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Goal

How to safely control a deterministic 
system living in a continuous state space 
given the knowledge of:

- A batch collection of trajectories of the 
system,

- The maximal variations of the system 
(upper bounds on the Lipschitz 
constants).
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Formalization

● Deterministic dynamics:

● Deterministic reward function:

● Fixed initial state:

● Continuous state space, finite action space:

● Return of a sequence of actions:

● Optimal return:
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The "batch" setting

● Dynamics and reward function are unknown

● For all actions a set of one-step transitions is given:

● We note:
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Lipschitz continuity

● The system dynamics and the reward function are Lipschitz continuous :

were is the Euclidean norm over the state space.

● We assume that two constants  and satisfying the above inequalities are 
known.
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Compatible environments

● Compatible dynamics and reward functions:
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Compatible environments

● Compatible dynamics and reward functions:

● Return of a sequence of actions under a compatible environment:
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Min max approach to generalization

● Worst possible return of a given sequence of actions:
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Min max approach to generalization

● Worst possible return of a given sequence of actions:

 Our objective:
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Bounds from a sequence of transitions

● For a given sequence of actions, one can compute from a sequence of one-step 
transitions which is compatible with the sequence of actions a lower-bound on the 
"worst possible return" of the sequence of actions:
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Maximal lower bound

● One can define a best lower bound over all possible sequences of transitions:
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Maximal lower bound

● One can define a best lower bound over all possible sequences of transitions:

● Such a bound is ''tight'' w.r.t. the dispersion of the batch collection of data:
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The CGRL algorithm

● One can define a best lower bound over all possible sequences of transitions:
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The CGRL algorithm

● One can define a best lower bound over all possible sequences of transitions:

● Finding such a sequence can be reformulated as a shortest path problem, and the 
sequence can be found without enumerating all sequences. This is what the CGRL 
algorithm does.

Direct approach



  

The CGRL algorithm

● One can define a best lower bound over all possible sequences of transitions:

● Finding such a sequence can be reformulated as a shortest path problem, and the 
sequence can be found without enumerating all sequences. This is what the CGRL 
algorithm does.

Properties of the CGRL algorithm

● The CGRL solution converges towards an optimal sequence when the dispersion of 
the sample of transitions converges towards zero.
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The CGRL algorithm

● One can define a best lower bound over all possible sequences of transitions:

● Finding such a sequence can be reformulated as a shortest path problem, and the 
sequence can be found without enumerating all sequences. This is what the CGRL 
algorithm does.

Properties of the CGRL algorithm

● The CGRL solution converges towards an optimal sequence when the dispersion of 
the sample of transitions converges towards zero,

● If an "optimal trajectory" is available in the batch sample, that CGRL will return such 
an optimal sequence,

Direct approach



  

The CGRL algorithm

● One can define a best lower bound over all possible sequences of transitions:

● Finding such a sequence can be reformulated as a shortest path problem, and the 
sequence can be found without enumerating all sequences. This is what the CGRL 
algorithm does.

Properties of the CGRL algorithm

● The CGRL solution converges towards an optimal sequence when the dispersion of 
the sample of transitions converges towards zero.

● If an "optimal trajectory" is available in the batch sample, that CGRL will return such 
an optimal sequence.

● Computational complexity: quadratic w.r.t the size of the batch collection of 
transitions.
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The CGRL algorithm - illustration

The puddle world CGRL          FQI (Fitted Q Iteration)

     

The state space is 

uniformly covered by

the  sample
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The CGRL algorithm - illustration

The puddle world CGRL          FQI (Fitted Q Iteration)

     

The state space is 

uniformly covered by

the  sample

Information about the

Puddle area is

removed
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Reformulation of min max problem

Reformulation



  

The two-stage case

Reformulation



  

Décomposition

Reformulation



  

Decomposition
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Decomposition
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Decomposition
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Decomposition

Equivalent
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Decomposition

Solved
(closed-form

)

NP-hard

Equivalent
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Decomposition

Solved
(closed-form
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NP-hard
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NP-hard
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NP-hard
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Building relaxation schemes

● We focus on the following (NP-hard) problem:

● We look for relaxation schemes that preserve the nature of min max generalization 
problem, i.e. offering performance guarantees

● We thus build relaxation schemes providing lower bounds on the return of the 
sequence of actions

Reformulation



  

Trust-region relaxation scheme

● We keep one constraint of each type:

Reformulation



  

Trust-region relaxation scheme

Reformulation



  

Trust-region relaxation scheme
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Trust-region relaxation scheme

Reformulation



  

Lagrangian relaxation

Reformulation



  

Lagrangian relaxation
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Lagrangian relaxation

Reformulation
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Direct approach vs Trust-region relaxation

Comparison



  

Direct approach vs Trust-region relaxation

Comparison



  

Trust-region vs Lagrangian relaxation
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Trust-region vs Lagrangian relaxation
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Synthesis
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Illustration

● Dynamics:

● Reward function:

● Initial state:

● Action space:

● Grid generation:

● 100 batch collections of transitions drawn uniformly randomly

Comparison



  

Grid Uniform sampling

Illustration
Maximal bounds
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Illustration
Returns

Grid Uniform sampling
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(non) Conclusion

Problem
 still unsolved

Conclusions and future work



  

Future work

Stochastic case

T-stage reformulation

Infinite horizon

Exact solution for small dimensions

?

Conclusions and future work
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