About the Regularity of Cantor's Bijection

Laurent SIMONS L.Simons@ulg.ac.be

Joint work with Samuel NICOLAY S.Nicolay@ulg.ac.be

University of Liège (Belgium) - Institute of Mathematics

Automatic Sequences

Liège (Belgium) - May 25, 2015

1 / 25

Introduction

In 1877, Cantor constructed a bijection between [0,1] and $[0,1]^2$, bijection defined via continued fractions.

G. Cantor, *Ein Beitrag zur Mannigfaltigkeitslehre*, Journal für die reine und angewandte Mathematik (Crelle's Journal), **Vol. 84**, 242-258, 1877.

Contents of this presentation

- Continued Fractions
- Cantor's Bijection
- Continuity of Cantor's Bijection
- Hölder Continuity of Cantor's Bijection

Notations

$$E = [0, 1], \qquad D = E \cap \mathbb{Q} \quad \text{and} \quad I = E \setminus D.$$

L. Simons (ULg)

Introduction

In 1877, Cantor constructed a bijection between [0,1] and $[0,1]^2$, bijection defined via continued fractions.

G. Cantor, *Ein Beitrag zur Mannigfaltigkeitslehre*, Journal für die reine und angewandte Mathematik (Crelle's Journal), **Vol. 84**, 242-258, 1877.

Contents of this presentation

- Continued Fractions
- Cantor's Bijection
- Continuity of Cantor's Bijection
- Hölder Continuity of Cantor's Bijection

Notations

$$E = [0, 1], \qquad D = E \cap \mathbb{Q} \qquad \text{and} \qquad I = E \setminus D.$$

Finite Continued Fractions

A. Ya. Khintchine, Continued Fractions, P. Noordhoff, 1963.

Let $a=(a_j)_{j\in\{1,\dots,n\}}$ a finite sequence of positive real numbers $(n\in\mathbb{N})$; the expression $[a_1,\dots,a_n]$ is recursively defined as follows:

$$[a_1] = \frac{1}{a_1} \quad \text{and} \quad [a_1, \dots, a_m] = \frac{1}{a_1 + [a_2, \dots, a_m]},$$

for any $m \in \{2, \dots, n\}$. If $\boldsymbol{a} \in \mathbb{N}^n$, we say that

$$[a_1, \dots, a_n] = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_n}}}.$$

is a (simple) finite continued fraction.

Proposition

For any $a \in \mathbb{N}^n$ $(n \in \mathbb{N})$, $[a_1, \ldots, a_n]$ belongs to D. Conversely, for any $x \in D$, there exists a natural number n and a sequence $a \in \mathbb{N}^n$ such that $x = [a_1, \ldots, a_n]$.

3 / 25

Convergents and Finite Continued Fractions

Let $a \in \mathbb{N}^{\mathbb{N}}$. For all $j \in \mathbb{N}$, the quantities $p_j(a)$ and $q_j(a)$ are recursively defined as follows:

$$p_{-1}(\mathbf{a}) = 1, \ q_{-1}(\mathbf{a}) = 0, \ p_0(\mathbf{a}) = 0, \ q_0(\mathbf{a}) = 1$$

and, for $k \in \{1, \ldots, j\}$,

$$\begin{cases} p_k(\mathbf{a}) = a_k p_{k-1}(\mathbf{a}) + p_{k-2}(\mathbf{a}) \\ q_k(\mathbf{a}) = a_k q_{k-1}(\mathbf{a}) + q_{k-2}(\mathbf{a}) \end{cases}.$$

The quotient $\frac{p_j(a)}{q_j(a)}$ is called the **convergent of order** j of a.

Proposition

Let $a \in \mathbb{N}^{\mathbb{N}}$. For all $j \in \mathbb{N}$, we have

$$\frac{p_j(\boldsymbol{a})}{q_i(\boldsymbol{a})} = [a_1, \dots, a_j].$$

March 24-29, 2014

L. Simons (ULg) Cantor's Bijection

Infinite Continued Fractions

With the properties of convergents, we can show that the sequence

$$\frac{p_j(\boldsymbol{a})}{q_j(\boldsymbol{a})} = [a_1, \dots, a_j], \quad j \in \mathbb{N}$$

converges. The limit is called an **infinite continued fraction** and is denoted by

$$[a_1, a_2, \ldots] = \frac{1}{a_1 + \frac{1}{a_2 + \ddots}}.$$

If the real number $x \in E$ is equal to [a] where $a \in \mathbb{N}^n$ (with $n \in \mathbb{N}$) or $a \in \mathbb{N}^{\mathbb{N}}$, we say that [a] is a continued fraction corresponding to x.

Theorem – Representation of the real numbers (of E)

Any element of D can be expressed as a finite continued fraction. We have $x \in I$ if and only if there exists an infinite continued fraction corresponding to x; moreover, this infinite continued fraction is unique.

Infinite Continued Fractions

With the properties of convergents, we can show that the sequence

$$\frac{p_j(\boldsymbol{a})}{q_j(\boldsymbol{a})} = [a_1, \dots, a_j], \quad j \in \mathbb{N}$$

converges. The limit is called an **infinite continued fraction** and is denoted by

$$[a_1, a_2, \ldots] = \frac{1}{a_1 + \frac{1}{a_2 + \cdots}}.$$

If the real number $x \in E$ is equal to [a] where $a \in \mathbb{N}^n$ (with $n \in \mathbb{N}$) or $a \in \mathbb{N}^{\mathbb{N}}$, we say that [a] is a continued fraction corresponding to x.

Theorem – Representation of the real numbers (of E)

Any element of D can be expressed as a finite continued fraction. We have $x \in I$ if and only if there exists an infinite continued fraction corresponding to x; moreover, this infinite continued fraction is unique.

<ロト <部 > <き > <き >

Metric Theory of Continued Fractions

Let $x = [a] \in I$; for $n \in \mathbb{N}$, we set

$$I_n(x) = \{ y = [\mathbf{b}] \in I : b_j = a_j \text{ if } j \in \{1, \dots, n\} \}$$

and this set is called "interval of rank n" of I. We have $I_{n+1}(x)\subset I_n(x)\subset I$ for any $n\in\mathbb{N}$ and

$$\bigcap_{n\in\mathbb{N}} I_n(x) = \{x\}.$$

In fact, we have

L. Simons (ULa)

$$I_n(x) = \left(\frac{p_n(a)}{q_n(a)}, \frac{p_n(a) + p_{n-1}(a)}{q_n(a) + q_{n-1}(a)}\right) \cap I,$$

if n is even (if n is odd, the endpoints of the interval are reversed). Every interval of rank n is partitioned into a countable infinite number of intervals of rank n+1. By denoting $|I_n(x)|$ the Lebesgue measure of $I_n(x)$, we have

$$|I_n(x)| = \frac{1}{q_n(a)(q_n(a) + q_{n-1}(a))}.$$

The properties of $I_n(x)$ will be useful to study the regularity of Cantor's bijection.

March 24-29 2014

Metric Theory of Continued Fractions

Let $x = [a] \in I$; for $n \in \mathbb{N}$, we set

$$I_n(x) = \{ y = [\mathbf{b}] \in I : b_j = a_j \text{ if } j \in \{1, \dots, n\} \}$$

and this set is called "interval of rank n" of I. We have $I_{n+1}(x)\subset I_n(x)\subset I$ for any $n\in\mathbb{N}$ and

$$\bigcap_{n\in\mathbb{N}} I_n(x) = \{x\}.$$

In fact, we have

$$I_n(x) = \left(\frac{p_n(\boldsymbol{a})}{q_n(\boldsymbol{a})}, \frac{p_n(\boldsymbol{a}) + p_{n-1}(\boldsymbol{a})}{q_n(\boldsymbol{a}) + q_{n-1}(\boldsymbol{a})}\right) \cap I,$$

if n is even (if n is odd, the endpoints of the interval are reversed). Every interval of rank n is partitioned into a countable infinite number of intervals of rank n+1. By denoting $|I_n(x)|$ the Lebesgue measure of $I_n(x)$, we have

$$|I_n(x)| = \frac{1}{q_n(\boldsymbol{a})(q_n(\boldsymbol{a}) + q_{n-1}(\boldsymbol{a}))}.$$

The properties of $I_n(x)$ will be useful to study the regularity of Cantor's bijection.

4 D > 4 D > 4 E > 4 E > E 9 Q C

G. Cantor, *Ein Beitrag zur Mannigfaltigkeitslehre*, Journal für die reine und angewandte Mathematik (Crelle's Journal), **Vol. 84**, 242-258, 1877.

If $x = [a] \in I$, we set

$$f_1(x) = [a_1, a_3, \dots, a_{2j+1}, \dots]$$
 and $f_2(x) = [a_2, a_4, \dots, a_{2j}, \dots]$.

The application

$$f: I \to I^2 ; x \mapsto (f_1(x), f_2(x))$$

is the **Cantor's Bijection** on I.

Remark

Since the cardinals of E and I are equal, f can be extended to a one-to-one mapping from E to E^2 .

G. Cantor, *Ein Beitrag zur Mannigfaltigkeitslehre*, Journal für die reine und angewandte Mathematik (Crelle's Journal), **Vol. 84**, 242-258, 1877.

If $x = [a] \in I$, we set

$$f_1(x) = [a_1, a_3, \dots, a_{2j+1}, \dots]$$
 and $f_2(x) = [a_2, a_4, \dots, a_{2j}, \dots]$.

The application

$$f: I \to I^2 ; x \mapsto (f_1(x), f_2(x))$$

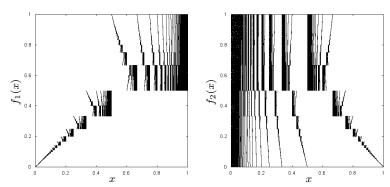
is the **Cantor's Bijection** on I.

Remark

Since the cardinals of E and I are equal, f can be extended to a one-to-one mapping from E to E^2 .

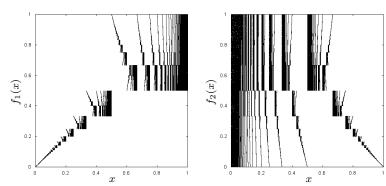
→□▶→□▶→□▶→□ めへで

Representations of the functions f_1 (left panel) and f_2 (right panel)



For example, if $x \in (1/2,1]$, then $x = [1,a_2,a_3,\ldots], f_1(x) = [1,a_3,\ldots]$ and $f_1(x) \in (1/2,1].$

Representations of the functions f_1 (left panel) and f_2 (right panel)



For example, if $x \in (1/2, 1]$, then $x = [1, a_2, a_3, \ldots]$, $f_1(x) = [1, a_3, \ldots]$ and $f_1(x) \in (1/2, 1]$.

For any $n\in\mathbb{N}$ and any $x\in I$, f_1 maps the interval $I_n(x)$ to $I_m(f_1(x))$, where m=n/2 if n is even and m=(n+1)/2 if n is odd. The same argument can be applied to f_2 .

Proposition

Cantor's bijection f is continuous on I.

Before giving some precisions, let us give an usual distance on $\mathbb{N}^{\mathbb{N}}$.

For any $n\in\mathbb{N}$ and any $x\in I$, f_1 maps the interval $I_n(x)$ to $I_m(f_1(x))$, where m=n/2 if n is even and m=(n+1)/2 if n is odd. The same argument can be applied to f_2 .

Proposition

Cantor's bijection f is continuous on I.

Before giving some precisions, let us give an usual distance on $\mathbb{N}^{\mathbb{N}}$.

A Distance on $\mathbb{N}^{\mathbb{N}}$

A usual distance on $\mathbb{N}^{\mathbb{N}}$ is given by

$$d(\mathbf{a}, \mathbf{b}) = \sum_{j=1}^{\infty} 2^{-j} \frac{|a_j - b_j|}{|a_j - b_j| + 1}$$

if $a=(a_j)_{j\in\mathbb{N}}$ and $b=(b_j)_{j\in\mathbb{N}}$ are two elements of $\mathbb{N}^{\mathbb{N}}$. We implicitly consider that $\mathbb{N}^{\mathbb{N}}$ is equipped with this distance.

Remark

If we consider a and b as two infinite words on the alphabet $\mathbb N$, another equivalent distance on $\mathbb N^\mathbb N$ is given by

$$d'(\boldsymbol{a}, \boldsymbol{b}) := \begin{cases} 0 & \text{if } \boldsymbol{a} = \boldsymbol{b} \\ 2^{-|\boldsymbol{a} \wedge \boldsymbol{b}|} & \text{if } \boldsymbol{a} \neq \boldsymbol{b} \end{cases}$$

where $|a \wedge b|$ is the length of the longest common prefix of a and b.

The sets I, D and E are endowed with the Euclidean distance.

A Distance on $\mathbb{N}^{\mathbb{N}}$

A usual distance on $\mathbb{N}^{\mathbb{N}}$ is given by

$$d(\mathbf{a}, \mathbf{b}) = \sum_{j=1}^{\infty} 2^{-j} \frac{|a_j - b_j|}{|a_j - b_j| + 1}$$

if $a=(a_j)_{j\in\mathbb{N}}$ and $b=(b_j)_{j\in\mathbb{N}}$ are two elements of $\mathbb{N}^\mathbb{N}$. We implicitly consider that $\mathbb{N}^\mathbb{N}$ is equipped with this distance.

Remark

If we consider a and b as two infinite words on the alphabet \mathbb{N} , another equivalent distance on $\mathbb{N}^{\mathbb{N}}$ is given by

$$d'(\boldsymbol{a}, \boldsymbol{b}) := \begin{cases} 0 & \text{if } \boldsymbol{a} = \boldsymbol{b} \\ 2^{-|\boldsymbol{a} \wedge \boldsymbol{b}|} & \text{if } \boldsymbol{a} \neq \boldsymbol{b} \end{cases}$$

where $|a \wedge b|$ is the length of the longest common prefix of a and b.

The sets I, D and E are endowed with the Euclidean distance.

4 D > 4 A > 4 B > 4 B > B 9 9 9

A Distance on $\mathbb{N}^{\mathbb{N}}$

A usual distance on $\mathbb{N}^{\mathbb{N}}$ is given by

$$d(\mathbf{a}, \mathbf{b}) = \sum_{j=1}^{\infty} 2^{-j} \frac{|a_j - b_j|}{|a_j - b_j| + 1}$$

if $a=(a_j)_{j\in\mathbb{N}}$ and $b=(b_j)_{j\in\mathbb{N}}$ are two elements of $\mathbb{N}^{\mathbb{N}}$. We implicitly consider that $\mathbb{N}^{\mathbb{N}}$ is equipped with this distance.

Remark

If we consider a and b as two infinite words on the alphabet \mathbb{N} , another equivalent distance on $\mathbb{N}^{\mathbb{N}}$ is given by

$$d'(\boldsymbol{a}, \boldsymbol{b}) := \begin{cases} 0 & \text{if } \boldsymbol{a} = \boldsymbol{b} \\ 2^{-|\boldsymbol{a} \wedge \boldsymbol{b}|} & \text{if } \boldsymbol{a} \neq \boldsymbol{b} \end{cases}$$

where $|a \wedge b|$ is the length of the longest common prefix of a and b.

The sets I, D and E are endowed with the Euclidean distance.

1014011111111111111

For all $x \in I$, let us set $\varphi(x) = a$ if $a \in \mathbb{N}^{\mathbb{N}}$ satisfies x = [a]. The application φ is a homeomorphism between I and $\mathbb{N}^{\mathbb{N}}$.

Remark

Since $(\mathbb{N}^{\mathbb{N}},d)$ is a separable complete metric space, I is a Polish space.

Since the spaces $\mathbb{N}^\mathbb{N}$ and $\mathbb{N}^\mathbb{N} \times \mathbb{N}^\mathbb{N}$ are homeomorphic, we have the following proposition.

Proposition

Cantor's bijection f is a homeomorphism between I and I^2 .

L. Simons (ULg)

For all $x \in I$, let us set $\varphi(x) = a$ if $a \in \mathbb{N}^{\mathbb{N}}$ satisfies x = [a]. The application φ is a homeomorphism between I and $\mathbb{N}^{\mathbb{N}}$.

Remark

Since $(\mathbb{N}^{\mathbb{N}},d)$ is a separable complete metric space, I is a Polish space.

Since the spaces $\mathbb{N}^\mathbb{N}$ and $\mathbb{N}^\mathbb{N} \times \mathbb{N}^\mathbb{N}$ are homeomorphic, we have the following proposition.

Proposition

Cantor's bijection f is a homeomorphism between I and I^2 .

March 24-29 2014

What about the continuity of f on D and then on E?

Netto's theorem

Any bijective map from E to E^2 is necessarily discontinuous.

E. Netto, *Beitrag zur Mannigfaltigkeitslehre*, Journal für die reine und angewandte Mathematik (Crelle's Journal), **Vol. 86**, 263-268, 1879.

Then, Cantor's bijection f can not be extended to a continuous bijection from E to E^2 .

Proposition

Any extension of Cantor's bijection to ${\cal E}$ is discontinuous at any rational number.

Hölder Continuity and Hölder Exponent

S. Jaffard, *Wavelet Techniques in Multifractal Analysis*, In Proceedings of Symposia in Pure Mathematics, **Vol. 72**, 91-152, 2004.

Let $\alpha\in[0,1]$. A continuous and bounded real function g defined on $A\subset\mathbb{R}$ belongs to the **Hölder space** $\Lambda^{\alpha}(x)$ with $x\in A$ if there exists a constant C>0 such that

$$|g(x) - g(y)| \le C|x - y|^{\alpha},$$

for any $y \in A$. The **Hölder exponent** $h_g(x)$ of g at x is defined as follows:

$$h_g(x) = \sup \{ \alpha \in [0, 1] : g \in \Lambda^{\alpha}(x) \}.$$

Remark

We have

$$h_g(x) = \liminf_{\substack{y \to x \\ y \in A}} \frac{\log |g(y) - g(x)|}{\log |y - x|}$$

The function g is **monofractal** if there exists $\alpha \in [0,1]$ such that $h_g(x) = \alpha$ for all $x \in A$. Otherwise, g is **multifractal**.

(日)<

Surrounding Theorem

Let $n \in \mathbb{N}$. If $x = [a] \in I$ and $y \in I_n(x) \setminus I_{n+1}(x)$, then we have

$$\frac{\frac{1}{n} \sum_{j=1}^{\lceil n/2 \rceil} \log(a_{2j-1})}{\frac{1}{n} \sum_{j=1}^{n+3} \log(a_{j}+1) + \frac{C_1(n)}{n}} \le \frac{\log|f_1(x) - f_1(y)|}{\log|x - y|} \le \frac{\frac{1}{n} \sum_{j=1}^{\lceil n/2 \rceil + 3} \log(a_{2j-1} + 1) + \frac{C_1(n)}{n}}{\frac{1}{n} \sum_{j=1}^{n} \log(a_{j})}$$

with

$$C_1(n) = \frac{\log(2)}{2} + \log\left(\max\left\{\frac{a_{n+2} + 2}{a_{n+2} + 1}, \frac{a_{n+3} + 2}{a_{n+3} + 1}\right\}\right)$$

and

$$C_2(n) = \frac{\log(2)}{2} + \log\left(\max\left\{\frac{a_{2\lceil n/2\rceil+3}+2}{a_{2\lceil n/2\rceil+3}+1}, \frac{a_{2\lceil n/2\rceil+5}+2}{a_{2\lceil n/2\rceil+5}+1}\right\}\right).$$

There is a similar result for f_2 .

Surrounding Theorem

Let $n \in \mathbb{N}$. If $x = [a] \in I$ and $y \in I_n(x) \setminus I_{n+1}(x)$, then we have

$$\frac{\frac{1}{n} \sum_{j=1}^{\lceil n/2 \rceil} \log(a_{2j-1})}{\frac{1}{n} \sum_{j=1}^{n+3} \log(a_j+1) + \underbrace{\left[\frac{C_1(n)}{n}\right]}_{\to 0}} \le \frac{\log|f_1(x) - f_1(y)|}{\log|x - y|} \le \frac{\frac{1}{n} \sum_{j=1}^{\lceil n/2 \rceil + 3} \log(a_{2j-1} + 1) + \underbrace{\left[\frac{C_2(n)}{2n}\right]}_{\to 0}}{\frac{1}{n} \sum_{j=1}^{n} \log(a_j)}$$

with

$$C_1(n) = \frac{\log(2)}{2} + \log\left(\max\left\{\frac{a_{n+2} + 2}{a_{n+2} + 1}, \frac{a_{n+3} + 2}{a_{n+3} + 1}\right\}\right)$$

and

$$C_2(n) = \frac{\log(2)}{2} + \log\left(\max\left\{\frac{a_{2\lceil n/2\rceil+3}+2}{a_{2\lceil n/2\rceil+3}+1}, \frac{a_{2\lceil n/2\rceil+5}+2}{a_{2\lceil n/2\rceil+5}+1}\right\}\right).$$

There is a similar result for f_2 .

Remark

Let $a^{(1)}, a^{(2)}, a^{(3)} \in \mathbb{N}^{\mathbb{N}}$ be the sequences defined by

$$a_j^{(1)} := \left\{ \begin{array}{ll} 2^j & \text{if } j \text{ is even} \\ 1 & \text{if } j \text{ is odd} \end{array} \right., \quad a_j^{(2)} := 2^j \quad \text{and} \quad a_j^{(3)} := \left\{ \begin{array}{ll} 1 & \text{if } j \text{ is even} \\ 2^j & \text{if } j \text{ is odd} \end{array} \right.$$

for any $j \in \mathbb{N}$. Using Surrounding Theorem, we have

$$h_{f_1}([\boldsymbol{a^{(1)}}]) = 0, \quad h_{f_1}([\boldsymbol{a^{(2)}}]) = \frac{1}{2} \quad \text{and} \quad h_{f_1}([\boldsymbol{a^{(3)}}]) = 1.$$

Corollary

The functions f_1 and f_2 are multifractal. Consequently, f is multifractal.

◆□▶◆□▶◆豆>◆豆> 豆 めの()

Surrounding Theorem

Let $n \in \mathbb{N}$. If $x = [a] \in I$ and $y \in I_n(x) \setminus I_{n+1}(x)$, then we have

$$\frac{\frac{1}{n} \sum_{j=1}^{\lceil n/2 \rceil} \log(a_{2j-1})}{\frac{1}{n} \sum_{j=1}^{n+3} \log(a_j+1) + \underbrace{\left[\frac{C_1(n)}{n}\right]}_{\to 0}} \le \frac{\log|f_1(x) - f_1(y)|}{\log|x - y|} \le \frac{\frac{1}{n} \sum_{j=1}^{\lceil n/2 \rceil + 3} \log(a_{2j-1} + 1) + \underbrace{\left[\frac{O_2(n)}{2n}\right]}_{\to 0}}{\frac{1}{n} \sum_{j=1}^{n} \log(a_j)}$$

with

$$C_1(n) = \frac{\log(2)}{2} + \log\left(\max\left\{\frac{a_{n+2} + 2}{a_{n+2} + 1}, \frac{a_{n+3} + 2}{a_{n+3} + 1}\right\}\right)$$

and

$$C_2(n) = \frac{\log(2)}{2} + \log\left(\max\left\{\frac{a_{2\lceil n/2\rceil + 3} + 2}{a_{2\lceil n/2\rceil + 3} + 1}, \frac{a_{2\lceil n/2\rceil + 5} + 2}{a_{2\lceil n/2\rceil + 5} + 1}\right\}\right).$$

There is a similar result for f_2 .

イロト (団) (三) (三) (回)

We say that a property P concerning sequences of $\mathbb{N}^{\mathbb{N}}$ holds almost everywhere if for almost every $x \in I$ (with respect to the Lebesgue measure), the sequence $a \in \mathbb{N}^{\mathbb{N}}$ such that x = [a] satisfies P.

Ergodic Theorem

For any $k \in \mathbb{N} \cup \{0\}$, almost every sequence $a \in \mathbb{N}^{\mathbb{N}}$ satisfies

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{j=1}^{n} \log(a_j + k) = \log(K_k),$$

where
$$K_k = \prod_{j=1}^{\infty} \left(1 + \frac{1}{j(j+2)}\right)^{\log(j+k)/\log(2)}$$
.

C. Ryll-Nardzewski, *On the Ergodic Theorems (II): Ergodic Theory of Continued Fractions*, Studia Mathematica **12**, 74-79, 1950.

4□ > 4□ > 4 □ > 4 □ > 4 □ >

L. Simons (ULg)

We say that a property P concerning sequences of $\mathbb{N}^{\mathbb{N}}$ holds almost everywhere if for almost every $x \in I$ (with respect to the Lebesgue measure), the sequence $a \in \mathbb{N}^{\mathbb{N}}$ such that x = [a] satisfies P.

Ergodic Theorem

For any $k \in \mathbb{N} \cup \{0\}$, almost every sequence $\boldsymbol{a} \in \mathbb{N}^{\mathbb{N}}$ satisfies

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{j=1}^{n} \log(a_j + k) = \log(K_k),$$

where
$$K_k = \prod_{j=1}^{\infty} \left(1 + \frac{1}{j(j+2)}\right)^{\log(j+k)/\log(2)}$$
.

C. Ryll-Nardzewski, *On the Ergodic Theorems (II): Ergodic Theory of Continued Fractions*, Studia Mathematica **12**, 74-79, 1950.

◄□▶<</p>
□▶
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >
4□ >

We say that a property P concerning sequences of $\mathbb{N}^{\mathbb{N}}$ holds almost everywhere if for almost every $x \in I$ (with respect to the Lebesgue measure), the sequence $a \in \mathbb{N}^{\mathbb{N}}$ such that x = [a] satisfies P.

Ergodic Theorem

For any $k \in \mathbb{N} \cup \{0\}$, almost every sequence $\boldsymbol{a} \in \mathbb{N}^{\mathbb{N}}$ satisfies

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{j=1}^{n} \log(a_j + k) = \lim_{n \to +\infty} \frac{1}{n} \sum_{j=1}^{n} \log(a_{2j} + k)$$

$$= \lim_{n \to +\infty} \frac{1}{n} \sum_{j=1}^{n} \log(a_{2j} + k) = \log(K_k),$$

where
$$K_k = \prod_{j=1}^{\infty} \left(1 + \frac{1}{j(j+2)}\right)^{\log(j+k)/\log(2)}$$
.

R. Nair, *On the Metrical of Continued Fractions*, In Proceedings of the Amercian Mathematicae Society **120**, 1994.

L. Simons (ULg) Cantor's Bijection March 24-29, 2014

17 / 25

By combining the surrounding theorem and the ergodic theorem, we obtain the following result.

Theorem

For almost every $x \in I$, we have

$$h_{f_1}(x), h_{f_2}(x) \in \left[\frac{\log(K_0)}{2\log(K_1)}, \frac{\log(K_1)}{2\log(K_0)}\right].$$

Then, $h_{f_1}(x)$ and $h_{f_2}(x)$ are included between 0.35 and 0.72.

S. Nicolay, L. Simons, *On the Multifractal Nature of Cantor's Bijection*, 2013, submitted.

Surrounding Theorem – Some Improvements

Let $n \in \mathbb{N}$. If $x = [a] \in I$ and $y \in I_n(x) \setminus I_{n+1}(x)$, then we have

$$\frac{2\log(q_{\lceil n/2\rceil}(\boldsymbol{a}'))}{\log(2) + 2\log(q_{n+3}(\boldsymbol{c}))} \leq \frac{\log|f_1(x) - f_1(y)|}{\log|x - y|} \leq \frac{\log(2) + 2\log(q_{\lceil n/2\rceil + 3}(\boldsymbol{d}))}{2\log(q_n(\boldsymbol{a}))}$$

where $\boldsymbol{a}'=(a_{2j-1})_{j\in\mathbb{N}}$,

$$c_j = \left\{ \begin{array}{ll} a_j & \text{if } j \neq j_0 \\ a_j + 1 & \text{if } j = j_0 \end{array} \right. \quad \text{and} \quad d_j = \left\{ \begin{array}{ll} a_{2j-1} & \text{if } j \neq j_0' \\ a_{2j-1} + 1 & \text{if } j = j_0' \end{array} \right.$$

with j_0 is equal to n+2 or n+3 and j_0' to n/2+2 or n/2+3 (following the positions of y and $f_1(y)$ related to the ones of x and $f_1(x)$).

◆ロ > ◆ 個 > ◆ 重 > ◆ 重 > ・ 重 ・ の Q (*)

Lévy's Theorem

For almost every sequence $\boldsymbol{b} \in \mathbb{N}^{\mathbb{N}}$, we have

$$\lim_{n \to +\infty} \frac{1}{n} \log(q_n(\boldsymbol{b})) = \frac{\pi^2}{12 \log(2)}.$$

P. Lévy, Théorie de l'addition des variables aléatoires, Gauthier-Villars, 2d édition, 1954

Moreover, we directly have

$$\lim_{n \to +\infty} \frac{1}{n+3} \log(q_{n+3}(\boldsymbol{c})) = \lim_{n \to +\infty} \frac{1}{n} \log(q_n(\boldsymbol{a}))$$

and

$$\lim_{n \to +\infty} \frac{1}{\lceil n/2 \rceil + 3} \log(q_{\lceil n/2 \rceil + 3}(\boldsymbol{d})) = \lim_{n \to +\infty} \frac{2}{n} \log(q_{\lceil n/2 \rceil}(\boldsymbol{a}'))$$

(if all these limits exist)

It only remains to show that all these limits are equal, which is not evident. . .

<ロ > ← □ > ← □ > ← □ > ← □ = ・ のへで

20 / 25

Lévy's Theorem

For almost every sequence $b \in \mathbb{N}^{\mathbb{N}}$, we have

$$\lim_{n \to +\infty} \frac{1}{n} \log(q_n(\boldsymbol{b})) = \frac{\pi^2}{12 \log(2)}.$$

P. Lévy, Théorie de l'addition des variables aléatoires, Gauthier-Villars, 2d édition, 1954

Moreover, we directly have

$$\lim_{n \to +\infty} \frac{1}{n+3} \log(q_{n+3}(\boldsymbol{c})) = \lim_{n \to +\infty} \frac{1}{n} \log(q_n(\boldsymbol{a}))$$

and

$$\lim_{n \to +\infty} \frac{1}{\lceil n/2 \rceil + 3} \log(q_{\lceil n/2 \rceil + 3}(\boldsymbol{d})) = \lim_{n \to +\infty} \frac{2}{n} \log(q_{\lceil n/2 \rceil}(\boldsymbol{a}'))$$

(if all these limits exist).

It only remains to show that all these limits are equal, which is not evident...

◆□▶◆部≯◆恵≯◆恵≯・恵

20 / 25

Proposition

Let x=[a] be an element of I and let $a':=(a_{2j-1})_{j\in\mathbb{N}}.$ If we assume that

$$\lim_{n \to +\infty} \frac{1}{n} \log(q_n(\boldsymbol{a})) = \lim_{n \to +\infty} \frac{1}{n} \log(q_n(\boldsymbol{a}')) = \frac{\pi^2}{12 \log(2)},$$

then we have

$$h_{f_1}(x) = \frac{1}{2}.$$

There is of course a similar result for f_2 .

Conjecture

For almost every $x \in [0,1]$, we have

$$h_{f_1}(x) = h_{f_2}(x) = \frac{1}{2}$$

Proposition

Let x=[a] be an element of I and let $a':=(a_{2j-1})_{j\in\mathbb{N}}$. If we assume that

$$\lim_{n \to +\infty} \frac{1}{n} \log(q_n(\boldsymbol{a})) = \lim_{n \to +\infty} \frac{1}{n} \log(q_n(\boldsymbol{a}')) = \frac{\pi^2}{12 \log(2)},$$

then we have

$$h_{f_1}(x) = \frac{1}{2}.$$

There is of course a similar result for f_2 .

Conjecture

For almost every $x \in [0,1]$, we have

$$h_{f_1}(x) = h_{f_2}(x) = \frac{1}{2}.$$

◆□▶◆□▶◆豆>◆豆> 豆 めの()

21 / 25

How to show

$$\lim_{n \to +\infty} \frac{1}{n} \log(q_n(\boldsymbol{a}')) = \frac{\pi^2}{12 \log(2)} ?$$

An idea is to draw a proof of Lévy's theorem based on Birkhoff's ergodic theorem...

Let τ be the left shift operator on $\mathbb{N}^{\mathbb{N}}$, i.e. the application defined by

$$\tau((b_j)_{j\in\mathbb{N}}) := (b_{j+1})_{j\in\mathbb{N}}$$

We denote by τ^m the m^{th} iterate of τ for $m \in \mathbb{N}$ and by τ^0 the identity.

Lemma

For all $b \in \mathbb{N}^{\mathbb{N}}$ and $n \in \mathbb{N}$, we have

$$\log(q_n(b)) = -\sum_{j=0}^{n-1} \log\left(\frac{p_{n-j}(\tau^j(b))}{q_{n-j}(\tau^j(b))}\right)$$

◆ロト ◆部 ト ◆ 差 ト ◆ 差 ・ 夕 Q G

How to show

$$\lim_{n \to +\infty} \frac{1}{n} \log(q_n(\boldsymbol{a}')) = \frac{\pi^2}{12 \log(2)} ?$$

An idea is to draw a proof of Lévy's theorem based on Birkhoff's ergodic theorem...

Let τ be the left shift operator on $\mathbb{N}^{\mathbb{N}}$, i.e. the application defined by

$$\tau((b_j)_{j\in\mathbb{N}}) := (b_{j+1})_{j\in\mathbb{N}}$$

We denote by τ^m the m^{th} iterate of τ for $m \in \mathbb{N}$ and by τ^0 the identity.

Lemma

For all $\boldsymbol{b} \in \mathbb{N}^{\mathbb{N}}$ and $n \in \mathbb{N}$, we have

$$\log(q_n(\boldsymbol{b})) = -\sum_{j=0}^{n-1} \log \left(\frac{p_{n-j}(\tau^j(\boldsymbol{b}))}{q_{n-j}(\tau^j(\boldsymbol{b}))} \right).$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

L. Simons (ULg)

Cantor's Bijection

For $\boldsymbol{b} \in \mathbb{N}^{\mathbb{N}}$ and $n \in \mathbb{N}$, we then have

$$\frac{1}{n}\log(q_n(\mathbf{b})) = -\frac{1}{n}\sum_{j=0}^{n-1}\log([\tau^j(\mathbf{b})]) + R_n(\mathbf{b})$$

where

$$R_n(\boldsymbol{b}) = \frac{1}{n} \sum_{j=0}^{n-1} \left(\log([\tau^j(\boldsymbol{b})]) - \log\left(\frac{p_{n-j}(\tau^j(\boldsymbol{b}))}{q_{n-j}(\tau^j(\boldsymbol{b}))}\right) \right).$$

Lemma

For all $b \in \mathbb{N}^{\mathbb{N}}$, we have

$$\lim_{n \to +\infty} R_n(\boldsymbol{b}) = 0$$

J. Steuding, Ergodic Number Theory, A Course at Vilnius University, 2013

(ロ) (部) (注) (注) 注 り(())

L. Simons (ULg) Cantor's Bijection

Let $x=[a]\in I$. By definition, we have $f_1(x)=[a']$ where $a':=(a_{2j-1})_{j\in\mathbb{N}}$. Using the previous lemmas with a', we obtain

$$\frac{1}{n}\log(q_n(\boldsymbol{a}')) = -\frac{1}{n}\sum_{j=0}^{n-1}\log([\tau^j(\boldsymbol{a}')]) + R_n(\boldsymbol{a}')$$
$$= -\frac{1}{n}\sum_{j=0}^{n-1}\log([\tau^{2j}(\boldsymbol{a})]) + S_n(\boldsymbol{a}) + R_n(\boldsymbol{a}')$$

where

$$S_n(\boldsymbol{a}) = \frac{1}{n} \sum_{j=0}^{n-1} \left(\log([\tau^{2j}(\boldsymbol{a})]) - \log([\tau^j(\boldsymbol{a}')]) \right) = \frac{1}{n} \sum_{j=0}^{n-1} \log \left(\frac{[\tau^{2j}(\boldsymbol{a})]}{f_1([\tau^{2j}(\boldsymbol{a})])} \right)$$

and we know that

$$\lim_{n \to +\infty} R_n(\boldsymbol{a}') = 0.$$

Theorem

For almost all $b \in \mathbb{N}^{\mathbb{N}}$, we have

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \log([\tau^{2j}(\boldsymbol{b})]) = \frac{1}{\log(2)} \int_0^1 \frac{\log(t)}{t+1} dt = -\frac{\pi^2}{12 \log(2)}$$

R. Nair, *On the Metrical of Continued Fractions*, In Proceedings of the Amercian Mathematicae Society **120**, 1994.

We then have

$$\lim_{n \to +\infty} \frac{1}{n} \log(q_n(\boldsymbol{a}')) = \frac{\pi^2}{12 \log(2)} + \lim_{n \to +\infty} S_n(\boldsymbol{a})$$

and it only remains to show that

$$\lim_{n \to +\infty} S_n(a) = \lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \log \left(\frac{[\tau^{2j}(a)]}{f_1([\tau^{2j}(a)])} \right) = 0$$

which is not evident. It is difficult to reasonably compare $[\tau_{-}^{2j}(a)]$ and $f_1([\tau_{-}^{2j}(a)])$.

L. Simons (ULq) Cantor's Bilection March 24-29, 2014 25 / 25

Theorem

For almost all $\boldsymbol{b} \in \mathbb{N}^{\mathbb{N}}$, we have

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \log([\tau^{2j}(\boldsymbol{b})]) = \frac{1}{\log(2)} \int_0^1 \frac{\log(t)}{t+1} dt = -\frac{\pi^2}{12 \log(2)}$$

R. Nair, *On the Metrical of Continued Fractions*, In Proceedings of the Amercian Mathematicae Society **120**, 1994.

We then have

$$\lim_{n \to +\infty} \frac{1}{n} \log(q_n(\boldsymbol{a}')) = \frac{\pi^2}{12 \log(2)} + \lim_{n \to +\infty} S_n(\boldsymbol{a})$$

and it only remains to show that

$$\lim_{n \to +\infty} S_n(\boldsymbol{a}) = \lim_{n \to +\infty} \frac{1}{n} \sum_{j=0}^{n-1} \log \left(\frac{[\tau^{2j}(\boldsymbol{a})]}{f_1([\tau^{2j}(\boldsymbol{a})])} \right) = 0,$$

which is not evident. It is difficult to reasonably compare $[au_{\square}^{2j}(a)]$ and $f_1([au_{\square}^{2j}(a)])$.