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bOpen-Engineering SA, Rue des Chasseurs-Ardennais, B-4031, Liège (Angleur), Belgium

Abstract

The aim of this work is to develop a stochastic multiscale model for poly-
crystalline materials, which accounts for the uncertainties in the micro-structure.
At the finest scale, we model the micro-structure using a random Voronöı tes-
sellation, each grain being assigned a random orientation. Then, we apply a
computational homogenization procedure on statistical volume elements to ob-
tain a stochastic characterization of the elasticity tensor at the meso-scale. A
random field of the meso-scale elasticity tensor can then be generated based on
the information obtained from the SVE simulations. Finally, using a stochas-
tic finite element method, these meso-scale uncertainties are propagated to the
coarser scale. As an illustration we study the resonance frequencies of MEMS
micro-beams made of poly-silicon materials, and we show that the stochastic
multiscale approach predicts results in agreement with a Monte Carlo analysis
applied directly on the fine finite-element model, i.e. with an explicit discretiza-
tion of the grains.

Keywords: Multi-scale, Stochastic, Finite elements, Polycrystalline,
Resonance frequency, MEMS

1. Introduction

Uncertainty is an inherent nature of materials, especially when they are
heterogeneous. The heterogeneity of a material has a significant impact on its
properties and might influence the response of structures made of that material
as well. The uncertainty due to the heterogeneous nature of the material can be
described as the spatial variability of the material properties in the structure.
When considering a finite element analysis, the structural response variability
can be predicted using the direct Monte Carlo method, which can lead to an
overwhelming computation cost as it involves the finite-element discretization of
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the heterogeneities. In order to solve the problem of structural stochasticity at
a reasonable computation cost, Stochastic Finite Element (SFE) analyzes were
developed [1–3].

In the context of stochastic finite element analyzes, a random field, which
is used to describe the heterogeneity of a material, is discretized in accordance
with the finite element mesh. The proper mesh size depends primarily on the
standard deviation and correlation length of the random field, which constrains
the variation of the random variable within each element to be small enough
[4]. Therefore finite element sizes smaller than the correlation length, such as
one half of the correlation length [5], are required to ensure the accuracy of the
analysis results. In all generalities, the correlation length of the random mate-
rial property depends on the characteristic length of the material heterogeneity.
As the interest of this work focuses on polycrystalline materials, the correla-
tion length is related to the size of the grains, meaning that each grain needs
to be meshed in a conformed way. With such a method, the analysis of the
structural stochasticity is very expensive in terms of computational resources.
Moreover using a finite element discretization based on the explicit micro-grain
structure leads to a noise field [6] instead of a smooth one [7]. Therefore the
stochastic finite element method, such as the Neumann expansion [8] or per-
turbation approximation [9], cannot be applied. To achieve a reduction of the
computational cost of a structural stochasticity analysis, we seek the recourse to
multi-scale computational methods in which a smooth random field is defined
at the meso-scale.
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Figure 1: The different scales involved in a multiscale analysis

Multi-scale methods were developed with the rise of structural applications
made of heterogeneous materials such as composite materials, metal alloys, poly-
crystalline materials... In a multi-scale method, the macro-scale or structural-
scale behavior can be related to the micro-scale properties, through a homoge-
nization technique. The different scales involved in such an analysis, which are
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depicted in Fig. 1, are

• The micro-scale: is the characteristic size of the micro-structure, such
as the size of inclusions for composite materials or the size of grains for
polycrystalline materials, and is denoted by lmicro;

• The meso-scale: is an intermediate scale, such as the size of the volume
element over which the homogenization is performed, and is denoted by
lmeso;

• The macro-scale: also called structural scale, is the size of the structural
problem, and is denoted by lmacro.

Homogenization methods relate the macroscopic strain tensor to the macro-
scopic stress tensor through the resolution of a meso-scale boundary value prob-
lem (BVP). In this framework, the structural-scale BVP is seen as a continuum
homogeneous medium and the meso-scale BVP contains the different sources
of heterogeneities. To this end, the meso-scale BVP is defined on a Represen-
tative Volume Element (RVE), which represents the micro-structure and the
micro-structural behavior in a statistically representative way.

The homogenization process on the RVE can be conducted in a semi-analyti-
cal way, as for the mean-field-homogenization method for which the average
phase-fields of the meso-scale problem are considered in order to derive the
macro-response, see for example [10–12] for a state-of-the-art review. The meso-
scale BVP can also be solved, for more general constitutive behaviors and micro-
structures, in a numerical way by using a voxelization of the micro-structure as
in the Fast-Fourier-Transform method introduced in [13] or a finite element
discretization of the micro-structure as in the computational homogenization,
also called FE2, method. Early developments of this last approach were pro-
posed in [14] with the VCFEM (Voronöı Cell Finite Element Method). More
recent developments can be found in the works of [15–17], as an non-exhaustive
list. In the context of computational homogenization methods, the meso-scale
finite element problem is solved by applying on the RVE adequate Boundary
Conditions (BCs) which should satisfy the Hill–Mandel condition stating that
the deformation energy at the macroscopic level should be equal to the volume
average of the micro-scale stress work. To be called strictly representative a
RVE should be defined so that the homogenized results are not dependent on
the (energetically consistent) BCs, although the use of periodic boundary con-
ditions (PBCs) allows using meso-scale volume elements of smaller sizes as the
convergence rate of the homogenized properties with respect to the RVE size
is faster than with other BCs [17, 18]. A review of multi-scale computational
homogenization can be found in reference [19]. Finally, the BVPs at the dif-
ferent scales, possibly more than two, can also be defined using the asymptotic
homogenization method, see [20] for an extensive review.

Multi-scale methods have been shown to be efficient and accurate compu-
tational tools to model structures made of complex heterogeneous materials.
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Nevertheless, one should keep in mind that they are based on the scales sepa-
ration assumptions, which read

lmeso << lmacro , and (1)

lmicro << lmeso . (2)

On the one hand, the first equation (1) states that, in order to be accurate, the
size of the meso-scale volume element on which the homogenization is applied
should be smaller than the characteristic length on which the macro-scale load-
ing varies in space [19]. This condition should always be satisfied. On the other
hand, the second equation (2) states that to be statistically representative, and
thus to qualify to be a RVE, the meso-scale volume element should be much
larger than the micro-structural size [21].

When the structural-size is not several orders of magnitude larger than the
micro-structural size, this second condition (2) cannot be satisfied while respect-
ing the first condition (1). In this case, the volume element at the meso-scale
is called Statistical Volume Element (SVE) [22]. Since an SVE is not statis-
tically representative by definition, different homogenized meso-scale responses
are obtained when applying different kinds of energetically consistent BCs on
the SVE. Moreover, even when considering a unique case of BCs, different ho-
mogenized properties are obtained for different SVE realizations of the same
size. This means that the uncertainties at the micro-scale should be up-scaled
to the structural-scale through the SVE resolutions at the meso-scale. When
performing the homogenization though the use of SVEs, the meso-scale length
lmeso is also the size of the SVE, lSVE.

In the literature, stochastic multi-scale analyzes have been developed to ac-
count for fine-scale material properties as random variables –and random fields
in particular cases– by using order reduction of asymptotic homogenization [23].
However in order to account for general fine-scale random fields, the resolution
of the micro-scale problems during the resolution of the structural-scale analysis
can lead to a prohibitive costs when considering probabilistic studies. This mo-
tivates the recourse to the definition of a meso-scale random field to conduct the
stochastic finite element method. Computational homogenization methods have
been applied on SVEs to define the probability convergence criterion of RVE for
masonry [24], and to study the scale-dependency of homogenization for random
composite materials [25]. In [26], the simulations of SVEs are used to capture the
stochastic properties of the parameters in the constitutive model with which the
uncertainties are propagated to the structural scale using the stochastic finite
element method [27]. In the case of finite elasticity, the resolution of composite
material elementary cells is used to explicitly define a meso-scale potential with
the aim of studying the uncertainties in the fibers geometry/distribution [28].

The objective of this work is to develop a 3-scale methodology which can be
applied to the stochastic analysis of the mechanical response of small dimension
structures made of polycrystalline materials, following the process illustrated in
Fig. 2.

At the micro-scale we consider anisotropic materials to represent the grains,

4



SVE size 

Mean value of 

material property 

Quantity of 

interest 

Probability density 

Stochastic 

Homogenization 

 

 

      SFEM 

 

 

Grain-scale            Meso-scale                 Structural-scale 

Variance of 

material property 

SVE size 

Figure 2: The 3-scale methodology

with different shapes and orientations, of the polycrystalline material.
At the meso-scale finite-element simulations on different SVEs are used to

identify the distribution of the homogenized elasticity tensor of the polycrys-
talline material and the material properties spatial correlations. A random field
of the meso-scale elasticity tensor can then be generated based on the informa-
tion obtained from the SVE simulations. A similar approach can be found in [6],
where the so-called moving window technique is used to study the stress concen-
tration due the heterogeneous micro-structure in UD-fiber reinforced composite
materials. Since the elasticity tensor takes the form of a positive-definite matrix
in its Voigt notation, the generated random meso-scale elasticity tensors need
to be consistent with this property. Random positive-definite matrices can be
generated by the means of the Cholesky decomposition [8]. In order to ensure
the existence of the expectation of the norm of the generated tensor inverses
[29, 30], we introduce a lower bound, as proposed in [31], when generating the
meso-scale material tensors. Bounds were also introduced in the random field
generator in the other works [32, 33]. The generation of the spatially corre-
lated random matrices is achieved by generating a multivariate random field.
There are mainly two methods which are widely used to simulate homogeneous
random fields. One is the Karhunen-Loeve expansion, which was used to ob-
tain a multivariate random field in the recent work [34]. The other one is the
spectral representation, which was developed in [35, 36] for multivariate and
multidimensional fields. From the discrete correlation functions obtained from
the homogenization results of the SVE simulations, the discrete spectral den-
sity can be easily computed using a Fast Fourier Transform (FFT) according
to the Wiener-Khinchin theorem, motivating the use of the spectral represen-
tation in this work. In order for the stochastic multi-scale method to recover
the distributions obtained with direct finite element MC simulations, enough
SVE realizations ought to be computed to define an accurate meso-scale ran-
dom field. This motivates the use of the spectral representation generator as a
lot of information is available. The spectral representation generates a Gaussian
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field used to define the elasticity tensor field (which is non-Gaussian because of
the presence of a lower bound). However, non-Gaussian tensor-valued random
fields could also be obtained with the spectral representation method followed
by proper mapping techniques, see for example [50], or with the help of the
polynomial chaos expansion combined to the Karhunen-Loeve expansion [37].
It is also possible to define a meso-scale random field from a reduced number of
micro-samples. For example a posterior model is applied on the first generated
random field to improve the accuracy of the generator [37].

Finally, the resulting random field description of the meso-scale material
properties can be used with the stochastic finite element method to predict
the probabilistic behavior at the structural-scale. With this multi-scale method
the meso-scale random field is smooth and has a correlation length larger than
when considering explicitly the grain discretization. Hence coarser meshes can
be used in the framework of the stochastic finite-element methods, eventually
reducing the computation cost.

In order to verify the accuracy and computational efficiency of the stochas-
tic multi-scale method, we study a micro-electro-mechanical systems (MEMS)
resonator made of poly-silicon. The uncertainties in the grain size and orienta-
tion can lead to a scatter in the device performances, and in particular in the
first resonance frequencies. The problem of micro-beams frequency analysis is
first solved using a full direct numerical simulation, i.e. for which the grains
are meshed, combined to a Monte-Carlo method, which allows the probability
description to be computed. This methodology is computationally expensive
due to the number of degrees of freedom required to study one sample. The
proposed non-deterministic multi-scale strategy is then applied allowing the use
of coarser finite elements at the structural-scale and is shown to predict simi-
lar probabilistic distributions than the full-scale Monte-Carlo simulations, but
at lower computational costs. In the context of the 3-scale method, different
SVE sizes and different structural-scale finite element meshes are successively
considered to demonstrate that by accounting for the spatial correlation length
of the meso-scale homogenized properties, correct predictions are made if the
distance between integration points of the finite-element mesh remains smaller
than the mesoscopic correlation length.

The organization of the paper is as follows. Stochastic finite element methods
are mainstream nowadays and will be briefly recalled in Section 2. The transition
between the micro-scale and the meso-scale, through the resolution of the meso-
scale BVPs on the SVEs, is described in Section 3. The generation of the
spatially correlated random field of the meso-scale elasticity tensors is detailed
in Section 4. Section 5 describes how the resulting meso-scale random field
is used in combination with the stochastic finite element method to predict
the structural-scale probabilistic behavior. As an illustration case we consider
the problem of the MEMS micro-beam resonance analysis. Perspectives and
conclusions are drawn in Section 6.
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2. Stochastic Finite Elements

The stochastic finite element method (SFEM) is a powerful and widely used
tool in computational stochastic mechanics. As an extension of the deterministic
FEM, SFEM can solve static and dynamic stochastic problems in which the
uncertainties result from the geometry, material, or loading properties. By
using finite elements whose properties are random, SFEM can propagate the
uncertainties through the mechanical system and assess its stochastic response.

The deterministic problem of an un-damped mechanical structure can be
discretized using the finite element method. To this end, the spatial domain
DDD is discretized into the finite elements DDDi, such that DDD =

⋃
iDDDi, where DDDi

includes the finite element boundary, resulting in the following set of equations

MMM ü+KKKuuu = fff , (3)

where MMM and KKK are respectively the assembled mass and stiffness matrices,
fff is the assembled external force vector, and uuu is the assembled vector of the
displacement degrees of freedom.

In this work, we consider the uncertainties resulting from the heterogeneous
micro-structure, which in turn result in uncertainties in the material properties.
The material properties are thus represented by a random field of the elasticity
tensor. LetCCC(x, θθθ) : DDD×ΩΩΩ→MMM+

N (R) be a random field of the elasticity tensor,
in its Voigt notation, over the spatial domainDDD, which is a function of the spatial
coordinate x. θθθ ∈ ΩΩΩ denotes the elements in the sample space involving random
quantities and MMM+

N (R) refers to the set of all symmetric positive-definite real
matrices of size N ×N .

A SFEM analysis can be defined by the following steps [3]: (i) the discretiza-
tion of the stochastic fields representing the properties with uncertainties, (ii)
the formulation of the stochastic matrices, and (iii) the response variability
calculation.

For the first step, i.e. the discretization of the elasticity tensor random
field, in order to evaluate the different elementary stiffness matrices of the fi-
nite element discretization, the point discretization method is considered in this
paper. With the point discretization method, the random field CCC(x, θθθ) is eval-
uated at some integration points xi, leading to the random variables CCC (xi, θθθ).
The integration points considered in this work are the mid-points of each finite
element (mid-point discretization). As shown in [38], the point discretization
method tends to over-represent the uncertainties in each element. Note that
other discretization methods, such as the local average method, exist [38]. The
point discretization method is easy to implement but its accuracy depends on
the mesh discretization: the mesh elements must be small enough compared to
the correlation length so that the properties can be considered constant over
the mesh elements [39]. The correlation length of a stationary random field is
defined by [4]

lC =

∫∞
−∞R(τ)dτ

R(0)
, (4)
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where R(τ) is the correlation function of the considered random value.
When considering the second step, i.e the formulation of the stochastic ma-

trices, as the uncertainties result from the elasticity tensor, the stiffness matrix
of the finite element discretization is subjected to uncertainties and the non-
deterministic problem is thus stated by

MMMüuu+KKK(θθθ)uuu = fff . (5)

Finally, to solve the third step, i.e. the response variability calculation,
Monte Carlo simulations can be used. To achieve a given accuracy, the system
of equations (5) must be solved enough times. The computational cost required
to solve this system of equations highly depends on the involved mesh size, which
needs to be chosen carefully. As discussed before, there exists a strong link be-
tween the spatial correlation length (4) of the random field and the mesh size:
the mesh size should be sufficiently small compared to the correlation length.
As for a structure made of a polycrystalline material the random field of the
material properties corresponds to a noise field, the SFEM described previously
cannot be applied directly [6, 7] and the structural finite element problem should
thus be solved based on the realizations of micro-structures such that each grain
is meshed with several finite elements. This motivates the introduction of an in-
termediate scale, the meso-scale, which represents an aggregate of several grains.
At this scale, the random field description for the material properties has a cor-
relation length larger than when considering explicitly the grain discretization,
allowing the use of coarser elements in the SFEM at the structural-scale.

3. Stochastic homogenization: from the micro-scale to the meso-scale

In this section we detail how to extract the meso-scale random field of
the elasticity tensors from the finite element resolution of meso-scale volume
elements. First generalities on homogenization methods are recalled, with a
particular emphasis on the definition of Representative and Statistical Volume
Elements (RVEs and SVEs) and on the definition of effective and apparent
meso-scale material tensors. Then we discuss how the apparent material tensor
can be evaluated from finite element discretizations of the SVEs. We therefore
consider different SVE realizations, with different sizes, from which the distri-
butions of the apparent meso-scale material tensor and its spatial correlation
can be extracted. Finally, we apply the method to a poly-silicon material.

3.1. Generalities on Representative and Statistical Volume Elements

The aim of this section is to define the scale transition from the micro-
scale up to an intermediate scale: the meso-scale, see Fig. 1. As this work
focuses on polycrystalline materials, the micro-scale is characterized by the grain
distribution. The grain size is assumed to be large enough (> 100 nm) so that
grain boundary mechanics can be neglected. A meso-scale volume element ω is
depicted in Fig. 3.
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Figure 3: A sample of the meso-scale volume element

Within a multi-scale framework, one can define macro-scale values as the
volume average of a micro-scale field on the meso-scale volume-element ω, fol-
lowing

aM =< am >=
1

V (ω)

∫
ω

amdV , (6)

where the subscript m refers to the micro-scale, the subscript M refers to the
homogenized value, 〈•〉 is the volume average, and V (ω) is the volume of the
meso-scale volume element ω. In particular, the macro-stress tensor σM and
the macro-strain tensor εM are defined as

σM = 〈σm〉 =
1

V (ω)

∫
ω

σmdV , (7)

εM = 〈εm〉 =
1

V (ω)

∫
ω

εmdV . (8)

In the elastic regime, the micro-stress tensor is related to the micro-strain tensor
through the material fourth-order tensor Cm with

σm = Cm : εm . (9)

When performing the homogenization, the relative size of the meso-scale
volume element with respect to the micro-structure size is of prime importance.
If the volume-element on which the averaging is performed is large enough, it is
called Representative Volume Element (RVE). To be considered as a RVE, the
volume-element should be statistically representative so that it is entirely typical
of the whole mixture on average [21]. Moreover the volume element is represen-
tative when the effective constitutive response is independent with respect to
the “energetically consistent” boundary conditions, as it will be discussed later.

Assuming ω is an RVE, a unique effective material tensor Ceff
M can be defined

such that
σM = Ceff

M : εM , (10)

for any RVE ω [40]. Defining as a′m the perturbation of the micro-scale field am
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around its average value 〈am〉, and combining Eqs. (7-10) lead to

Ceff
M : εM = σM =

1

V (ω)

∫
ω

(〈Cm〉+ C′m) : (〈εm〉+ ε′m) dV =

〈Cm〉 : εM + 〈C′m : ε′m〉 , (11)

which shows that the effective material tensor is not equal to the meso-scale
volume average of the micro-scale material tensor 〈Cm〉. This last expression
corresponds to the Voigt upper bound C̄M of the effective material tensor. In
all generalities, an upper (lower) bound CU (CL) of the tensor C is defined such
that ε : (CU − C) : ε > 0 (ε : (C− CL) : ε > 0) for any non-zero deformation
tensor ε, and we use the notation CU > C > CL. Applying the same relations by
considering the compliance tensor S leads to a similar conclusion: the effective
compliance tensor Seff

M such that

εM = Seff
M : σM , (12)

is different from the meso-scale volume average of the micro-scale compliance
tensor 〈Sm〉. The inverse of this last expression corresponds to the Reuss lower
bound CM of the effective material tensor.

To be energetically consistent, the effective tensor Ceff
M should satisfy the

Hill-Mandel principle, which implies the equality of the internal energy at both
scales, i.e.

σM : εM =
1

V (ω)

∫
ω

σm : εmdV . (13)

Using Eqs. (7-10), this equation reduces to

εM : Ceff
M : εM =

1

V (ω)

∫
ω

σm : εmdV =

1

V (ω)

∫
ω

(〈σm〉+ σ′m) : (〈εm〉+ ε′m) dV = εM : Ceff
M : εM + 〈σ′m : ε′m〉 . (14)

Therefore the resolution of the meso-scale boundary value problem should satisfy∫
ω

σ′m : ε′mdV = 0 . (15)

This condition is satisfied for the Voigt and Reuss assumptions, which respec-
tively state a constant strain field, i.e. ε′m = 0, and a constant stress field,
i.e. σ′m = 0, which lead to the upper and lower bounds of the effective tensor,
respectively.

In order to estimate the effective material tensor Ceff
M from the resolution of

the meso-scale BVP, boundary conditions should be applied on the RVE ω. The
Hill-Mandell condition (15) can be rewritten [16, 17, 41] in the absence of body
forces as

0 =

∫
∂ω

(tm − σM · nm) · (um − εM · x) dS , (16)
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where ∂ω is the boundary of the meso-scale volume ω, S is its surface, nm is
its outward unit normal, x is the position vector, tm = σm · nm is the surface
traction, and where um is the micro-displacement field. To define “energetically
consistent” boundary conditions, the displacement field um is decomposed into
an average value 〈um〉 = εM · x and into a fluctuation field u′m so that the
Hill-Mandel principle (16) is finally rewritten [41] as∫

∂ω

tm · u′mdS = 0 . (17)

The four main BCs satisfying this equation are

• The Kinematic Uniform Boundary Conditions (KUBCs) for which there
is no fluctuation on the boundary, i.e.

u′m = 0 on ∂ω ; (18)

• The Static Uniform Boundary Conditions (SUBCs) for which tm = σM·nm

on ∂ω; In the case of parallelepiped RVEs for which the boundary can be
separated in opposite faces ∂ω− and ∂ω+, this also corresponds to the
minimal kinematic boundary conditions [17], i.e.∫

∂ω±
(u′m ⊗ nm) dS = 0 ; (19)

• The Orthogonal Uniform Mixed Boundary Conditions (OUMBCs), for
which a combination of constrained displacements in one direction and
surface tractions in the other directions is used1;

• The Periodic Boundary Conditions (PBCs) for which one has on the op-
posite faces

u′m
(
x+
)

= u′m
(
x−
)
∀x+ ∈ ∂ω+ and corresponding x− ∈ ∂ω− , (20)

with
∫
∂ω±

u′mdS = 0 to remove the rigid mode motion.

As previously stated, if the meso-scale volume-element ω on which the av-
eraging is performed is large enough, the so-called RVE is statistically repre-
sentative and a unique material tensor Ceff

M can be obtained for these different

1Although not true for general MBCs, particular MBCs such as the orthogonal uniform
ones can be defined in a particular way as to satisfy the Hill-Mandel condition (17), see the
discussion in [42]. Assuming a rectangular parallelepiped RVE, on every face we constrain
along one direction –says x– the displacements to umx =

∑z
i=x εMxixi, so that u′mx = 0, and

along the two other directions tmj =
∑z

k=x σMjknmk, j = y, z. As a result, since u′mx = 0,
the Hill-Mandel Eq. (17) is rewritten

∑z
j=y

∑z
k=x σMjk

∫
∂ω± nmku

′
mjdS, which vanishes by

constraining
∫
∂ω± nmku

′
mjdS = 0 for j = y, z and k = x, y, z.
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“energetically consistent” boundary conditions. If the volume element is not
large enough the homogenization provides an apparent material tensors CM,
which depends on the applied boundary conditions, but also on the particu-
lar realization of the micro-structure considered. In this case, the meso-scale
volume-element ω is called Statistical Volume Element (SVE) [22].

Therefore the material tensors obtained using SVEs face two sources of un-
certainties: one contribution resulting from the applied boundary conditions and
the other one from the uncertainties in the material micro-structure. However
as it will be seen in Section 3.4, the uncertainties resulting from the micro-
structure randomness, the grain distribution and orientation, is more important
than the ones resulting from the applied BCs in the case of the studied poly-
crystalline material. This paper will only consider OUMBCs to estimate the
apparent meso-scale material tensors CM.

In the next section we discuss how this apparent material tensor CM is
computed in the computational homogenization framework before detailing the
process to generate the different SVEs.

3.2. Evaluation of the apparent meso-scale material tensor

Computing the apparent meso-scale material tensor from the finite element
resolution of a meso-scale volume-element ω can be done in different ways. In
[32] and [33], it was achieved with the help of a minimization procedure and
Huet’s partition theorem [40]. It can also be estimated directly from the stiffness
matrix of the FE model following the developments in [16, 17]. This last method
is adopted herein.

In the absence of body forces, the macro-stress tensor (7) can be rewritten

σM =
1

V (ω)

∫
∂ω

tm ⊗ xdS . (21)

When considering a finite element discretization of the SVE and when applying
one of the energetically consistent boundary conditions (18-20), there are Nnd

nodes with prescribed displacements on the boundary ∂ω, Nnd depending on
the type of boundary conditions. Let xp be the position vector of these nodes.
The discretized form of Eq. (21) thus reads

σM =
1

V (ω)

Nnd∑
p=1

fp ⊗ xp , (22)

where fp corresponds to the resulting external nodal forces at the prescribed
nodes. In linear elasticity, the equilibrium between external and internal forces
can be written as

Nnd∑
q=1

Kpq
M · u

q = fp , (23)

where p and q correspond to the different Nnd prescribed nodes, and where Kpq
M

is the stiffness tensor at nodes p and q obtained thanks to the condensation of
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Figure 4: SVEs generation strategy

the internal nodes [17]. This condensation depends on the kind of boundary
conditions considered, see [17] for details. Substituting Eq. (23) in Eq. (22)
results in

σM =
1

V (ω)

Nnd∑
p=1

Nnd∑
q=1

(Kpq
M · u

q)⊗ xp , (24)

or again, according to the definition of the deformation tensor

σM =
1

V (ω)

Nnd∑
p=1

Nnd∑
q=1

(xp ⊗Kpq
M ⊗ x

q) : εM . (25)

The apparent elasticity tensor CM is then directly obtained as

CM =
1

V (ω)

Nnd∑
p=1

Nnd∑
q=1

xp ⊗Kpq
M ⊗ x

q . (26)

With a view to the generation of the material tensor random field, the fourth
order symmetric elasticity tensor CM is represented using the Voigt or Kelvin
notation. Out of the 81 components of the tensor CM, only 21 components are
enough to fully characterized the elastic operator, which can be represented by
a 6× 6 symmetric elasticity matrix CCCM.

3.3. SVEs generations

Using Eq. (26), we can extract the apparent material tensor CM, or its
matrix version CCCM, from a finite element discretization of an SVE. An example
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of SVE is illustrated in Fig. 3. The purpose of this work is to evaluate the
random field of the material tensor at the meso-scale, which requires to consider
several SVE realizations.

To this end, the following procedure is considered in the generation of the
SVEs. Poisson-Voronöı tessellations are generated as detailled in Appendix
A to represent a columnar polycrystalline material obtained by low pressure
chemical vapor deposition (LPCVD). Each grain possesses a random orienta-
tion. One tessellation is illustrated in Fig. 4. For a given SVE size, several
SVEs of the same size can be extracted from a tessellation following the moving
window technique [6] illustrated in Fig. 4. Toward this end, an initial SVE is
extracted from the tessellation –using the methodology reported in Appendix
A. A series of other SVEs, whose centers are separated by a vector τ from the
initial SVE center, can then be extracted, see Fig. 4. Note that due to the sta-
tistical isotropic nature of the Poisson-Voronöı tessellation, considering vectors
τ along one direction is enough. A sufficient number of large Poisson-Voronöı
tessellations are used to obtain a high number of SVEs in order for the descrip-
tion of the random field to converge. As we assume a homogeneous meso-scale
random field in this work, a set of tessellation realizations –such a realization is
illustrated in Fig. 4– is enough to characterize the meso-scale random field of
the whole macro-structure. The size of each tessellation is constrained by the
moving window technique: the tessellation should be large enough in order to be
able to capture the spatial correlations, i.e. the size should be large enough for
all the spatial correlations to reach zero when moving the window. The size of
the tesselations is thus not related to the size of the macro-structure in the case
of a homogeneous random field. In the case of inhomogeneous random fields,
more efforts are required to describe the spatial variation of the random field,
and it is out of the scope of the present work.

The spatial cross-correlation matrix RRRCCCM
(τ ), of the assumed homogeneous

field CCCM (x) of the apparent effective tensor, is evaluated as follows

R
(rs)
CCCM

(τ ) =
E
[(
C

(r)
M (x)− E

[
C

(r)
M

])(
C

(s)
M (x+ τ )− E

[
C

(s)
M

])]
σ
C

(r)
M

σ
C

(s)
M

∀ r, s = 1, ..., 21 , (27)

where C
(r)
M (x) is the rth element out of the 21 relevant elements of the material

tensor CCCM evaluated at position x, E is the expectation operator, and where

σ
C

(r)
M

=

√
E
[(
C

(r)
M − E

[
C

(r)
M

])2
]

is the standard deviation of C
(r)
M .

3.4. Application to the poly-silicon case

With a view toward the study of a MEMS resonator, we consider micro-size
beams made of silicon organized in a polycrystalline structure. Silicon is one
of the most common material present in MEMS. The uncertainties are coming
from two sources: the grain size/geometry and the grain orientations.
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The first one is captured by the Voronöı tessellation. Accordingly to the
typical fabrication process of the considered poly-silicon MEMS by low pressure
chemical vapor deposition (LPCVD) at 580◦C, for a thickness of 2 µm, an
average grain diameter d̄ of about 200 nm is adopted, yielding an average area
of grains ā = πd̄2/4. One tessellation is illustrated in Fig. 4. Moreover, since
the considered MEMS structures are fabricated through LPCVD, similar micro
material structures (at the grain scale) will be obtained on the whole MEMS-
structure, which justifies the use of the homogeneous random field.

The second one is represented by assigning random orientations to the grains.
Indeed, Silicon material is anisotropic, with a cubic symmetry, and the prop-
erties of a Silicon grain depend on its orientation with respect to the crystal
lattice. The material properties of a silicon crystal are studied in [43]. Its
Young’s modulus can range from 130 GPa up to 188 GPa and its Poisson ra-
tio can range from 0.048 up to 0.4. For the silicon crystal oriented with [100],
[010] and [001] along the Cartesian coordinates, the crystal elasticity tensor CCCS

–where the subscript S indicates the properties for the single crystal– reads, in
GPa,

CCCS =


165.7 63.9 63.9 0 0 0
63.9 165.7 63.9 0 0 0
63.9 63.9 165.7 0 0 0

0 0 0 79.6 0 0
0 0 0 0 79.6 0
0 0 0 0 0 79.6

 . (28)

In order to apply the 3-scale stochastic method in Section 5, we study 3D
SVEs representing the poly-silicon structure. As the micro-structure is colum-
nar, the material properties are constant along the thickness of the SVE and
a first-order computational homogenization scheme is applied. For more com-
plex micro-structures, second-order boundary conditions should be considered
as in [44]. As the width (thickness) of the macro-scale beam is small compared
to its length, 1D-finite elements will be considered at the macro-scale and the
SVE width (thickness) considered is the one of the macro-beam. Note that the
thickness of the SVE should not influence the elasticity tensor as the material
properties are constant along the thickness. Therefore both the width and the
thickness of the macro-beam are implicitly considered in the 3D homogenization
and, in turn, in the beam discretization. The only relevant geometric parameter
to study the size effect of the SVE is thus its length. This also means that the
spatial correlation is only required in one direction. We consider four different
SVE lengths, lSVE, successively equal to 0.1µm, 0.2µm, 0.4µm, and 0.6µm.
The width and height of the SVEs are respectively 0.5µm and 0.1µm.

Applying the described homogenization methodology, the meso-scale me-
chanical properties distribution can be obtained through the evaluation of the
material tensor CCCM using Eq. (26) for the different SVE realizations. The num-
ber of tessellations generated are 1084, 855, 312, and 117 for respectively an
SVE length lSVE of 0.1, 0.2, 0.4, and 0.6µm. The distance between the centers
of thesuccessive SVEs extracted from the tessellation is 0.5×lSVE for a lSVE of
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Figure 5: Samples of Young’s modulus obtained for an SVE length of 0.2µm

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
SVE length [µm]

130

140

150

160

170

180

190

Y
o
u
n
g
’s
m
o
d
u
lu
s
[G

P
a
]

Distribution

Mean

Bounds

(a) Evolution of the Young’s modulus

0.2 0.3 0.4 0.5 0.6
SVE length [µm]

3.0

3.5

4.0

4.5

5.0
C
O
V
o
f
th

e
Y
o
u
n
g
’s
m
o
d
u
lu
s
[%

]

(b) Evolution of the variance

Figure 6: Meso-scale Young’s modulus Ex distribution for different SVE lengths (x is along
the SVE length)

0.1 and 0.2µm and 0.25×lSVE for the 2 remaining SVE lengths. As an example
the resulting histogram of the Young’s modulus Ex

2 along the x-direction (x is
along the SVE length, y along the width, and z along its height) is illustrated in
Fig. 5 for an SVE of length lSVE = 0.2µm. The effect of the SVE length on the
meso-scale properties is depicted in Fig. 6. Figure 6(a) represents the evolution
of the distribution of the Young’s modulus for different SVE lengths lSVE. The
silicon bounds are also reported on that figure. One can see in the figure that
a larger SVE involves a more peaky distribution. The mean Young’s modulus
is found to be around 160 GPa. The evolution of the Coefficient of Variation
(COVs) of the meso-scale Young’s modulus, COV =

σEx

E[Ex] ×100%, with σEx
the

standard deviation of the meso-scale Young’s modulus along the beam axis and
E [Ex] its expectation, with respect to the SVE length is reported in Fig. 6(b).
As expected, the coefficient of variation decreases with the SVE length.

2For conciseness, in what follows we drop the subscript M which refers to the homogenized
meso-scale properties.
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Figure 7: Two-points statistics for different values of the distance τ along x between the centers
of the SVEs. (a) Auto- and cross-correlations of the Young’s modulus in the x direction with
respect to different material properties for an SVE length lSVE = 0.1µm (x is along the SVE
length, y along the width, and z along its height). (b) The auto-correlation of the Young’s
modulus for different SVE lengths.

The auto-correlation of the Young’s modulus Ex and the cross-correlations
of the Young’s modulus Ex, with other material properties extracted from the
elasticity tensor, are computed for an SVE length of lSVE = 0.1µm using Eq.
(27) and are reported in Fig. 7(a) for different values of the distance τ –along
x. Such an analysis was previously achieved in [45] in the case of a Bernoulli
lattice. The evolution with the distance τ –along x– of the auto-correlation of
the Young’s modulus Ex is also evaluated using Eq. (27) and is illustrated in
Fig. 7(b) for the four considered SVE lengths.

The following conclusions can be drawn from Fig. 7:

• As expected for τ = 0, the auto-correlation is equal to the unity and the
cross-correlations are always < 1 and > −1;

• The correlations obtained for τ = lSVE, i.e. when the two SVEs are
adjacent, are low but do not vanish as two adjacent SVEs share some
common grains; This effect decreases with the increase of the SVE length,
as the proportion of shared grains also decreases; As an example, the auto-
correlation obtained for τ = lSVE is ≈ 0.6 for an SVE length of 0.1µm
and is ≈ 0.17 for an SVE of 0.4µm, see Fig. 7(b);

• For longer meso-scale volume elements, sharing of common grains takes
place at longer distances between SVEs and the correlation lengths defined
by Eq. (4) of the Young’s modulus for the different SVE lengths increases,
see Tab. 1;

• When τ increases the auto- and cross-correlations decreases to 0 as does
the probability to share some grains;

• The cross-correlation between Ex and Ey is positive while the cross-
correlation between Ex and the Poisson ratio νxz and the in-plane shear
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Table 1: Correlation length lEx of the Young’s modulus Ex for different SVE lengths

SVE length [µm] Correlation Length [µm]
0.1 0.233
0.2 0.307
0.4 0.504
0.6 0.693

modulus Gxy is negative because of the cubic symmetry of the Silicon
crystal; Indeed the Silicon crystal has a minimum Young’s modulus along
the directions [1 0 0], [0 1 0], and [0 0 1];

• The cross-correlation between Ex and the out-of-plane shear modulus is
almost zero.

Finally, the effect of the applied BCs on the SVE homogenization results is
investigated. The standard deviations of the Young’s modulus along x obtained
for KUBCs, OUMBCs, and SUBCs are reported in Tab. 2. Three different SVE
lengths are successively considered: 0.1µm, 0.2µm, and 0.4µm. The difference
in the meso-scale distribution standard deviation obtained with the OUMBCs
distribution is found to be lower than 2% as compared with the other BCs,
justifying the use of the sole OUMBCs.

Table 2: Standard deviation of the Young’s modulus Ex obtained with different boundary
conditions and SVE lengths

SVE lengths [µm] KUBC OUMBC SUBC
0.1 σEx

= 8.33 GPa σEx
= 8.43 GPa σEx

= 8.43 GPa
0.2 σEx

= 7.22 GPa σEx
= 7.31 GPa σEx

= 7.31 GPa
0.4 σEx = 6.02 GPa σEx = 6.11 GPa σEx = 6.13 GPa

4. Mesoscopic scale: elasticity tensor generation

In order to obtain the meso-scale random field for the macro-scale SFEM
analyzes, a generator is defined using the realizations of the micro-meso ho-
mogenization as inputs. With such a method it becomes straightforward and
computationally efficient to study different structural probabilistic problems as
the generator provides as many realizations as required.

In order for the random field generator to lead to physically meaningful ran-
dom elasticity tensors, an absolute lower bound CCCL is enforced3. This enforce-
ment of the absolute lower bound also ensures the existence of the expectation
of the generated elasticity tensor inverses.

3The lower (upper) bound CCCL (CCCU) of a matrix CCC is defined in a similar way as for the
fourth order tensors in Section 3.1, i.e. such that εεεT (CCC −CCCL)εεε > 0 (εεεT (CCCU −CCC)εεε > 0) for
any non-zero vector εεε ∈ R6 with Voigt notations, and we use the notation CCCU > CCC > CCCL
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In this section, after having defined an appropriate lower bound for the poly-
crystalline materials, the generation of the meso-scale random field is detailed.
Finally, in the case of the poly-silicon material, the generated meso-scale ran-
dom fields properties are compared to the original distributions obtained from
the SVE resolutions presented in Section 3.4.

4.1. Definition of the absolute lower bound

The absolute lower bound is defined so that CCCM − CCCL is a positive semi-
definite matrix for any generated elasticity tensor CCCM, and we use the notation
CCCM > CCCL. Although only the lower bound will be enforced when generating
the random field, both the lower and upper bounds are discussed hereafter for
the sake of generality.

As discussed in Section 3.1, for heterogeneous materials made of different
material phases, there are two absolute bounds which are used to define the vari-
ation range of the elasticity tensor on a representative volume element (RVE):
the upper bound –or Voigt bound– CCCM and the lower bound –or Reuss bound–
CCCM. In the case of a multi-phase material, these bounds read

CCCM = 〈CCCm〉 =

n∑
i=1

fiCCCi (29)

CCCM =
(〈
CCC−1

m

〉)−1
= (

n∑
i=1

fiCCC
−1
i )−1 , (30)

respectively, where CCCi (i = 1, 2, ..., n) is the elasticity tensor of phase i and fi
the volume fraction of phase i, which satisfies

∑n
i=1 fi = 1.

However, when considering different SVEs, the bounds (29-30) cannot be
determined anymore, as the volume fractions fi of each phase is different for
each SVE. Moreover, in the problem of a polycrystalline material, which is an
aggregate of grains based on the same crystal but with random orientations,
as the same anisotropic material is considered in each grain, of random shape
and orientation, it is not possible to define CCCi and fi, as the different elasticity
tensors CCCi are expressions of the same tensor in different coordinates systems.
For the same reasons, it is not possible to defined bounds, which satisfy CCCL 6
CCCM 6 CCCU, directly from the grains material tensors CCCi as

CCCU = max{CCCi|i = 1, 2, ..., n}
CCCL = min{CCCi|i = 1, 2, ..., n} . (31)

Indeed, as all the grains are associated to elasticity tensors CCCi (i = 1, 2, ..., n)
which are the same tensors in different coordinates, they have the same eigen-
values.

In this work we propose an efficient method to define the lower bound CCCL

and the upper bound CCCU of a polycrystalline material, for any size of the SVEs.
As we have described previously, CCCi (i = 1, 2, ..., n) are the expressions of the
same elasticity tensor in different coordinates. Let CCCS be the elasticity tensor
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of a single crystal. To define the two bounds CCCL and CCCU, we need to guaranty
that CCCL 6 CCCS 6 CCCU for any orientation of the crystal, and thus for any rotation
of CCCS. By satisfying this relation, CCCL and CCCU are bounds for the polycrystalline
material and for the single crystal. Moreover, as the grains can have any ori-
entation, the bounds are defined as isotropic tensors and are thus characterized
by two material parameters only. They can thus be expressed as

CCC iso =


2G+ λ λ λ 0 0 0
λ 2G+ λ λ 0 0 0
λ λ 2G+ λ 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

 , (32)

for example in terms of the shear modulus G = E
2(1+ν) and Lamé constant

λ = Eν
(1+ν)(1−2ν) , with Young’s modulus E and Poisson ratio ν.

The two isotropic bounds CCC iso
L and CCC iso

U can thus be obtained by solving two
optimization problems, respectively,

min
G, λ∈R+

‖CCC iso −CCCS‖ subject to CCC iso 6 CCCS and (33)

min
G, λ∈R+

‖CCC iso −CCCS‖ subject to CCC iso > CCCS , (34)

where ‖ ∗ ‖ denotes the Frobenius norm. According to Eq. (31), the result-
ing tensors CCC iso

L and CCC iso
U can be used as bounds of the elasticity tensor for a

polycrystalline material.
For the silicon crystal oriented with [100], [010] and [001] along the Carte-

sian coordinates, the crystal elasticity tensor CCCS is given in Eq. (28). The
lower and upper bounds, respectively obtained from Eqs. (33) and (34), can
be expressed in terms of their corresponding Young’s modulus E and Pois-
son ratio ν as CCC iso(E, ν) following Eq. (32). After solving the optimization
problem, the bounds are found to be CCC iso

L (E = 130.0 GPa, ν = 0.278) and
CCC iso

U (E = 187.9 GPa, ν = 0.181). These two values of the Young’s modulus,
i.e. 130.0 GPa and 187.9 GPa, correspond to the lowest and highest values of
Young’s moduli that a single silicon crystal can reach.

4.2. Random field generator

By introducing the lower bound, CCCL, of the elasticity tensor, the random
elasticity tensor can be computed through

CCCM = CCCL + ∆CCC , (35)

where ∆CCC is a positive semi-definite matrix for SVEs with only one crystal
orientation and positive definite matrix for SVEs with more than one grain
orientation. The Cholesky decomposition algorithm [8] can be used directly to
obtain the positive definite matrix, which is expressed as

∆CCC = AAAAAAT , (36)
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where AAA is a lower triangular matrix and AAAT is its transposed expression. The
lower triangular matrix AAA has 21 entries, and can be obtained using a random
vector field. Let ĀAA and AAA′ be respectively the mean and fluctuation of the
random vector field, with AAA = ĀAA+AAA′. We assume that the random vector field
AAA′ can be described as a homogeneous random field. Because of the existence
of the lower bound, the expectation of the norm of the generated tensor inverse
CCC−1

M exists as demonstrated in Appendix B, ensuring the convergence of the
SFEM [29, 30].

The spectral representation method [36] is applied to generate the required
random fieldAAA′ (x, θθθ) based on the known cross-correlation matrixRRRAAA′(τ ) (27),
see Section 3.3. Although the cross-correlation matrix RRRA′A′A′(τ ) is only computed
in a limited spatial distance, a large random field can be generated easily by
considering a zero-padding once RRRA′A′A′(τ ) reaches zero. Details on the generation
process of the random field AAA′ (x, θθθ) are reported in Appendix C. In this paper
we assume that the random vector field AAA′ can be described as a homogeneous
Gaussian random field. This assumption will be shown to be accurate in the
studied case in the next paragraph, but the developed method remains valid
for another random field assumption, and we discuss in Appendix C how non-
Gaussian random fields can be considered.

Samples of the elasticity tensor can then be obtained from Eqs. (35) and
(36) as

CCCM (x, θθθ) = CCCL +
(
ĀAA+AAA′ (x, θθθ)

) (
ĀAA+AAA′ (x, θθθ)

)T
. (37)

4.3. Application to the poly-silicon case

Table 3: Errors in the material properties mean values and standard deviations obtained with
the spectral generator as compared to the values obtained directly from the SVE realizations,
for an SVE length of 0.4µm

Material property Error in the mean Error in the
standard deviation

Young’s modulus Ex 0.026 % 0.97 %
Poisson ratio νyx 0.043 % 1.48 %

Shear modulus Gxz 0.072 % 10.09 %

In this section we generate a random field using the SVE realizations de-
scribed in Section 3.4, and the generated elasticity tensor random field is com-
pared with the distribution directly obtained from the sample realizations.

In Fig. 8, the histograms of Ex, the Young’s modulus along the SVE length
direction, extracted from the elasticity tensor CCCM are compared for different
SVE lengths. The distributions obtained with the generator are qualitatively
in good agreements with the ones obtained from the SVE realizations. The
same conclusion holds for the histograms of the Poisson ratio and of the shear
modulus respectively shown in Figs. 9(a) and 9(b). The errors on the mean and
the standard deviation of the material distribution resulting from the generator
are reported in Tab. 3 for an SVE length of 0.4µm. While good agreements
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(b) lSVE = 0.2µm
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(c) lSVE = 0.4µm
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(d) lSVE = 0.6µm

Figure 8: Comparison of the Young’s modulus Ex histograms obtained directly from the SVE
realizations and with the spectral generator for different SVE lengths (x is along the SVE
length)

0.15 0.20 0.25 0.30
Poisson ratio

5

10

15

20

P
ro

ba
bi

lit
y

de
ns

it
y

Micro-Samples
Spectral generator

(a) Poisson ratio in the yx-direction
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(b) Shear modulus in the xz-direction

Figure 9: Comparison of the material properties histograms obtained directly from the SVE
realizations and with the spectral generator for an SVE length of 0.4µm: (a) yx-Poisson
ratio, and (b) xz-shear modulus (x is along the SVE length, y along the width, and z along
its height)
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(a) Young’s modulus along the x direction
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(b) Shear modulus in the xz-direction

0.0 0.1 0.2 0.3 0.4
Distance τ [µm]

-0.5

0.0

0.5

1.0

C
or

re
la

ti
on

REx
Ex

R
Ey
Ex

Rνxz
Ex

R
νyz
Ex

R
Gyz

Ex

R
Gxy

Ex

Micro-Samples
Spectral generator

(c) Cross-correlation

Figure 10: Comparison of the 1D spatial correlations obtained directly from the SVE real-
izations and with the spectral generator: (a) Auto-correlation of the Young’s modulus along
the x-direction for an SVE length of 0.4µm, (b) auto-correlation of the xz-shear modulus
for an SVE length of 0.4µm (x is along the SVE length, y along the width, and z along
its height), and (c) Cross-correlations of the the Young’s modulus along the x-direction with
other material constants, for an SVE length of 0.1µm.

are obtained for the Young’s modulus and the Poisson ratio, a higher difference
is obtained for the shear modulus. As, in our case, the Young’s modulus is the
main parameter governing the structural problem, the accuracy of the random
generator is satisfying for our application. The skewness of the Young’s modulus

distribution, γ1Ex
=

E[(Ex−E[Ex])3]
σ3
Ex

, obtained from the micro-samples and from

the generator is −0.11 and 0.26, respectively. Both characterize a distribution
close to symmetry, although the use of a lower bound for the generator induces
a positive value. The peak intensity of the Young’s modulus distribution is

characterized by the kurtosis, β2Ex
=

E[(Ex−E[Ex])4]
σ4
Ex

and is found to be 2.93 and

3.02, for the distribution obtained from the micro-samples and from the genera-
tor, respectively. The kurtosis is thus found to be in good agreement justifying
the use of the developed generator. Nevertheless different non-Gaussian fields
could be considered to improve the prediction of the shear modulus, see the
discussion in the introduction and in Appendix C.
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Figure 11: Five realizations of the meso-scale random field obtained with (a) an SVE length
lSVE = 0.1µm and (b) an SVE length lSVE = 0.4µm: meso-scale x-evolution of the Young’s
modulus. The bold line correspond to E [Ex], the average meso-scale value of the Young’s
modulus, andthe dotted lines include σEx , its standard deviation.

Finally, Fig. 10(a) and 10(b) respectively compare the 1D-spatial auto-
correlation of the Young’s modulus and of shear modulus obtained directly
from the SVE computations (with the zero-padding) and with the generator for
an SVE length of 0.4µm. The two curves are almost identical. Figure 10(c)
compares the different cross-correlations, already studied in Fig. 7(a), obtained
with both the micro-samples (with the zero-padding) and with the generator
for an SVE length of 0.1µm. The behaviours obtained with the generator is in
good agreement with the original distribution.

Once the generator has been numerically verified for the different SVE
lengths lSVE, it can be used to provide several meso-scale random field real-
izations at a lower cost than solving the SVEs at each sampling point. As a
way of illustration, Figs. 11(a) and (b) represent five realizations of the Young’s
modulus meso-scale random field along a distance of 1µm obtained using the
generator based on SVE lengths lSVE = 0.1µm and lSVE = 0.4µm, respectively.
The x-evolution of the Young’s modulus is compared to E [Ex] its average meso-
scale value and to σEx

, its standard deviation. The effect of the SVE length
when propagating the meso-scale uncertainties to the macro-scale will be stud-
ied in the next section, in which the results are shown to converge with the
macro-scale finite element mesh size (for all lSVE).

5. Stochastic finite element method: from the meso-scale to the struc-
tural-scale

In this section we propagate the uncertainties of the random field generated
at the meso-scale in Section 4 to the structural-scale using the stochastic finite
element method described in Section 2. The accuracy and efficiency of the
resulting 3-scale stochastic method is ascertained by comparing the predictions
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with the results obtained from direct MC simulations on a full discretization of
the structure, i.e. for which the grains are meshed individually.

5.1. The stochastic finite element problem

As an illustration example we consider the problem of micro-beam resonators
made of poly-silicon. In particular we study the distributions of its first three
resonance frequencies4.

We first consider micro-beams of dimensions 3.2µm × 0.5µm × 0.1µm. The
structural-scale has a size of the first mode, which is four times the size of the
beam: lmacro = 12.8µm. As the largest SVE length considered is 0.6µm, we
satisfy the length scale separation lmeso << lmacro in this application. A short
length of the beam is chosen in order to be able to obtain a reference solution
of the problem by direct MC simulations of the poly-crystalline structure in
a reasonable time. The Monte-Carlo simulations are then applied on a finite-
element model of about ≈ 20 000 quadratic tetrahedral finite elements.

To apply the stochastic 3-scale method, the micro-beam is discretized using
Timoshenko beam finite elements. The locking-free finite-element formulation
using the interdependent interpolation model developed in [46] is used in this
work.

In the context of the point discretization method, the Young’s and shear
moduli of an element are obtained from the generated meso-scale random elas-
ticity tensor evaluated at the element center point. The equations of the stochas-
tic finite element problem (5), with fff = 0 for the free vibration problem, can
then be directly obtained and solved for each realization θθθ. A Monte-Carlo anal-
ysis is then applied to compute the distribution of the micro-beam resonance
frequencies.

In order to evaluate the existing bias from the deterministic FE models,
i.e. by using 1D-beam and 3D finite elements, the beam is studied using an
isotropic material (Young’s modulus of 160 GPa and shear modulus of 68 GPa).
The number of element for both models is enough to ensure the convergence
of (at least) the first three eigen-frequencies with respect to the element-size to
reach an accuracy better than 0.5 %. With the 1D-beam finite elements the first
resonance frequency is found to be 13.068 MHz while it is found to be 13.106
MHz with the 3D finite elements. The difference of 0.29 % is lower than the
uncertainties resulting from the polycrystalline material organization.

Finally, all the MC simulations results are presented for a sufficiently high
number of generated samples, i.e. respectively at least 5000 and 3500 for the
3-scale and the direct procedures, to ensure the convergence of the average

4The homogenization process described in Section 3 does not account for the dynamic
effects. This assumption is valid as the time-scales separation of the problem exists. Indeed
the characteristic time of the dynamic problem tmacro depends on the first resonance frequency
which is approximately 13 MHz as it will be shown. Therefore tmacro ≈ 7 · 10−8 s. As the
speed of sound in Silicon is about 8433 ms−1 and as the size of the largest SVE is 0.6µm, the
characteristic time of the micro problem is tmicro ≈ 7 · 10−11 s. As there are several orders of
magnitude between the time-scales, one can neglect the stress wave problem within an SVE.
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(b) 3-scale approach

Figure 12: Convergence study of the MC simulations of the 3.2 µm-long beam for both (a) the
direct finite element approach and (b) the 3-scale approach (lSVE = 0.4µm and a macro-mesh
size of 0.25 µm)

resonance frequencies and of their standard deviations. As an example, in the
particular case which will be study hereafter (3.2 µm-long beam; lSVE = 0.4µm
and a macro mesh size of 0.25 µm for the 3-scale simulations), Figs. 12(a)
and (b) report, for respectively the direct finite element simulations and the
3-scale approach, the convergence of these values with respect to the number of
samples. It can be seen that, beyond 1500 samples, the MC simulations have
converged.

5.2. Effects of the SVE and structural mesh sizes
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Figure 13: The COV of the first resonance frequency for a 3.2µm-long beam for different SVE

lengths and finite element mesh sizes in terms of α =
lEx
lmesh

, the ratio between the correlation

length of the Young’s modulus, lEx , and the mesh size, lmesh

The developed 3-scale stochastic method is applied for different finite element
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discretizations (mesh sizes lmesh) and SVE lengths (lSVE) .
In order to illustrate the effect of the mesh size, the evolution of the predicted

first resonance frequency COV is reported in Fig. 13 in terms of the ratio
α =

lEx

lmesh
between the correlation length of the Young’s modulus, lEx

, see Tab.
1, and the mesh size, lmesh. In the cases of α < 1, the mesh size is larger than
the correlation length, and the stochastic finite element method suffers from a
lack of accuracy [4, 5]. Indeed, the predicted COV is found to depend on the
mesh-size –and thus on SVE length through the correlation length lEx

– and to
be higher than the reference solution. This is physically explained by the fact
that, in this case, the finite element size is larger than its associated SVE and the
amount of grains associated to each finite element is underestimated, leading to
an over-prediction of the uncertainties. When refining the finite element mesh,
i.e. for α larger than one, the 3-scale predictions are found to converge toward
the reference solution as expected with the use of the SFEM. In these cases,
the SVEs are of size comparable to or larger than the finite-element sizes and
the existing spatial correlation between the SVEs defined on the finite elements
accounts for the change of meso-scale distribution arising with a change of SVE
length. As we are using the center point method to discretize the random field,
the 3-scale method converges by overestimating the uncertainties, in agreement
with the literature [38].

Table 4: Comparison of the first three mean resonance frequencies obtained with the 3-scale
stochastic method and with the direct MC simulations

Mode 3-scale approach Direct procedure Relative difference
1 13.055 MHz 13.129 MHz 0.57 %
2 64.448 MHz 64.115 MHz 0.51 %
3 81.554 MHz 81.896 MHz 0.42 %
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(b) Resonance frequency histograms

Figure 14: Comparison of the first resonance frequency histograms obtained with the 3-scale
stochastic method and with the direct MC simulations. (a) Example of a direct finite element
simulation. (b) Resonance frequency histograms
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(b) Resonance frequency histograms

Figure 15: Comparison of the second resonance frequency histograms obtained with the 3-
scale stochastic method and with the direct MC simulations. (a) Example of a direct finite
element simulation. (b) Resonance frequency histograms.
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Figure 16: Comparison of the third resonance frequency histograms obtained with the 3-scale
stochastic method and with the direct MC simulations. (a) Example of a direct finite element
simulation. (b) Resonance frequency histograms

The first three resonance frequencies histograms obtained with the 3-scale
stochastic method and with the direct MC simulations are reported in Figs. 14
- 16 along with the illustration of the resonance modes. For the 3-scale model,
the considered SVE length and mesh size are respectively 0.4µm and 0.27µm.
The resonance frequencies obtained with both procedures are normalized with
their corresponding mean reported in Tab. 4. The histograms obtained by
the stochastic 3-scale method are in good agreement with the reference results
obtained by the direct MC simulations. The difference in the mean frequency
mainly results from the bias between the models based on 3D finite elements and
the 1D-beam finite elements. For the second resonance frequency, the resonance-
mode is out of plane and as the grains are not columnar, the Young’s modulus is
not uniform along the vibrating direction either. A second-order homogenization
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[44] should thus be used for that bending mode, however the predictions are still
in good agreement.

When comparing the computational times, the resolution of the full model
represents a computation cost around nine hours per sample on a 3.4GHz
CPU to be compared to a few milliseconds per sample for the 3-scale procedure
with the mesh size equal to 0.2µm. However in order to define the generator,
SVE homogenization had to be computed, which is also time consuming. The
extraction of the homogenized material tensor of a sample for a 0.2µm-long SVE
requires about 97 seconds. Approximately 50 hours are thus required to define
the meso-scale random field. This remains much shorter than the time required
to compute samples with the direct procedure. Moreover, the computed SVE
information can be used for different meso-to-macro scale problems. If the size
of the structural problem were to be increased, the interest of the proposed
stochastic 3-scale process would become higher as direct MC simulations would
become unreachable. Finally, using a smaller SVE reduces the homogenization
computational time, but requires a finer mesh size at the structural scale, or an
increase in the number of integration points.

5.3. Effect of the micro-beam length

0.5 1.0 1.5 2.0 2.5 3.0
Ratio α

0.8

1.0

1.2

1.4

1.6

C
o
e
ffi
c
ie
n
t
o
f
v
a
r
ia
ti
o
n
[%

]

lSVE = 0.1µm

lSVE = 0.2µm

lSVE = 0.4µm

lSVE = 0.6µm

(a) 4.8µm-long beam

3.0 3.5 4.0 4.5 5.0
Length of the beam [µm]

0.85

0.90

0.95

1.00

1.05

1.10

1.15

C
o
e
ffi
ci
e
n
t
o
f
v
a
ri
a
ti
o
n
[%

]

lSVE = 0.2µm

lSVE = 0.4µm

(b) Influence of the beam length

Figure 17: Results for different beam lengths. (a) The COV of the first resonance frequency
for a 4.8µm-long beam for different SVE lengths and finite element mesh sizes in terms of

α =
lEx
lmesh

, the ratio between the correlation length of the Young’s modulus, lEx , and the

mesh size, lmesh. (b) Evolution of the first resonance frequency COV with respect to the
beam length for different SVE lengths.

Results were also computed for different lengths of the micro-beam. Figure
17(a) illustrates the evolution with α of the coefficient of variation obtained with
different SVE lengths for a 4.8µm-long micro-beam. It can be seen that the
uncertainty is smaller than for the 3.2µm beam: COV ≈ 0.9% vs. COV ≈ 1%.
The influence of the beam length is depicted in Fig. 17(b) for two SVE lengths:
0.2 and 0.4µm. The finite element mesh is such that a constant ratio α is
obtained (respectively, α = 2.3 and α = 1.9). As expected, the coefficient of
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variation of the first resonance frequency decreases with an increase of the length
of the beam.

6. Conclusions and perspectives

A stochastic 3-scale approach to propagate uncertainties from the micro-
structure to a macro-scale quantity of interest was developed in this paper.
Polycrystalline materials were considered and two sources of uncertainties were
involved: the grain geometries and orientations.

In this proposed stochastic 3-scale approach, at the micro-level a structural-
point is viewed as the center of a stochastic volume element. The SVEs were
generated under the form of a Voronöı tessellation with a random orientation for
each silicon grain. As SVEs are not statistically representative, a Monte-Carlo
procedure combined with a homogenization technique allowed a distribution
of the apparent material tensor of the meso-scale SVE to be estimated. The
correlation between the meso-scale material tensors of two SVEs at a given
distance could also be evaluated. An elasticity tensor generator at the meso-scale
was built based on the knowledge of the random field structure obtained from
the SVE simulations, using a spectral representation method. The generator
accounts for a lower bound of the meso-scale material tensor in order to ensure
the existence of the expectation of the generated material tensor inverse. Using
the random meso-scale field obtained with the meso-scale generator, a SFEM
was then applied at the structural-scale to predict the probabilistic behavior of
the MEMS resonator.

Probabilistic predictions obtained with the 3-scale stochastic method were
then compared to direct MC simulations of the micro-beam first three resonance
frequencies, in which the whole micro-structure is meshed. The two methods
gave similar results, the 3-scale procedure being much less expensive in terms
of computational effort. Thus the proposed stochastic 3-scale method offers an
alternative to direct MC simulations for large problems for which the direct
procedure is not feasible.

In the future, it is intended to enrich the model description by considering
preferred grain orientations, imperfection on the beam thickness ... To account
for more complex problems and geometries, the meso-scale to macro-scale tran-
sition will be applied in a 3D setting (the generated random field is already
yielding 3D elasticity tensors). Moreover the case for which the structural-scale
finite-elements are larger than the correlation length will be investigated by
using other random field discretization methods in the 3D bulk elements.

The phenomenon of thermo-elastic damping [39], which has an important
effect on the dynamic behavior of micro-resonators, will also be studied through
the proposed three-scale process. This will be achieved by first extending the
developed stochastic multi-scale method to thermo-elasticity and then by con-
sidering thermo-elastic damping in the 3D stochastic finite element analyses.
The validation of the proposed process against experimental data will then
become feasible by measuring the vibrating properties of poly-silicon MEMS
resonators using a laser-vibrometer.
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In another context, it is also intended to formulate the 3-scale method re-
cently proposed in [47] for the fracture of poly-silicon micro films in a stochastic
way.

Appendix A. Poisson-Voronöı tessellation and SVEs extraction

 

Figure A.18: Extraction of an SVE from a Poisson-Voronöı tessellation: the checked grains
correspond to polygons not intersecting the SVE boundary and the dashed grains correspond
to polygons intersecting the SVE boundary.

In this section we explain how to build the Poisson-Voronöı tessellation
and how to construct the SVEs required for the moving window technique,
see Section 3.3. A 2D Poisson-Voronöı tessellation can be generated using the
“scipy.spatial” python library called “Voronoi” from random seeds which follow
a uniform distribution. The resulting large Voronöı tessellation is described by
the information of vertexes and lines of each polygon. One rectangular paral-
lelepiped SVE can then be extracted from the large 2D Voronöı tessellation, see
Fig. A.18, by going through the following steps:

• Looping on all the polygons of the large Voronöı tessellation, the polygons
can be categorized into three groups: the polygons with all their vertexes
inside the SVE –checked polygons in Fig. A.18, the polygons with a part
of their vertexes inside the SVE –dashed polygons in Fig. A.18, and the
polygons with none of their vertexes inside the SVE;

• For the first group of polygons, all the information (vertexes and lines) is
kept for the SVE construction, while for the third group of polygons, all
the information is discarded;

• For the polygons of the second group, their vertexes outside of the SVE
are replaced by the intersection points of their lines with the boundaries
of the SVE, their intersected lines are shortened, the lines outside of the
SVE are discarded, and their lines are completed by the boundary parts
of the SVE;
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• A new set of polygons, with their associated vertexes and lines, is then
defining the SVE; a 2D mesh conforming with these new polygons can
then be generated using GMSH [48], and an extrusion follows to obtain a
3D columnar SVE meshed with quadratic tetraedra, see Fig. 3;

• Fnally each extruded polygon is associated to a domain having its own
anisotropic material law defined by its orientation angles, allowing the
definition of grains with different orientations within the SVE.

Appendix B. Notes on the random field generator

As described in Section 4, elasticity tensors are modelled as a random field
obtained from a generator. A lower bound is introduced so that positive semi-
definite tensors ∆CCC = CCCM − CCCL are generated. As one can read in [30], the
existence of the expectation of the norm of the generated elasticity tensor inverse
is a fundamental property of the matrix random field. This existence can be
proven thanks to the lower bound of the elasticity tensor.

Indeed, this fundamental property is written as:

E

[(
sup
x∈Ω

∥∥∥(CCCM(x, θθθ))
−1
∥∥∥)2

]
= c2 < +∞ , (B.1)

where “sup” is the supremum and c is a finite positive constant. The norm
operator used in Eq. (B.1) is defined as (for a square matrix) ‖AAA‖ =

∣∣λAmax

∣∣,
where

∣∣λAmax

∣∣ is the largest modulus of the eigen-values of AAA [49].
Using the compliance matrices, as SSSL−SSSM(x, θθθ) ≥ 0, from the definition of

a positive semi-definite matrix, one has:

zzzTSSSLzzz − zzzTSSSM(x, θθθ)zzz ≥ 0 ∀zzz ∈ R6 . (B.2)

As this equation holds for every zzz, it is also satisfied for the (normalized) eigen-
vector zzzSM

max(x) of SSSM(x, θθθ), which corresponds to the maximum eigen-value
λSM

max, yielding(
zzzSM

max(x)
)T
SSSLzzz

SM
max(x)−

(
zzzSM

max(x)
)T
SSSM(x, θθθ)zzzSM

max(x) ≥ 0 . (B.3)

Using the definition of the maximum eigen-value of a positive definite real sym-
metric matrix, one also has

zzzTSSSLzzz ≤ λSL
max||zzz||22 ∀zzz ∈ R6 , (B.4)

Including (B.4) in (B.3) results in, as zzzSM
max is normalized,

λSL
max ≥ λSM

max , (B.5)

which demonstrates the property (B.1).
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Appendix C. Generation of the random field AAA′(x, θθθ)

In this section we detail the spectral representation method [36], which is ap-
plied to generate the required random fieldAAA′ (x, θθθ), see Section 3.3. We assume
in this paper that the random field AAA′(x, θθθ) is homogeneous. Its (normalized)
cross-correlation matrix RRRAAA′(τ ) (27) has been obtained through equations (35)
and (36) and using the samples of the SVE elasticity tensors. Since the matrix
AAA′ has 21 independent entries, we rewrite the random matrix AAA′(x) as a vector
[A′(1)(x), A′(2)(x), ..., A′(21)(x)]. Its cross-correlation matrix RRRAAA′(τ ) has thus

a size of 21× 21 entries R
(rs)
AAA′ (τ ), r, s = 1, 2, ..., 21.

In order to use the Discrete Fourier Transform (DFT), we first define the
cross-covariance R̃RR[τnτnτn] as

R̃(rs)[τnτnτn] = σ
(r)
AAA′ σ

(s)
AAA′ R

(rs)
AAA′ (τnτnτn) , (C.1)

where σ
(r)
AAA′ and σ

(s)
AAA′ are the standard deviations of the rth and sth entries of AAA′,

respectively. Considering the general 3D case, the set of discrete positions τnτnτn
is defined by its vector components τ

(nxnynz)
n = [nx∆τx, ny∆τy, nz∆τz], where

∆τi, for i = x, y, z, is the spatial increment in each dimension i and where
ni = 0, 1, 2, ..., Ni − 1, for i = x, y, z, with Ni the total number of discrete
points in each dimension i. Depending on the spatial size, [lx, ly, lz], of the
required random field, we need to make sure that Ni∆τi ≥ li (no sum on i). As
mentioned in Section 4.2, this is achieved herein by considering a zero-padding
once RRRA′A′A′(τ ) reaches zero, allowing to increase the number of points Ni as much

as required. We now need to periodize R̃RR[τnτnτn] by adding extra discrete points at
its end in order to satisfy

R̃RR[((Nx − 1) + j)∆τx, ((Ny − 1) + k)∆τy, ((Nz − 1) + p)∆τz] =

R̃RR[(Nx − j)∆τx, (Ny − k)∆τy, (Nz − p)∆τz]
for j = 1, 2, ..., Nx − 1; k = 1, 2, ..., Ny − 1; p = 1, 2, ..., Nz − 1 .

(C.2)

Then we have 2Ni − 1 discrete points in each dimension.
The spectral density matrix SSS[mmm] of the cross-covariance R̃RR[τnτnτn] can now be

computed using the DFT method as

S(rs)[m(mxmymz)] =

2Nx−2∑
nx=0

2Ny−2∑
ny=0

2Nz−2∑
nz=0

R̃(rs)[τ
(nxnynz)
n ]e

−2πi( mxnx
2Nx−1 +

myny
2Ny−1 + mznz

2Nz−1 )
,(C.3)

where the matrixmmm is defined by the vector componentsmmxmymz = [mx, my, mz]
with mi = 0, 1, ..., 2Ni − 2 for i = x, y, z, and where S[mmxmymz ] is an Her-
mitian matrix, which can be expressed as

SSS[m(mxmymz)] = HHH[m(mxmymz)]HHH∗[m(mxmymz)] , (C.4)

33



with HHH∗[m(mxmymz)] the conjugate transpose of the matrix HHH[m(mxmymz )].
Before generating the random fieldAAA′ by the spectral representation method,

we define the increments of frequency, in each direction, as

∆κi =
1

(2Ni − 2)∆τi
, i = x, y, z , (C.5)

and the matrix κmκmκm of vector components κ
(mxmymz)
m = [κ

(mx)
x , κ

(my)
y , κ

(mz)
z ] is

defined from (no sum on i = x, y, z)

κ
(mi)
i =

{
mi∆κi if mi < (2Ni − 1)/2;

[mi − (2Ni − 1)]∆κi if mi > (2Ni − 1)/2;
(C.6)

to avoid the failure of power and logarithm identities. Finally, the 21 compo-
nents of the random field AAA′ are generated using

A′(r)(x, θθθ) =
√

2∆∆∆<


21∑
s=1

2Nx−2∑
mx=0

2Ny−2∑
my=0

2Nz−2∑
mz=0

H(rs)[m(mxmymz)]

η(s,mx,my,mz)e2πi(x·κ(mxmymz)
m +θ(s,mx,my,mz)

}
(C.7)

where ∆∆∆ = ∆κx∆κy∆κz, θ
(s,mx,my,mz) is an independent random variable (for

each s, mx, my, mz) uniformly distributed on [0, 1], and where η(s,mx,my,mz)

can be defined in the two following ways

η(s,mx,my,mz) =



1 yields a Gaussian field only when

Nx, Ny, Nz →∞;√
−logϕ(s,mx,my,mz) yields a Gaussian field when

ϕ(s,mx,my,mz) is uniformly

distributed on [0, 1].

(C.8)
In this work, the first case is considered.

In order to generate a non-Gaussian random field, the described method is
first apply to generate an intermediate Gaussian random field. Afterward, this
Gaussian stochastic vector field can be transformed into a non-Gaussian random
field using proper mapping techniques, see for example [50].
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