, whose outcome is a diagram. If one obtains
interesting results, one may generalize by inserting this type of diagram
in the 4th softmodule and by adding concepts to the subject domain.
The cycle may be repeated as many times as desired.
doi:10.1371/journal.pone.0108549.g011
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lines. One may then download a list of the selected genes to be

used in the next softmodule.

In the 3rd softmodule – Database Retrieval – one uses the

downloaded list of selected genes to retrieve data from public

databases, such as STRING DB [15].

The first task of this softmodule is to enable selection of the

desired database. The selection is done based upon a strategy

design pattern [27], used to handle communication with different

databases. Then it uses the correct unique naming of the relevant

genes, making the eventually necessary naming and format

conversions.

The 3rd softmodule output for the particular case of STRING

DB uses a combined score. For this database various major sources

of association data are benchmarked independently. A combined

score is computed by STRING DB which indicates higher

confidence when more than one type of information supports a

given association.

Finally, the 4th softmodule enables infrastructures for heuristic

thinking. The infrastructures of this softmodule may be expanded

as needed.

We characterize heuristic thinking in the 4th softmodule to

distinguish it from formal deduction. It is experimental, i.e. one

performs computational experiments, which are approximate,

rather than exact. We envisage heuristic thinking as a cyclic

process whose main purpose is to discover new concepts,

motivated by original types of visual diagrams. The heuristic

cycle is schematically shown in Fig. 11.

The heuristic cycle is illustrated by the process leading to Fig. 2.

The initial concepts are the Gai terms from Surprisal Analysis. The

new type of diagram in this computational experiment is a specific

heatmap pair, seen in Fig. 2. The upper heatmap is obtained with

the values obtained from Surprisal Analysis. The lower one is

obtained from certain values retrieved from StringDB. The

interesting result is the correlations between heatmaps with

corresponding axes with the same transcript names, but totally

independent data sources, even spanning different numerical

scales. The new concept is the predictive power of pairs of Gai

values about transcriptional and protein network structures.

Results are not exact since data is e.g. lacking in the values

retrieved from StringDB.

In our tool a sub-softmodule allows drawing of heatmaps for

comparison of Surprisal Analysis results with data retrieved from

public databases. Each (non-zoomed in) heatmap has identical

labels (genes) in both vertical and horizontal axes.

Specifically, Surprisal Analysis results are computed as products

of pairs of the respective Gai values that ‘‘meet’’ in the specific cell

of the heatmap. Heatmaps of STRING DB values are obtained

from combined gene connectivity scores.

The 4th softmodule output heatmatps that can be zoomed in on

online to display heatmap cell information – the two crossing

genes and the cell value – for heuristic analysis. This is illustrated

in Fig. 12.

Supporting Information

Figure S1 CSV file structure sample. This sample has a title

record followed by 5 data records. Each data record has a gene

name and numerical expression levels per gene at four time points.

(EPS)

File S1 Additional detailed information needed for the
usage of the Computational Surprisal Analysis program.
This essentially consists of input and output file formats and

explanatory material to facilitate understanding of computational

features.

(PDF)
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